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1 Problem Set 3

E 1.1 Section 7 e

Problem 1.1.1 (Humphreys 7.2)
M = sl(3,F) contains a copy of L := sl(2,F) in its upper left-hand 2 × 2 position. Write M as
direct sum of irreducible L-submodules (M viewed as L module via the adjoint representation):

V (0) ⊕ V (1) ⊕ V (1) ⊕ V (2).
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Solution:
Noting that

• dim V (m) = m + 1
• dim sl3(F) = 8
• dim(V (0) ⊕ V (1) ⊕ V (1) ⊕ V (2)) = 1 + 2 + 2 + 3 = 8,

it suffices to find distinct highest weight elements of weights 0, 1, 1, 2 and take the irreducible
submodules they generate. As long as the spanning vectors coming from the various V (n) are
all distinct, they will span M as a vector space by the above dimension count and individually
span the desired submodules.
Taking the standard basis {v1, · · · , v8} := {x1, x2, x3, h1, h2, y1, y2, y3} for sl3(F) with yi = xt

i,
note that the image of the inclusion sl2(F) ↪→ sl3(F) can be identified with the span of
{w1, w2, w3} := {x1, h1, y1} and it suffices to consider how these 3 × 3 matrices act.
Since any highest weight vector must be annihilated by the x1-action, to find potential highest
weight vectors one can compute the matrix of adx1 in the above basis and look for zero columns:

adx1 =



0 0 0 −2 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0


.

Thus {v1 = x1, v2 = x2, v8 = y3} are the only options for highest weight vectors of nonzero
weight, since adx1 acts nontrivially on the remaining basis elements.
Computing the matrix of adh1, one can read off the weights of each:

adh1 =



2 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −2 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1


.

Thus the candidates for highest-weight vectors are:

• x1 for V (2),
• x2 for one copy of V (1),
• y3 for the other copy of V (1),
• h1 or h2 for V (0).

We can now repeatedly apply the y1-action to obtain the other vectors in each irreducible
module.
For V (2):
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• v0 = x1 which has weight 2,
• v1 = y1.v0 = [y1, x1] = −h1 which has weight 0,
• v2 = 1

2y2
1.v0 = 1

2 [y1, [y1, x1]] = −y1 which has weight -2.

Since we see h1 appears in this submodule, we see that we should later take h2 as the maximal
vector for V (0). Continuing with V (1):

• v0 = x2 which has weight 1,
• v1 = y1.v0 = [y1, x2] = x3 which has weight -1.

For the other V (1):

• v0 = y3 with weight 1,
• v1 = −y2 with weight -1.

For V (0):

• v0 = h2.

We see that we get the entire basis of sl3(F) this way with no redundancy, yielding the desired
direct product decomposition.

Problem 1.1.2 (Humphreys 7.5)
Suppose char F = p > 0, L = sl(2,F). Prove that the representation V (m) of L constructed
as in Exercise 3 or 4 is irreducible so long as the highest weight m is strictly less than p, but
reducible when m = p.

Note: this corresponds to the formulas in lemma
7.2 parts (a) through (c), or by letting L ↷ F2

in the usual way and extending L ↷ F[x, y] by
derivations, so l.(fg) = (l.f)g + f(l.g) and taking
the subspace of homogeneous degree m polynomials〈
xm, xm−1y, · · · , ym

〉
to get an irreducible module

of highest weight m.

Solution:
The representation V (m) in Lemma 7.2 is defined by the following three equations, where
v0 ∈ Vm is a highest weight vector and vk := ykv0/k!:

1. h · vi = (m − 2i)vi

2. y · vi = (i + 1)vi+1
3. x · vi = (m − i + 1)vi−1.

Supposing m < p, the vectors {v0, v1, · · · , vm} still span an irreducible L-module since it
contains no nontrivial L-submodules, just as in the characteristic zero case.
However, if m = p, then note that y.vm−1 = (m − 1 + 1)vm = 0vm = 0 and consider the set
{v0, · · · , vm−1}. This spans an m-dimensional subspace of V , and the equations above show
it is invariant under the L-action, so it yields an m-dimensional submodule of V (m). Since
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dimF V (m) = m + 1, this is a nontrivial proper submodule, so V (m) is reducible.

Problem 1.1.3 (Humphreys 7.6)
Decompose the tensor product of the two L-modules V (3), V (7) into the sum of irreducible
submodules: V (4)⊕V (6)⊕V (8)⊕V (10). Try to develop a general formula for the decomposition
of V (m) ⊗ V (n).

Solution:
By a theorem from class, we know the weight space decomposition of any sl2(C)-module V
takes the following form:

V = V−m ⊕ V−m+2 ⊕ · · · ⊕ Vm−2 ⊕ Vm,

where m is a highest weight vector, and each weight space Vµ is 1-dimensional and occurs with
multiplicity one. In particular, since V (m) is a highest-weight module of highest weight m,
we can write

V (3) = V−3 ⊕ V−1 ⊕ V1 ⊕ V3

V (7) = V−7 ⊕ V−5 ⊕ V−3 ⊕ V−1 ⊕ V1 ⊕ V3 ⊕ V5 ⊕ V7,

and tensoring these together yields modules with weights between −3−7 = −10 and 3+7 = 10:

V (3) ⊗ V (7) = V−10 ⊕ V−8
⊕2 ⊕ V−6

⊕3 ⊕ V−4
⊕4 ⊕ V−2

⊕4

⊕ V0
⊕4

⊕ V2
⊕4 ⊕ V4

⊕4 ⊕ V6
⊕3 ⊕ V8

⊕2 ⊕ V10.

This can be more easily parsed by considering formal characters:

ch(V (3)) = e−3 + e−1 + e1 + e3 =
ch(V (7)) = e−7 + e−5 + e−3 + e−1 + e1 + e3 + e5 + e7

ch(V (3) ⊗ V (7)) = ch(V (3)) · ch(V (7))

= (e−10 + e10) + 2(e−8 + e8) + 3(e−6 + e6)
+ 4(e−4 + e4) + 4(e−2 + e2) + 4

= (e−10 + e10) + 2(e−8 + e8) + 3(e−6 + e6)
+ 4 ch(V (4)),

noting that ch(V (4)) = e−4 + e−2 + e2 + e4 and collecting terms.
To see that V (3) ⊗ V (7) decomposes as V (4) ⊕ V (6) ⊕ V (8) ⊕ V (10) one can check for equality
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of characters to see that the various weight spaces and multiplicities match up:

ch(V (4) ⊕ V (6) ⊕ V (8) ⊕ V (10)) = ch(V (4)) + ch(V (6)) + ch(V (8)) + ch(V (10)

=
(
e−4 + · · · + e4

)
+

(
e−6 + · · · + e6

)
+

(
e−8 + · · · + e8

)
+

(
e−10 + · · · + e10

)

= 2 ch(V (4)) + (e−6 + e6)
+ ch(V (4)) + (e−6 + e6) + (e−8 + e8)
+ ch(V (4)) + (e−6 + e6) + (e−8 + e8) + (e−10 + e10)

= 4 ch(V (4)) + 3(e−6 + e6)
+ 2(e−8 + e8) + (e−10 + e10),

which is equal to ch(V (3) ⊗ V (7)) from above.
More generally, for two such modules V, W we can write

V ⊗F W =
⊕

λ∈h∨

⊕
µ1+µ2=λ

Vµ1 ⊗F Wµ2 ,

where we’ve used the following observation about the weight of h acting on a tensor product
of weight spaces: supposing v ∈ Vµ1 and w ∈ Wµ2 ,

h.(v ⊗ w) = (hv) ⊗ w + v ⊗ (hw)
= (µ1v) ⊗ w + v ⊗ (µ2w)
= (µ1v) ⊗ w + (µ2v) ⊗ w

= (µ1 + µ2)(v ⊗ w),

and so v ⊗ w ∈ Vµ1+µ2 .
Taking V (m1), V (m2) with m1 ≥ m2 then yields a general formula:

V (m1) ⊗F V (m2) =
m1+m2⊕

n=−m1−m2

⊕
a+b=n

Va ⊗F Vb =
m2+m1⊕

n=m1−m2

V (n).

E 1.2 Section 8 e

Problem 1.2.1 (Humphreys 8.9)
Prove that every three dimensional semisimple Lie algebra has the same root system as sl(2,F),
hence is isomorphic to sl(2,F).
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Solution:
There is a formula for the dimension of L in terms of the rank of Φ and its cardinality, which
is more carefully explained in the solution below for problem 8.10:

dim g = rank Φ + ♯Φ.

Thus if dim L = 3 then the only possibility is that rank Φ = 1 and ♯Φ = 2, using that
rank Φ ≤ ♯Φ and that ♯Φ is always even since each α ∈ Φ can be paired with −α ∈ Φ. In
particular, the root system Φ of L must have rank 1, and there is a unique root system of rank
1 (up to equivalence) which corresponds to A1 and sl2(F).
By the remark in Humphreys at the end of 8.5, there is a 1-to-1 correspondence between pairs
(L, H) with L a semisimple Lie algebra and H a maximal toral subalgebra and pairs (Φ,E)
with Φ a root system and E ⊇ Φ its associated Euclidean space. Using this classification, we
conclude that L ∼= sl2(F).

Problem 1.2.2 (Humphreys 8.10)
Prove that no four, five or seven dimensional semisimple Lie algebras exist.

Solution:
We can first write

g = n− ⊕ h ⊕ n+, n+ :=
⊕

α∈Φ+

gα, n− :=
⊕

α∈Φ+

g−α.

Writing N := n+ ⊕n− = ⊕
α∈Φ gα, we note that dimF gα = 1 for all α ∈ Φ. Thus dimF N = ♯Φ

and

dimF g = dimF h + ♯Φ.

We can also use the fact that dimF h = rank Φ := dimRRΦ, the dimension of the Euclidean
space spanned by Φ, and so we have a general formula

dimF g = rank Φ + ♯Φ,

which we’ll write as d = r + f .
We can observe that f ≥ 2r since if B := {α1, · · · , αr} is a basis for Φ, no −αi is in B but
{±α1, · · · , ±αr} ⊆ Φ by the axiomatics of a root system. Thus

dimF g = r + f ≥ r + 2r = 3r.

We can now examine the cases for which d = r + f = 4, 5, 7:

• r = 1: as shown in class, there is a unique root system A1 of rank 1 up to equivalence
and satisfies f = 2 and thus d = 3, which is not a case we need to consider.

• r = 2: this yields d ≥ 3r = 6, so this entirely rules out d = 4, 5 as possibilities for a
semisimple Lie algebra. Using that every α ∈ Φ is one of a pair +α, −α ∈ Φ, we in
fact have that f is always even – in other words, Φ = Φ+∐Φ− with ♯Φ+ = ♯Φ−, so
f := ♯Φ = 2 · ♯Φ+. Thus d = r + f = 2 + f is even in this case, ruling out d = 7 when
r = 2.

• r ≥ 3: in this case we have d ≥ 3r = 9, ruling out d = 7 once and for all.
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