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E 1.1 Section 5 e

Problem 1.1.1 (5.1)
Prove that if L is nilpotent then the Killing form of L is identically zero.

Solution:
Note that if L is nilpotent than every ℓ ∈ L is ad-nilpotent, so letting x, y ∈ L be arbitrary,
their commutator ℓ := [xy] is ad-nilpotent. Thus ad[xy] ∈ End(L) is a nilpotent endomorphism
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of L, which are always traceless.
The claim is the following: for any x, y ∈ L,

Trace(ad[xy]) = 0 =⇒ Trace(adx ◦ ady) = 0,

from which it follows immediately that β is identically zero.
First we can use the fact that ad : L → gl(L) preserves brackets, and so

ad[xy]L = [adxady]gl(L) = adx ◦ ady − ady ◦ adx,

and so

0 = Trace(ad[xy]) = Trace(adxady − adyadx) = Trace(adxady) − Trace(adyadx).

where we’ve used that the trace is an F-linear map gl(L) → F. This forces

Trace(adxady) = − Trace(adyadx),

but by the cyclic property of traces, we always have

Trace(adxady) = Trace(adyadx).

Combining these yields Trace(adxady) = 0.

Problem 1.1.2 (5.7)
Relative to the standard basis of sl3(F), compute det κ. What primes divide it?

Hint: use 6.7, which says κgln(x, y) =
2n Trace(xy).

Solution:
We have the following standard basis:

x1 =

 · 1 ·
· · ·
· · ·

 x2 =

 · · 1
· · ·
· · .

 x3 =

 · · ·
· · 1
· · ·


h1 =

 1 · ·
· −1 ·
· · ·

 h2 =

 · · ·
· 1 ·
· · −1


y1 =

 · · ·
1 · ·
· · ·

 y2 =

 · · ·
· · ·
1 · ·

 y3 =

 · · ·
· · ·
· 1 ·

 .

For notational convenience, let {v1, · · · , v8} denote this ordered basis.
Direct computations show

• [x1v1] = [x1x1] = 0
• [x1v2] = [x1x2] = 0
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• [x1v3] = [x1x3] = e13 = x2 = v2
• [x1v4] = [x1h1] = −2e12 = −2x2 = −2v2
• [x1v5] = [x1h2] = e12 = x1 = v1
• [x1v6] = [x1y1] = e11 − e22 = h1 = v4
• [x1v7] = [x1y2] = −e31 = −y2 = v6
• [x1v8] = [x1y3] = 0

Let Eij denote the elementary 8 × 8 matrices with a 1 in the (i, j) position. We then have, for
example,

adx1 = 0 + 0 + E2,3 − 2E2,4 + E1,5 + E4,6 + E6,7 + 0

=



· · · · 1 · ·
· · 1 −2 · · ·
· · · · · · ·
· · · · · 1 ·
· · · · · · ·
· · · · · · 1
· · · · · · ·


.

The remaining computations can be readily automated on a computer, yielding the following
matrices for the remaining advi :

• adx1 = 0 + 0 + E2,3 − 2E1,4 + E1,5 + E4,6 + E8,7 + 0

• adx2 = 0 + 0 + 0 − E2,4 − E2,5 − E3,6 + (E4,7 + E5,7) + E1,8

• adx3 = −E2,1 + 0 + 0 + E3,4 − 2E3,5 + 0 + E6,7 + E5,8

• adh1 = 2E1,1 + E2,2 − E3,3 + 0 + 0 − 2E6,6 − E7,7 + E8,8

• adh2 = −E1,1 + E2,2 + 2E3,3 + 0 + 0 + E6,6 − E7,7 − 2E8,8

• ady1 = −E4,1 + E3,2 + 0 + 2E6,4 − E6,5 + 0 + 0 − E7,8

• ady2 = E8,1 − (E4,2 + E5,2) − E6,3 + E7,4 + E7,5 + 0 + 0 + 0

• ady3 = 0 − E1,2 − E5,3 − E8,4 + 2E8,5 + E7,6 + 0 + 0

Now forming the matrix (β)ij := Trace(adviadvj ) yields

β =



· · · · · 2 · ·
· · · · · · 6 ·
· · · · · · · 6
· · · 12 −6 · · ·
· · · −6 12 · · ·
2 · · · · · · ·
· 6 · · · · · ·
· · 6 · · · · ·


,

whence det(β) = (2 · 6 · 6)2(122 − 36) = −2837.
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E 1.2 Section 6 e

Problem 1.2.1 (6.1)
Using the standard basis for L = sl2(F), write down the Casimir element of the adjoint
representation of L (cf. Exercise 5.5). Do the same thing for the usual (3-dimensional)
representation of sl3(F), first computing dual bases relative to the trace form.

Solution:
A computation shows that in the basis {ei} := {x, h, y}, the Killing form is represented by

β =

0 0 4
0 8 0
4 0 0

 =⇒ β−T =


0 0 1

4
0 1

8 0
1
4 0 0

,

yielding the dual basis
{
ei

∨}
read from the columns of β−T :

• x∨ = 1
4y,

• h∨ = 1
8h,

• y∨ = 1
4x.

Thus letting φ = ad, we have

cφ =
∑

φ(ei)φ(ei
∨)

= ad(x)ad(x∨) + ad(h)ad(h∨) + ad(y)ad(y∨)
= ad(x)ad(y/4) + ad(h)ad(h/8) + ad(y)ad(x/4)

= 1
4adxady + 1

8ad2
h + 1

4adyadx.

For sl3, first take the ordered basis {v1, · · · , v8} = {x1, x2, x3, h1, h2, y1, y2, y3} as in the previ-
ous problem. So we form the matrix (β)ij := Trace(vivj) by computing various products and
traces on a computer to obtain

β =



· · · · · 1 · ·
· · · · · · 1 ·
· · · · · · · 1
· · · 2 −1 · · ·
· · · −1 2 · · ·
1 · · · · · · ·
· 1 · · · · · ·
· · 1 · · · · ·


=⇒ β−T =



· · · · · 1 · ·
· · · · · · 1 ·
· · · · · · · 1
· · · 2

3
1
3 · · ·

· · · 1
3

2
3 · · ·

1 · · · · · · ·
· 1 · · · · · ·
· · 1 · · · · ·


,

which yields the dual basis
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• xi
∨ = yi

• h1
∨ = 2

3h1 + 1
3h2

• h2
∨ = 1

3h1 + 2
3h2

• yi
∨ = xi

We can thus compute the Casimir element of the standard representation φ on a computer as

cφ =
∑

i

φ(xi)φ(xi
∨) + φ(h1)φ(h1

∨) + φ(h2)φ(h2
∨) +

∑
i

φ(yi)φ(yi
∨)

=
∑

i

xiyi + h1h1
∨ + h2h2

∨ +
∑

i

yixi

=
∑

i

(xiyi + yixi)

= 8
3I.

Problem 1.2.2 (6.3)
If L is solvable, every irreducible representation of L is one dimensional.

Solution:
Let φ : L → V be an irreducible representation of L. By Lie’s theorem. L stabilizes a flag
in V , say F • = F 1 ⊂ · · · F n = V where F k = ⟨v1, · · · , vk⟩ for some basis {vi}i≤n. Since φ is
irreducible, the only L-invariant subspaces of V are 0 and V itself. However, each F k is an
L-invariant subspace, which forces n = 1 and F 1 = V . Thus V is 1-dimensional.

Problem 1.2.3 (6.5)
A Lie algebra L for which Rad L = Z(L) is called reductive.a

(a) If L is reductive, then L is a completely reducible ad L-module. b In particular, L is the
direct sum of Z(L) and [LL], with [LL] semisimple.

(b) If L is a classical linear Lie algebra (1.2), then L is semisimple. (Cf. Exercise 1.9.)
(c) If L is a completely reducible ad(L)-module, then L is reductive.
(d) If L is reductive, then all finite dimensional representations of L in which Z(L) is

represented by semisimple endomorphisms are completely reducible.
aExamples: L abelian, L semisimple, L = gln(F).
bIf ad L ̸= 0, use Weyl’s Theorem.

Solution:
Part 1: If ad(L) ̸= 0, as hinted, we can attempt to apply Weyl’s theorem to the representation
φ : ad(L) → gl(L): if we can show ad(L) is semisimple, then φ (and thus L) will be a completely
reducible ad(L)-module. Assume L is reductive, so ker(ad) = Z(L) = Rad(L), and by the first
isomorphism theorem ad(L) ∼= L/ Rad(L). We can now use the fact stated in Humphreys on
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page 11 that for an arbitrary Lie algebra L, the quotient L/ Rad(L) is semisimple – this follows
from the fact that Rad(L/ Rad(L)) = 0, since the maximal solvable ideal in the quotient would
need to be a maximal proper ideal in L containing Rad(L), which won’t exist by maximality
of Rad(L). Thus ad(L) is semisimple, and Weyl’s theorem implies it is completely reducible.
To show that L = Z(L) ⊕ [LL], we first show that it decomposes as a sum L = Z(L) + [LL],
and then that the intersection is empty so the sum is direct. We recall that a Lie algebra is
semisimple if and only if it has no nonzero abelian ideals. Since L/Z(L) is semisimple, we have
[L/Z(L), L/Z(L)] = L/Z(L) since it would otherwise be a nonzero abelian ideal in L/Z(L). We
can separately identify [L/Z(L), L/Z(L)] ∼= [LL]/Z(L), since the latter is also semisimple and
the former is an abelian ideal in it. Combining these, we have [LL]/Z(L) ∼= L/Z(L) ∼= ad(L),
and so we have an extension

0 → Z(L) → L → [LL] → 0.

Since this sequence splits at the level of vector spaces, L = Z(L)+[LL] as an ad(L)-module, al-
though the sum need not be direct. To show that it is, note that Z(L) ≤ L is an ad(L)-invariant
submodule, and by complete reducibility has an ad(L)-invariant complement W . We can
thus write L = W ⊕ Z(L), and moreover [LL] ⊆ W , and so we must have W = [LL] and
L = [LL] ⊕ Z(L).
Finally, to see that [LL] is semisimple, note that the above decomposition allows us to write
L/Z(L) ∼= [LL], and Rad(L/Z(L)) = Rad(L/ Rad(L)) = 0 so Rad([LL]) = 0.
Part 2: Omitted for time.
Part 3: Omitted for time.
Part 4: Omitted for time.

Problem 1.2.4 (6.6)
Let L be a simple Lie algebra. Let β(x, y) and γ(x, y) be two symmetric associative bilinear
forms on L. If β, γ are nondegenerate, prove that β and γ are proportional.

Hint: Use Schur’s Lemma.

Solution:
The strategy will be to define an irreducible L-module V and use the two bilinear forms to
produce an element of EndL(V ), which will be 1-dimensional by Schur’s lemma.
The representation we’ll take will be φ := ad : L → gl(L), and since L is simple, ker ad = 0
since otherwise it would yield a nontrivial ideal of L. Since this is a faithful representation,
we will identify L with its image V := ad(L) ⊆ gl(L) and regard V as an L-module.
As a matter of notation, let βx(y) := β(x, y) and similarly γx(y) := γ(x, y), so that βx, γx can
be regarded as linear functionals on V and thus elements of V ∨. This gives an F-linear map

Φ1 : V → V ∨

x 7→ βx,

which we claim is an L-module morphism.
Assuming this for the moment, note that by the general theory of bilinear forms on vector
spaces, since β and γ are nondegenerate, the assignments x 7→ βx and x 7→ γx induce vector
space isomorphisms V

∼−→ V ∨. Accordingly, for any linear functional f ∈ V ∨, there is a unique
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element z(f) ∈ V such that f(v) = γ(z(f), v). So define a map using the representing element
for γ:

Φ2 : V ∨ → V

f 7→ z(f),

which we claim is also an L-module morphism.
We can now define their composite

Φ := Φ2 ◦ Φ1 : V → V

x 7→ z(βx),

which sends an element x ∈ V to the element z = z(βx) ∈ V such that βx(−) = γz(−) as
functionals. An additional claim is that Φ commutes with the image V := ad(L) ⊆ gl(L).
Given this, by Schur’s lemma we have Φ ∈ EndL(V ) = F (where we’ve used that a compositions
of morphisms is again a morphism) and so Φ = λ idL for some scalar λ ∈ F.
To see why this implies the result, we have equalities of functionals

β(x, −) = βx(−)
= γz(βx)(−)
= γ(z(βx), −)
= γ(Φ(x), −)
= γ(λx, −)
= λγ(x, −),

and since this holds for all x we have β(−, −) = λγ(−, −) as desired.

Claim: Φ1 is an L-module morphism.

Proof (?).
We recall that a morphism of L-modules φ : V → W is an F-linear map satisfying

φ(ℓ.x) = ℓ.φ(x) ∀ℓ ∈ L, ∀x ∈ V.

In our case, the left-hand side is

Φ1(ℓ.x) := Φ1(adℓ(x)) = Φ1([ℓ, x]) = β[ℓ,x] = β([ℓ, x], −).

and the right-hand side is

ℓ.Φ1(x) := ℓ.βx := (y 7→ −βx(ℓ.y)) := (y 7→ −βx([ℓ, y])) = −β(x, [ℓ, −]).

By anticommutativity of the bracket, along with F-linearity and associativity of β, we
have

β([ℓ, x], y) = −β([x, ℓ], y) = −β(x, [ℓ, y]) ∀y ∈ V

and so the above two sides do indeed coincide.
■
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Claim: Φ2 is an L-module morphism.

Proof (?).
Omitted for time, proceeds similarly.

■

Claim: Φ commutes with ad(L).

Proof (?).
Letting x ∈ L, we want to show that Φ ◦ adx = adx ◦ Φ ∈ gl(L), i.e. that these two
endomorphisms of L commute. Fixing ℓ ∈ L, the LHS expands to

Φ(adx(ℓ)) = z(βadx(ℓ)) = z(β[xℓ]),

while the RHS is

adx(Φ(ℓ)) = adx(z(βℓ)) = [x, z(βℓ)].

Recalling that Φ(t) = z(βt) is defined to be the unique element t ∈ L such that β(t, −) =
γ(z(βt), −), for the above two to be equal it suffices to show that

β([x, ℓ], −) = γ([x, z(βℓ)], −)

as linear functionals. Starting with the RHS of this expression, we have

γ([x, z(βℓ)], −) = −γ([z(βℓ), x], −) by antisymmetry
= −γ(z(βℓ), [x, −]) by associativity of γ

= −β(ℓ, [x, −]) by definition of z(βℓ)
= −β([ℓ, x], −)
= β([x, ℓ], −).

■

Problem 1.2.5 (6.7)
It will be seen later on that sln(F) is actually simple. Assuming this and using Exercise 6, prove
that the Killing form κ on sln(F) is related to the ordinary trace form by κ(x, y) = 2n Tr(xy).

Solution:
By the previous exercise, the trace pairing (x, y) 7→ Trace(xy) is related to the Killing form
by κ(x, y) = λ Trace(x, y) for some λ – here we’ve used the fact that since sln(F) is simple,
Rad(Trace) = 0 and thus the trace pairing is nodegenerate. Since the scalar only depends on
the bilinear forms and not on any particular inputs, it suffices to compute it for any pair (x, y),
and in fact we can take x = y. For sln, we can take advantage of the fact that in the standard
basis, adhi

will be diagonal for any standard generator hi ∈ h, making Trace(ad2
hi

) easier to
compute for general n.
Take the standard h1 := e11 − e22, and consider the matrix of adh1 in the ordered basis
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{x1, · · · , xk, h1, · · · , hn−1, y1, · · · , yk} which has k + (n − 1) + k = n2 − 1 elements where
k = (n2 − n)/2. We’ll first compute the Killing form with respect to this basis. In order to
compute the various [h1, vi], we recall the formula [eij , ekl] = δjkeil − δliekj . Applying this to
h1 yields

[h1, eij ] = [e11 − e22, eij ] = [e11, eij ] − [e22, eij ] = (δ1ie2j − δ1jei1) − (δ2ie2j − δ2jei2).

We proceed to check all of the possibilities for the results as i, j vary with i ≠ j using the
following schematic: 

· a R1 · · ·
b · R2 · · ·

C1
...

C2
... M

 .

The possible cases are:

• a : i = 1, j = 2 =⇒ [h1, eij ] = 2e12, covering 1 case.
• b : i = 2, j = 1 =⇒ [h1, eij ] = −2e21 covering 1 case.
• R1 : i = 1, j > 2 =⇒ [h1, eij ] = e1j covering n − 2 cases.
• R2 : i = 2, j > 2 =⇒ [h1, eij ] = e2j covering n − 2 cases.
• C1 : j = 1, i > 2 =⇒ [h1, eij ] = ei1 covering n − 2 cases.
• C2 : j = 2, i > 2 =⇒ [h1, eij ] = ei2 covering n − 2 cases.
• M : i, j > 2 =⇒ [h1, eij ] = 0 covering the remaining cases.

Thus the matrix of adh1 has 4(n − 2) ones and 2, −2 on the diagonal, and ad2
h1 as 4(n − 2)

ones and 4, 4 on the diagonal, yielding

Trace(ad2
h1) = 4(n − 2) + 2(4) = 4n.

On the other hand, computing the standard trace form yields

Trace(h2
1) = Trace(diag(1, 1, 0, 0, · · · )) = 2,

and so

Trace(ad2
h1) = 4n = 2n · 2 = 2n · Trace(h2

1) =⇒ λ = 2n.
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