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Problem 1.1.1 (Humphreys 3.1)
Let I be an ideal of L. Then each member of the derived series or descending central series of
1 is also an ideal of L.

Solution:
To recall definitions:
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e The derived series of L is L D L® := [LL] D LW = [[LL][LL]] 2 --- and termination
implies solvability.

o+ The descending central series of L is L O L' := [LL] D L? = [L[LL]] O ---, and
termination implies nilpotency (and hence solvability since [LL] C L = L@ C L?).

e IJL «— [LI|C 1.

For the derived series, inductively suppose I = I (@) is an ideal, so [LI] € I. We then want to
show I0+Y) .= [I, 1] is an ideal, so [L, [I,I]] C [I,I]. Letting [ € L, and i, j € I, one can use
the Jacobi identity, antisymmetry of the bracket, and the fact that [I, ] == LU+ C T to write

L 11, 1) > (4]

= [lld]g] — [lig)d]

e [[L,1],1] — [[L, 1], 1]
C ([L,1), 1] C [1,1].

Similarly, for the lower central series, inductively suppose I := I’ is an ideal, so [L,I] CI; we
want to show [L,[L, I]] C [L,I]. Again using the Jacobi identity and antisymmetry, we have

(L, [L, 1] > [l [l2,4]]
= [[i, l1], lo] + [[l2, 1], 4]
C[[Z, L], L] + [[L, L], 1]
ClLLI+[LI]C[L,I].

Problem 1.1.2 (Humphreys 3.4)
Prove that L is solvable (resp. nilpotent) if and only ad(L) is solvable (resp. nilpotent).

Solution:

— : By the propositions in Section 3.1 (resp. 3.2), the homomorphic image of any solvable
(resp. nilpotent) Lie algebra is again solvable (resp. nilpotent).

<= There is an exact sequence

0— Z(L) = L 2% ad(L) — 0,

exhibiting ad(L) = L/Z(L). Thus if ad(L) is solvable, noting that centers are always solvable,
we can use the fact that the 2-out-of-3 property for short exact sequences holds for solvability.
Moreover, by the proposition in Section 3.2, if L/Z(L) is nilpotent then L is nilpotent.

Problem 1.1.3 (Humphreys 3.6)

Prove that the sum of two nilpotent ideals of a Lie algebra L is again a nilpotent ideal. There-
fore, L possesses a unique maximal nilpotent ideal. Determine this ideal for the nonabelian
2-dimensional algebra Fz + Fy where [zy] = x, and the 3-dimensional algebra Fz + Fy + Fz
where

o [zy] =
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o [zz] =y
« [yl =0
Solution:

To see that sums of nilpotent ideals are nilpotent, suppose IV = JM = 0 are nilpotent ideals.
Then (I + J)M+N c 1M 4+ JV by collecting terms and using the absorbing property of ideals.
One can now construct a maximal nilpotent ideal in L by defining M as the sum of all nilpotent
ideals in L. That this is unique is clear, since M is nilpotent, so if M’ is another maximal
nilpotent ideal then M C M’ and M’ C M.

Consider the 2-dimensional algebra L := Fz + Fy where [zy] = x and let I be the maximal
nilpotent ideal. Note that L is not nilpotent since L¥ = Fz for all k > 0, since L' = Fz and
[L,Fz] = Fx (since all brackets are either zero or +x). However, this also shows that the
subalgebra Fz is an ideal, and is in fact a nilpotent ideal since [Fx, Fx] = 0. Although Fy is a
nilpotent subalgebra, it is not an ideal since [L,Fy] = Fz. So I is at least 1-dimensional, since
it contains Fz, and at most 1-dimensional, since it is not all of L, forcing I = Fz.

Consider now the 3-dimensional algebra L := Fz + Fy + Fz with the multiplication table given
in the problem statement above. Note that L is not nilpotent, since L' = Fy +Fz = L for all
k > 2. This follows from consider [L,Fy + Fz], where choosing = € L is always a valid choice
and choosing y or z in the second slot hits all generators; however, no element brackets to x.
So similar to the previous algebra, the ideal J := Fx + Fy is an ideal, and it is nilpotent since
all brackets between y and z vanish. By similar dimensional considerations, J must equal the
maximal nilpotent ideal.

Problem 1.1.4 (Humphreys 3.10)
Let L be a Lie algebra, K an ideal of L such that L/K is nilpotent and such that ad|, is
nilpotent for all € L. Prove that L is nilpotent.

Solution:

Suppose that M = L/K is nilpotent, so the lower central series terminates and M" = 0 for
some n. Then L™ C K for the same n, and the claim is that L™ is nilpotent. This follows from
applying Engel’s theorem: let z € L™ C K, then ad,|;» = 0 by assumption. So every element
of L" is ad-nilpotent, making it nilpotent. Since 0 = (L")k = L™ for some k, this forces L
to be nilpotent as well.

— 1.2 Section 4 ~

Problem 1.2.1 (Humphreys 4.1)
Let L = sl(V'). Use Lie’s Theorem to prove that Rad L = Z(L); conclude that L is semisimple.
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Hint: observe that Rad L lies in each mazimal solv-
able subalgebra B of L. Select a basis of V' so that
B = Lnt(n, F), and notice that B' is also a
maximal solvable subalgebra of L. Conclude that
RadL C LNd(n, F) (diagonal matrices), then
that Rad L = Z(L).]

Solution:

Let R = Rad(L) be the radical (maximal solvable ideal) of L. Using the hint, if S < L is a
maximal solvable subalgebra then it must contain R. By (a corollary of) Lie’s theorem, S
stabilizes a flag and thus there is a basis with respect to which all elements of S (and thus
R) are upper triangular. Thus S C b; however, taking the transpose of every element in S
again yields a maximal solvable ideal which is lower triangular and thus contained in b™~. Thus
RCSCbnNb™ =h, which consists of just diagonal matrices.

We have Z(L) C R since centers are solvable, and the claim is that RCh = RC Z(L). It
suffices to show that R consists of scalar matrices, since it is well-known that Z(gl,(F)) consists
of precisely scalar matrices, and this contains Z(L) since L < gl,,(F) is a subalgebra. This
follows by letting £ = Z a;e;; be an element of Rad(L) and considering bracketing elements
of sl,,(IF) against it. Bracketing elementary matrices e; ; with ¢ # j yields

leij, 0] = ajei; — aze; j,

which must be an element of Rad(L) and thus diagonal, which forces a; = a; for all 4, j.
To conclude that L is semisimple, note that a scalar traceless matrix is necessarily zero, and
so Z(sl(V)) = 0. This suffices since Rad(L) =0 <= L is semisimple.

Problem 1.2.2 (Humphreys 4.3, Failure of Lie’s theorem in positive characteristic)
Consider the p x p matrices:

o1o0 . . O
0010 . O
T=1| . . - - |, y = diag(0,1,2,3,--- ,p—1).
0o - - 1
1 0

Check that [z,y] = x, hence that x and y span a two dimensional solvable subalgebra L of
gl(p, F'). Verify that z,y have no common eigenvector.

Solution:
Note that = acts on the left on matrices y by cycling all rows of y up by one position, and
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similar yacts on the right by cycling the columns to the right. Thus

0 1 0 00
002 1 00
TY—yr= g : -020
00...0p_ ... 0 3
00. ...00
0 10 00
0 0100
= 0 0010
0 0 0 01
—(p—1) 0 0 0 O
0 1 0 0 0
00100
=10 0010 € GL,(F,)
00001
00000
= XT.

Thus L := Fx + Fy span a solvable subalgebra, since LW = Fz and so LB® = 0.

Moreover, note that every basis vector e; is an eigenvector for y since y(e;) = ie;, while no
basis vector is an eigenvector for x since z(e;) = e;41 for 1 <i <p—1 and z(ep) = €1, s0 x
cycles the various basis vectors.

Problem 1.2.3 (Humphreys 4.4)

For arbitrary p, construct a counterexample to Corollary C?® as follows: Start with L C g[p(IF)
as in Exercise 3. Form the vector space direct sum M = L & FP, and make M a Lie algebra
by decreeing that F? is abelian, while L has its usual product and acts on F” in the given way.
Verify that M is solvable, but that its derived algebra (= Fx + FP) fails to be nilpotent.

“Corollary C states that if L is solvable then every = € LW s ad-nilpotent, and thus LW g nilpotent.

Solution:
For pairs A; @ v; and As @ vy in M, we’ll interpret the given definition of the bracket as

[A1 @ v1, Ay ® 2] = [A1, Az] @ (A1 (v2) — Az(v1)),

where A;(v;) denotes evaluating an endomorphism A € gl,(F) on a vector v € FF. We also
define L = Fz 4+ Fy with « and y the given matrices in the previous problem, and note that L
is solvable with derived series

L=Fz®Fy DLW =Fz DL =0.
Consider the derived series of M — by inspecting the above definition, we have

MY c LW @ FP = Fz @ FP.
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Moreover, we have
M® C L® gFP =0 @ FP,

which follows from considering considering bracketing two elements in M M: get wij = Ai(vj)—
Aj (Ui), then

[[A1, A2] ® w2, [A3, As] © w3 4]
= [[A1, A2, [A3, Ad]] ® [A1, A2](w3,4) — [A3, Ag](w1,2).

We can then see that M®) = 0, since for any w; € FP
[0& wi, 0B w2 =06 0(wz) —0(wy1) =060,

and so M is solvable.
Now consider its derived subalgebra M (1) = Fz @ FP. If this were nilpotent, every element
would be ad-nilpotent, but let v = [1,1,--- , 1] and consider ad,go. We have

adzg0(0Bv) =[z® 0,00 v]=0Bzv =0 v,

where we've used that = acts on the left on vectors by cycling the entries. Thus ad;,(0®v) =
Opvforalln>1and 26 0e MW is not ad-nilpotent.
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