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E 1.1 Section 3 e

Problem 1.1.1 (Humphreys 3.1)
Let I be an ideal of L. Then each member of the derived series or descending central series of
I is also an ideal of L.

Solution:
To recall definitions:

Table of Contents 1

mailto: dzackgarza@gmail.com


1 Problem Set 2

• The derived series of L is L ⊇ L(0) := [LL] ⊇ L(1) := [[LL][LL]] ⊇ · · · and termination
implies solvability.

• The descending central series of L is L ⊇ L1 := [LL] ⊇ L2 := [L[LL]] ⊇ · · ·, and
termination implies nilpotency (and hence solvability since [LL] ⊆ L =⇒ L(i) ⊆ Li).

• I ⊴ L ⇐⇒ [L, I] ⊆ I.

For the derived series, inductively suppose I := I(i) is an ideal, so [LI] ⊆ I. We then want to
show I(i+1) := [I, I] is an ideal, so [L, [I, I]] ⊆ [I, I]. Letting l ∈ L, and i, j ∈ I, one can use
the Jacobi identity, antisymmetry of the bracket, and the fact that [I, I] := L(i+1) ⊆ I to write

[L, [I, I]] ∋ [l[ij]]
= [[li]j] − [[lj]i]
∈ [[L, I], I] − [[L, I], I]
⊆ [[L, I], I] ⊆ [I, I].

Similarly, for the lower central series, inductively suppose I := Ii is an ideal, so [L, I] ⊆ I; we
want to show [L, [L, I]] ⊆ [L, I]. Again using the Jacobi identity and antisymmetry, we have

[L, [L, I]] ∋ [l1, [l2, i]]
= [[i, l1], l2] + [[l2, l1], i]
⊆ [[I, L], L] + [[L, L], I]
⊆ [I, L] + [L, I] ⊆ [L, I].

Problem 1.1.2 (Humphreys 3.4)
Prove that L is solvable (resp. nilpotent) if and only ad(L) is solvable (resp. nilpotent).

Solution:
=⇒ : By the propositions in Section 3.1 (resp. 3.2), the homomorphic image of any solvable

(resp. nilpotent) Lie algebra is again solvable (resp. nilpotent).
⇐= : There is an exact sequence

0 → Z(L) → L
ad−→ ad(L) → 0,

exhibiting ad(L) ∼= L/Z(L). Thus if ad(L) is solvable, noting that centers are always solvable,
we can use the fact that the 2-out-of-3 property for short exact sequences holds for solvability.
Moreover, by the proposition in Section 3.2, if L/Z(L) is nilpotent then L is nilpotent.

Problem 1.1.3 (Humphreys 3.6)
Prove that the sum of two nilpotent ideals of a Lie algebra L is again a nilpotent ideal. There-
fore, L possesses a unique maximal nilpotent ideal. Determine this ideal for the nonabelian
2-dimensional algebra Fx + Fy where [xy] = x, and the 3-dimensional algebra Fx + Fy + Fz
where

• [xy] = z
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• [xz] = y
• [yz] = 0

Solution:
To see that sums of nilpotent ideals are nilpotent, suppose IN = JM = 0 are nilpotent ideals.
Then (I + J)M+N ⊆ IM + JN by collecting terms and using the absorbing property of ideals.
One can now construct a maximal nilpotent ideal in L by defining M as the sum of all nilpotent
ideals in L. That this is unique is clear, since M is nilpotent, so if M ′ is another maximal
nilpotent ideal then M ⊆ M ′ and M ′ ⊆ M .
Consider the 2-dimensional algebra L := Fx + Fy where [xy] = x and let I be the maximal
nilpotent ideal. Note that L is not nilpotent since Lk = Fx for all k ≥ 0, since L1 = Fx and
[L,Fx] = Fx (since all brackets are either zero or ±x). However, this also shows that the
subalgebra Fx is an ideal, and is in fact a nilpotent ideal since [Fx,Fx] = 0. Although Fy is a
nilpotent subalgebra, it is not an ideal since [L,Fy] = Fx. So I is at least 1-dimensional, since
it contains Fx, and at most 1-dimensional, since it is not all of L, forcing I = Fx.
Consider now the 3-dimensional algebra L := Fx +Fy +Fz with the multiplication table given
in the problem statement above. Note that L is not nilpotent, since L1 = Fy +Fz = Lk for all
k ≥ 2. This follows from consider [L,Fy + Fz], where choosing x ∈ L is always a valid choice
and choosing y or z in the second slot hits all generators; however, no element brackets to x.
So similar to the previous algebra, the ideal J := Fx + Fy is an ideal, and it is nilpotent since
all brackets between y and z vanish. By similar dimensional considerations, J must equal the
maximal nilpotent ideal.

Problem 1.1.4 (Humphreys 3.10)
Let L be a Lie algebra, K an ideal of L such that L/K is nilpotent and such that adx|K is
nilpotent for all x ∈ L. Prove that L is nilpotent.

Solution:
Suppose that M := L/K is nilpotent, so the lower central series terminates and Mn = 0 for
some n. Then Ln ⊆ K for the same n, and the claim is that Ln is nilpotent. This follows from
applying Engel’s theorem: let x ∈ Ln ⊆ K, then adx|Ln = 0 by assumption. So every element
of Ln is ad-nilpotent, making it nilpotent. Since 0 = (Ln)k = Ln+k for some k, this forces L
to be nilpotent as well.

E 1.2 Section 4 e

Problem 1.2.1 (Humphreys 4.1)
Let L = sl(V ). Use Lie’s Theorem to prove that Rad L = Z(L); conclude that L is semisimple.
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Hint: observe that Rad L lies in each maximal solv-
able subalgebra B of L. Select a basis of V so that
B = L ∩ t(n, F), and notice that Bt is also a
maximal solvable subalgebra of L. Conclude that
Rad L ⊂ L ∩ d(n, F) (diagonal matrices), then
that Rad L = Z(L).]

Solution:
Let R = Rad(L) be the radical (maximal solvable ideal) of L. Using the hint, if S ≤ L is a
maximal solvable subalgebra then it must contain R. By (a corollary of) Lie’s theorem, S
stabilizes a flag and thus there is a basis with respect to which all elements of S (and thus
R) are upper triangular. Thus S ⊆ b; however, taking the transpose of every element in S
again yields a maximal solvable ideal which is lower triangular and thus contained in b−. Thus
R ⊆ S ⊆ b ∩ b− = h, which consists of just diagonal matrices.
We have Z(L) ⊆ R since centers are solvable, and the claim is that R ⊆ h =⇒ R ⊆ Z(L). It
suffices to show that R consists of scalar matrices, since it is well-known that Z(gln(F)) consists
of precisely scalar matrices, and this contains Z(L) since L ≤ gln(F) is a subalgebra. This
follows by letting ℓ =

∑
aiei,i be an element of Rad(L) and considering bracketing elements

of sln(F) against it. Bracketing elementary matrices ei,j with i ̸= j yields

[ei,j , ℓ] = ajei,j − aiei,j ,

which must be an element of Rad(L) and thus diagonal, which forces aj = ai for all i, j.
To conclude that L is semisimple, note that a scalar traceless matrix is necessarily zero, and
so Z(sl(V )) = 0. This suffices since Rad(L) = 0 ⇐⇒ L is semisimple.

Problem 1.2.2 (Humphreys 4.3, Failure of Lie’s theorem in positive characteristic)
Consider the p × p matrices:

x =


0 1 0 . . 0
0 0 1 0 . 0
. . · · · ·
0 · · · · 1
1 . · · · · · 0

 , y = diag(0, 1, 2, 3, · · · , p − 1).

Check that [x, y] = x, hence that x and y span a two dimensional solvable subalgebra L of
gl(p, F ). Verify that x, y have no common eigenvector.

Solution:
Note that x acts on the left on matrices y by cycling all rows of y up by one position, and
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similar yacts on the right by cycling the columns to the right. Thus

xy − yx =


0 1 0 0 0
0 0 2 0 0

0
...

...
. . . 0

0 0 · · · 0 p − 1
0 0 · · · 0 0

 −


0 0 0 0 0
0 0 1 0 0
... · · · 0 2 0
0 0 · · · 0 3

p − 1 0 · · · 0 0



=


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

−(p − 1) 0 0 0 0



≡


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 ∈ GLn(Fp)

= x.

Thus L := Fx + Fy span a solvable subalgebra, since L(1) = Fx and so L(2) = 0.
Moreover, note that every basis vector ei is an eigenvector for y since y(ei) = iei, while no
basis vector is an eigenvector for x since x(ei) = ei+1 for 1 ≤ i ≤ p − 1 and x(ep) = e1, so x
cycles the various basis vectors.

Problem 1.2.3 (Humphreys 4.4)
For arbitrary p, construct a counterexample to Corollary Ca as follows: Start with L ⊂ glp(F)
as in Exercise 3. Form the vector space direct sum M = L ⊕ Fp, and make M a Lie algebra
by decreeing that Fp is abelian, while L has its usual product and acts on Fp in the given way.
Verify that M is solvable, but that its derived algebra (= Fx + Fp) fails to be nilpotent.

aCorollary C states that if L is solvable then every x ∈ L(1) is ad-nilpotent, and thus L(1) is nilpotent.

Solution:
For pairs A1 ⊕ v1 and A2 ⊕ v2 in M , we’ll interpret the given definition of the bracket as

[A1 ⊕ v1, A2 ⊕ v2] := [A1, A2] ⊕ (A1(v2) − A2(v1)),

where Ai(vj) denotes evaluating an endomorphism A ∈ glp(F) on a vector v ∈ Fp. We also
define L = Fx + Fy with x and y the given matrices in the previous problem, and note that L
is solvable with derived series

L = Fx ⊕ Fy ⊇ L(1) = Fx ⊇ L(2) = 0.

Consider the derived series of M – by inspecting the above definition, we have

M (1) ⊆ L(1) ⊕ Fp = Fx ⊕ Fp.
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Moreover, we have

M (2) ⊆ L(2) ⊕ Fp = 0 ⊕ Fp,

which follows from considering considering bracketing two elements in M (1): set wij := Ai(vj)−
Aj(vi), then

[[A1, A2] ⊕ w1,2, [A3, A4] ⊕ w3,4]
= [[A1, A2], [A3, A4]] ⊕ [A1, A2](w3,4) − [A3, A4](w1,2).

We can then see that M (3) = 0, since for any wi ∈ Fp,

[0 ⊕ w1, 0 ⊕ w2] = 0 ⊕ 0(w2) − 0(w1) = 0 ⊕ 0,

and so M is solvable.
Now consider its derived subalgebra M (1) = Fx ⊕ Fp. If this were nilpotent, every element
would be ad-nilpotent, but let v = [1, 1, · · · , 1] and consider adx⊕0. We have

adx⊕0(0 ⊕ v) = [x ⊕ 0, 0 ⊕ v] = 0 ⊕ xv = 0 ⊕ v,

where we’ve used that x acts on the left on vectors by cycling the entries. Thus adn
x⊕0(0⊕v) =

0 ⊕ v for all n ≥ 1 and x ⊕ 0 ∈ M (1) is not ad-nilpotent.
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