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I Finite-dimensional Semisimple Lie Algebras over C (Wednesday, August 17)

1 Finite-dimensional Semisimple Lie
Algebras over C (Wednesday, August 17)

— 1.1 Humphreys 1.1 ~

Remark 1.1.1: Main goal: understand semisimple finite-dimensional Lie algebras over C. These
are extremely well-understood, but there are open problems in infinite-dimensional representations,
representations over other fields, and Lie superalgebras. A

Remark 1.1.2: Recall that an associative algebras is a ring with the structure of a k-vector space,
and algebra generally means a non-associative algebra. Given any algebra, one can define a new
bilinear product

[—,—]: A®r A— A
a®b— ab— ba

called the commutator bracket. This yields a new algebra A; which is an example of a Lie
algebra. e

Definition 1.1.3 (Lie algebra)

For L € pMod with an operation [—, —] : L x L — L (called the bracket) is a Lie algebra if
1. [—,—] is bilinear,
2. [z,z] =0 for all x € L, and
3. the Jacobi identity holds: [z[yz]] + [y[zx]] + [z[xy]] = 0.

Exercise 1.1.4 (7)
Check that [ab] := ab — ba satisfies the Jacobi identity.

Remark 1.1.5:

o Expanding [z +y,z +y] = 0 yields [zy] = —[yz]. Note that this is equivalent to axiom 2 when
chF # 2 (given axiom 1).

o The Jacobi identity can be rewritten as [x[yz]] = [[zy]z] + [y[zz]], where the second term is an
error term measuring the failure of associativity. Note that this is essentially the Leibniz rule.

Definition 1.1.6 (Abelian Lie algebras)
A Lie algebra L € LieAlg g is abelian if [zy] = 0 for all z,y € L.

Definition 1.1.7 (Morphisms of Lie algebras)
A morphism in LieAlg p is a morphism ¢ € pMod(L, L') satisfying ¢([zy]) = [»(z)¢(y)]-

Finite-dimensional Semisimple Lie Algebras over C (Wednesday, August 17) 7



Finite-dimensional Semisimple Lie Algebras over C (Wednesday, August 17)

Exercise 1.1.8 (7)
Check that if ¢ has an inverse in pMod, then ¢ automatically has an inverse in LieAlg p.

Definition 1.1.9 (Subobjects)
A vector subspace K < L is a Lie subalgebra if [zy] € K for all z,y € K.

Remark 1.1.10:

e Note that any nonzero z € L determines a 1-dimensional Lie subalgebra K := F - x, which is
in fact abelian.

o A big source of Lie algebras: left-invariant vector fields on a Lie group.

o We'll restrict to finite-dimensional algebras for the remainder of the class.

— 1.2 Humphreys 1.2: Linear Lie Algebras ~

Remark 1.2.1: For V € gMod, the endomorphisms A := Endg (V') is an associative algebra over
F. Thus it can be made into a Lie algebra gl(V') := Ay, by defining [xy] = zy — yx as above.

Definition 1.2.2 (Linear Lie algebras)
Any subalgebra K < gl(V) is a linear Lie algebra.

Remark 1.2.3: After picking a basis for V, there is a noncanonical isomorphism Endg(V) =
Mat,, xrn (F) where n := dimg V. The resulting Lie algebra is gl,(F) := Mat,xn(F)L.

Fact 1.2.4
By Ado-Iwasawa, any finite-dimensional Lie algebra is isomorphic to some linear Lie algebra.

Example 1.2.5(?): The upper triangular matrices form a subalgebra t,(F) < gl,,(F).! This is
sometimes called the Borel and denoted b. There is also a subalgebra n,(F) of strictly upper
triangular matrices. The diagonal matrices form a maximal torus/Cartan subalgebra b, (F) which
is abelian.

Example 1.2.6(Classical Lie algebras):

o Type A, ~ sl,11(F) is the special linear Lie algebra, traceless matrices.

o Type B, ~ s02,+1(F) is the odd orthogonal Lie algebra.

o Type C), ~ sp,, (F) is the symplectic Lie algebra.

o Type D,, ~ 509, (F) is the even orthogonal Lie algebra.

e The remaining 3 are defined by matrices satisfying sz = —z's where s is one of the following:

You get something interesting if you take the commutator bracket of two upper triangular matrices.

1.2 Humphreys 1.2: Linear Lie Algebras 8



Friday, August 19

1 0 0
— |0 0 I,| corresponding to s09y41,
0 I, O

3

1,
— ™| corresponding to sp,,,,
I, 0

o . |
- corresponding to s09,.
I, 0

These can be viewed as the matrices of a nodegenerate bilinear form: writing N for the size
of the matrices, the matrices act on V = FY by a bilinear form f : V x V — F given by
f(v,w) = vlsw. The form will be symmetric for so and skew-symmetric for sp. The equation
st = —x's is a version of preserving the bilinear form s. Note that these are the Lie algebras of
the Lie groups G = SO2;,41(F), Spy,, (F), SOz, (F) defined by the condition f(gv, gw) = f(v,w) for

all v,w € FV where G = {g € GLy(F)
that f(gv, w) = f(v, g w).

f(gv, gw) = f(v, w)} This is equivalent to the condition

Remark 1.2.7: Philosophy: G — g sends products to sums.

Exercise 1.2.8 (7)
Check that the definitions of SO, (F), Sp,,(F) yield Lie algebras.

2 ‘ Friday, August 19

e 2.1 Humphreys 1.3 ~

Definition 2.1.1 (Derivations)

Let A € Alg g, not necessarily associative (e.g. a Lie algebra). An F-derivation is a morphism
D : A — A such that D(ab) = D(a)b+ aD(b). Equipped with the commutator bracket, this
defines a Lie algebra Derp(A) < glg(A).*

“The usual product somehow involves “second-order terms”, while the commutator product cancels higher
order terms to give something first-order.

AWarning 2.1.2
If D, D’ are derivations, then the composition D o D’ is not generally a derivation.

I Definition 2.1.3 (Adjoint)

Friday, August 19 9
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I Friday, August 19

It L € LieAlg g, for z € L fixed define the adjoint operator

ad, : L — L
y = [z,y].

Note that ad, € Derp(A) by the Jacobi identity. Any derivation of this form is an inner
derivation, and all other derivations are outer derivations.

Remark 2.1.4: Given x € K < L, note that K is a Lie subalgebra, and we’ll want to distinguish
adrz and adgz (which may differ). Note that gl,(F) > b = b @ n, where b are upper triangular, b
diagonal, and n strictly upper triangular matrices. If € b then note that adyz = 0, but adgzh # 0.

— 2.2 Humphreys 2.1 ~

Remark 2.2.1: Some notes:

e L >1isan idealif [(,i] € I. Note that this is like a left ideal in a ring, but since I is closed
under scalar multiplication and [i, £] = —[¢, 7], this is closed to a two-sided ideal.

o If A, B C L define [A, B] := spang {[a, b] ’ a€Abe B}. Not taking the span generally won’t
even yield a subalgebra.

o Forideals I,J < L, I+ J,[I,J] < L.

o L/I = {x—&-[ ‘ x € L} with [z + I,y + 1] = [z,y] + 1.2

o Ideals are subalgebras (since this only requires closure under bracketing), but subalgebras are
not necessarily ideals.

- Centers: Z(L) = {z €L ’ [wy] = Oy € L} < L.

e Derived ideals L' .= L' .= [L, L] < L.

e If g>b="0heEn, and n < b using the fact that products of upper-triangular matrices involve
multiplying diagonals, and bracketing/subtracting cancels the diagonal off. Moreover b/n = b.

o For K C L a subspace, the normalizer is Ny (K) := {x eL ‘ [z, K] C K} If K = Ny, then
K is self-normalizing.

o The centralizer of K in L is C(K) = {a: €L ‘ [z, K] = O} < L, which is a subalgebra by
the Jacobi identity.

Exercise 2.2.2 (7)
Is h < b?

Definition 2.2.3 (Simple Lie algebras)
A Lie algebra L is simple if L # 0 and Id(L) = {0, L} and [L, L] # 0. Note that [LL] # 0 only
rules out the 1-dimensional Lie algebra, since [L, L] = 0 and if 0 < K < L then K < L since

20ne should check that this is well-defined.

2.2 Humphreys 2.1 10



I Friday, August 19

I L, K] = 0.
Example 2.2.4(%): Let L = sl3(C), so tr(x) = 0. This has standard basis

S R

[wy] = h, [hx] = 2z, [hy] = —2y.

Exercise 2.2.5 (7)
Prove that sl (C) is simple.

Exercise 2.2.6 (?)
Show that for K < L, the normalizer N, (K) is the largest subalgebra of L in which K is an
ideal.

Exercise 2.2.7 (7)
Show that h C g := sl,,(C) is self-normalizing subalgebra of g.

Hint: use [h,e;;] = (h; — hj)e;; where h =
diag(hy,-- ,hyn). The standard basis is h =
(e11 — €22,€22 — €33, ,€n_1,n—1 — En.n)-

Exercise 2.2.8 (7)
What is dim sl3(C)? What is the basis for g and h?

— 2.3 Humphreys 2.2 ~

Remark 2.3.1: Notes:

» Let L, L' € C:= LieAlg)p, ¢ € C(L, ') kerp = {z € L | p(z) =0} < L.
— Note that if z € ker p,y € L then ¢([zy]) = [¢(x)e(y)] = [0o(y)] = 0.

« A representation of L is some ¢ € C(L, gl(V')) for some V € Vect .

e The usual 3 isomorphism theorems for groups hold for Lie algebras.

o ad: L — gl(L) where z — adz is a representation.

e kerad = Z(L), so if L is simple then Z(L) = 0 and ad is injective. Thus any simple Lie
algebra is linear.

— Compare to: any finite dimensional Lie algebra is linear.

2.3 Humphreys 2.2 11



I Solvable and Nilpotent Lie Algebras (Wednesday, August 24)

3 ‘ Monday, August 22

— 3.1 Humphreys 2.3: Automorphisms ~

Remark 3.1.1: Let L € LieAlg/p, then Aut(L) is the group of isomorphisms L = L. Some

important examples: if L is linear and g € GL(V), if gLg~! = L then = > gzg~! is an automorphism.

This holds for example if L = gl,(F) or sl,,(F). Assume chF = 0 and let € L with adz nilpotent,
say (adz)® = 0. Then the power series expansion €*¥* =3 - ((adz)" is a polynomial.

Claim: exp®® ¢ Aut(L) is an automorphism. More generally, ¢® € Aut(L) for § any nilpotent
derivation.

Lemma 3.1.2(Generalized Leibniz rule).

Remark 3.1.3: One can prove this by induction. Then check that exp(d(z)) exp(d(y)) = exp(d(xy))
and writing exp(d) = 1 + 7 there is an inverse 1 — 7 + 7% + - -- = n*~1. Automorphisms which are
of the form exp(9) for ¢ nilpotent derivation are called inner automorphisms, and all others are
outer automorphisms.

4 Solvable and Nilpotent Lie Algebras
(Wednesday, August 24)

— 4.1 Humphreys 3.1 ~

Definition 4.1.1 (Derived series)

Recall that if L C g is any subset, the derived algebra [LL] is the span of [zy] for z,y € L.
This is the analog of needing to take products of commutators to generate a commutator
subgroup for groups. Define the derived series of L as

LO — [LL], L) = [L(O)’L(O)]7 oo LG — [L(i)L(i)].

Proposition 4.1.2(?).
These are all ideals.

Monday, August 22 12
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I Solvable and Nilpotent Lie Algebras (Wednesday, August 24)

Proof (?).
By induction on i — it STS that [z[ab]] € L® for a,b € Lt~Y) and z € L. Use the Jacobi
identity and the induction hypothesis that L6~ < L:

[z, [ab]] = [[za]b] + [a[zb]] € LEVD + LD c L),

Definition 4.1.3 (Solvable)
If L™ =0 for some n > 01 then L is called solvable.

Remark 4.1.4: Note that

« L abelian implies solvable, since L(Y) = 0.
e L simple implies non-solvable, since this forces L) = L.

Exercise 4.1.5 (7)

Let b := b, (F) be upper triangular matrices, show that b is solvable.
Use that [bb] = n is strictly upper triangular since
diagonals cancel. More generally, bracketing matri-
ces with n diagonals of zeros yields matrices with
about 2™ diagonals of zeros.

Proposition 4.1.6(%).
Let L € LieAlg /g, then

e L solvable implies solvability of all subalgebras and homomorphic images of L.
o If I < L and L/I are solvable, then L is solvable.
e If I, J < L are solvable then I + J is solvable.®

“Use the third isomorphism theorem.

Exercise 4.1.7 (7)
Prove these.

Definition 4.1.8 (Radical and semisimple)
Every L € LieAIg?‘% has a unique maximal solvable ideal, the sum of all solvable ideals, called

the radical of L, denote /(L). L is semisimple if /(L) = 0.

Exercise 4.1.9 (7)
Prove that any simple algebra is semisimple, and in general L/+/(L) is semisimple (if nonzero).

4.1 Humphreys 3.1 13



Solvable and Nilpotent Lie Algebras (Wednesday, August 24)

Proposition 4.1.10(%).
Assume sl,,(C) is simple, then R = /(gl,,(C)) = Z(g) 2 Cid, for g := gl,(C).

Proof (?).

D: Centers are always solvable ideals, since it’s abelian and brackets are ideals, and the radical
is sum of all solvable ideals.

C: Suppose Z C R is proper, then there is a non-scalar matrix x € R. Write x = al, +y
for a = tr(z)/n and 0 # y € sl,(C) is traceless. Consider I = (z) < gl,,(C), i.e. the span
of all brackets [zz] for z € g and their iterated brackets containing z, e.g. [z1[z2z]]. Note
that [22] = [zy] since aly is central. Since sl,(C) is simple, so (y)4, c) = $l(C) and thus
sl,(C) C I. This containment must be proper, since I C /(g) and the latter is solvable, so I
must be solvable — but sl,,(C) is not solvable. We can thus choose x € I such that x = al,, +y
with @ # 0 and 0 # y € sl,(C), so x —y = al € I since y € I because sl,(C) C I. Since
a # 0, we must have I,, € I. Then C- I, C I, forcing I = g since every matrix in gl,(C) is
a scalar multiple of the identity plus a traceless matrix. This contradicts that I is solvable,

since g = [gg] = sl,,(C). But g™ = s1,,(C), so the derived series never terminates. £
|

— 4.2 Humphreys 3.2 ~

Definition 4.2.1 (Lower central series and nilpotent algebras)
The descending/lower central series of L is defined as

=i, b sLE], ecc i =[BT
L is nilpotent if L™ = 0 for some n.

Exercise 4.2.2 (7)
Check that L* < L.

Exercise 4.2.3 (7)
Show that L nilpotent is equivalent to there existing a finite n such that for any set of elements

{xi}?zlv

(ady, oadg, o---oady,)(y) =0 Vy € L.

4.2 Humphreys 3.2 14



Friday, August 26

5 ‘ Friday, August 26

— 5.1 3.2: Engel’s theorem ~

Proposition 5.1.1(Nilpotent implies solvable).

Recall L is nilpotent if L™ = 0 for some n > 0 (the descending central series) where L™ = [LL].
Equivalently, [[;<, ad;, = 0 for any {z;},., € L. Note that L D L® by induction on i —
these coincide for ¢ = 0,1, and one can check

L+ — [L(i)L(i)] C [LLY] = L',

Example 5.1.2(Solvable does not imply nilpotent): b, is solvable but not nilpotent, since
bL =n, but b2 = n, and the series never terminates.

Example 5.1.3(?): n, is nilpotent, since the number of diagonals with zeros adds when taking
brackets [LLY].

AWarning 5.1.4
b is also nilpotent, since any abelian algebra is nilpotent.

Proposition 5.1.5(%).
Let L € LieAlg /g, then

e If L is nilpotent then any subalgebra or homomorphic image of L is nilpotent.
o If L/Z(L) is nilpotent then L is nilpotent.®
o If L # 0 is nilpotent, then Z(L) # 0.

“Lift a series for the quotient, which is eventually in Z(L) since it was zero in the quotient, and then bracketing
with Z(L) terminates.
'If L" =n—12 L™ =0 then [LL"" '] = 0 and thus L" ' C Z(G).

Exercise 5.1.6 (7)
Show that if L/I and I < L are nilpotent, then L need not be nilpotent.

Remark 5.1.7: Distinguish End(L) whose algebra structure is given by associative multiplication
and gl(L) with the bracket multiplication.

Definition 5.1.8 (ad-nilpotent)
An element z € L is ad-nilpotent if ad, € End(L) is a nilpotent endomorphism.

Remark 5.1.9: If L is nilpotent then z € L is ad-nilpotent by taking x; = x for all . It turns out

Friday, August 26 15



Friday, August 26

that the converse is true:

Theorem 5.1.10 (Engel’s theorem).
If all x € L are ad-nilpotent, then L is nilpotent.

Proof (?).

To be covered in an upcoming section.

Lemma 5.1.11(?).
Let 2 € gl(V) be a nilpotent linear transformation for V finite-dimensional. Then

adg : gl(V) — gl(V)
yr>roy—yox

is a nilpotent operator.

Proof (?).
Let Az, po € End(gl(V)) be left and right multiplication by x, which are commuting nilpotent
operators. The binomial theorem shows that if D, Dy are any two commuting nilpotent
endomorphisms of a vector space, then D; + Dy is again nilpotent. But then one can write
ad, = Ay — -

|

Remark 5.1.12: If = € gl(V) is nilpotent then so is ad,. Conversely, if all ad, for z € L < gl(V)
are nilpotent operators then L is nilpotent by Engel’s theorem.

AWarning 5.1.13
The converse of the above lemma is not necessarily true: x being ad-nilpotent does not imply that
x is nilpotent. As a counterexample, take z = I, € gl,,(C), then ad, = 0 but z* =z for any k > 1.

— 5.2 3.3: Proof of Engel's theorem ~

Remark 5.2.1: The following is related to the classical linear algebra theorem that commuting
operators admit a simultaneous eigenvector:

Theorem 5.2.2(?).
Let L be a Lie subalgebra of gl(V') for V finite-dimensional. If L consists of nilpotent endo-
morphisms, then there exists a nonzero v € V such that Lv = 0.

5.2 3.3: Proof of Engel’s theorem 16
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Proof (?).
Proceed by induction on n = dim L (assuming it holds for all vector spaces), where the
n = 1 case is clear — the characteristic polynomial of such an operator is f(t) = ¢", which has
roots t = 0 and every field contains zero. Once one has an eigenvalue, there is at least one
eigenvector.
For n > 1, suppose K < L is a proper Lie subalgebra. By hypothesis, K consists of nilpotent
elements in End(V'), so apply the previous lemma to see that ad(K) C End(L) acts by
nilpotent endomorphisms of L since they are restrictions to L of nilpotent endomorphisms of
gl(V). Since [KK] C K, we can view ad(K) C End(L/K) where L/K is a vector space.
By the IH with V = L/K, where End(L/K) has smaller dimension, one can find a nonzero
x+ K € L/K such that ad(K)(z+ K) = 0. Hence one can find an € L\ K such that for all
y € K one has [yz] € K, so z € N(K) \ K. Thus K C N (K) is a proper containment.

To be continued.

6 ‘ Monday, August 29

— 6.1 Continuation of proof and corollaries ~

Remark 6.1.1: Recall: we were proving that if L < gl(V') with V finite dimensional and L consists
of nilpotent endomorphisms, then there exists a common eigenvector v, so Lv = 0. A

Proof (continued).
We're inducting on dim L (over all V). Assuming dim V' > 1, we showed that proper subalge-
bras are strictly contained in their normalizers:

K<L = K C Np(K).

Let K be a maximal proper subalgebra of L, then N (K) = L by maximality and thus K is a
proper ideal of L. Then L/K is a Lie algebra of some dimension, which must be 1 — otherwise
the preimage in L under L — L/K would be a subalgebra of L properly between K and L.
Thus K is a codimension 1 ideal in L.Minimal model program Choosing any z € L \ K yields
a decomposition L = K @ Fz as vector spaces. Let W := {v eV ‘ Kv= 0}, then W # 0 by
the TH.

Claim: W is an L-stable subspace.
To see this, let x € L,y € K,w € W. A useful trick:

y.(zw) = w.(yw) — [zy].w =0,
since the first term is zero and [zy] € K < L.

Since z ~ W nilpotently, choose an eigenvector v for z in W for the eigenvalue zero. Then
zwv=0,s0 Lv=0.
|
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Corollary 6.1.2(Engel’s theorem).
If all elements of a Lie algebra L are ad-nilpotent, then L is nilpotent as an algebra.

Proof (?2).
Induct on dim L. Note that ad(L) < gl(V') consists of nilpotent endomorphisms. Use the
theorem to pick x € L such that ad(L).x = 0, i.e. [L,z] =0, i.e. x € Z(L) and thus Z(L) is
nonzero. Now dim L/Z (L) < dim L, and a fortiori its elements are still ad-nilpotent so L/Z(L)
is nilpotent. By proposition 3.2b, L is nilpotent.®

|

“Note that for arbitrary SESs, the 2-out-of-3 property does not hold for nilpotency, but for the special cases
of a quotient by the center it does.

Corollary 6.1.3(?).
Let 0 # L < gl(V) with dim V' < oo be a Lie algebra of nilpotent endomorphisms (as in the
theorem).” Then V has a basis in which the matrices of L are all strictly upper triangular.

“Note that the assumption is not that L is a nilpotent algebra, but rather the stronger assumption on
endomorphisms.

Proof (?).

Induct on dim V. Use the theorem to pick a nonzero vy with Lv; = 0. Consider W := V/Fuvy,
and view L C End(V') as a subspace of End(W) — these are still nilpotent endomorphisms. By
the IH, W has a basis {¥;},,,, With respect to the matrices in L (viewed as a subspace of
End(W)) are strictly upper triangular. Let {v;} C V be their preimages in L; this basis has
the desired properties. This results in a matrix of the following form:

6.1 Continuation of proof and corollaries 18
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— 6.2 Chapter 4: Theorems of Lie and Cartan ~

Remark 6.2.1: From now on, assume F = F is algebraically closed and ch(k) = 0.

" 6.3 4.1: Lie's Theorem ~

Theorem 6.3.1(Lie’s Theorem).
Let L # 0 be a solvable Lie subalgebra of gl(V') with dim V' < oco. Then V' contains a common
eigenvector for all of L.

Proof (?).
Induct on dim L. If dim L = 1, then L is spanned by 1 linearly operator z and over an

6.2 Chapter 4: Theorems of Lie and Cartan 19
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algebraically closed field, x has at least one eigenvector. For dim L > 1, take the following
strategy:

1. Identify K < L proper of codimension 1,

2. By IH, find a common eigenvector for K,

3. Verify that L stabilizes “the” subspace of all such common eigenvectors (much harder
than before!)

4. In this subspace, find an eigenvector for some z € L \ K with L = K ® Fz.

Off we go!

Step 1: Since L is solvable, we have [LL] properly contained in L. In L/[LL] choose any
codimension 1 subspace — it is an ideal, which lifts to a codimension 1 ideal K C L.

Step 2: Since subalgebras of solvable algebras are again solvable, K is solvable. By the IH,
pick a common nonzero eigenvector v for K. There exists a linear map A : K — F such that

z.w = Ax)v for all z € K. Let W = {U eV ‘ yv = Ay)v Yy € K}, which is nonzero.
Step 3: Note LW CW. Let we W,x € L,y € K; we WTS y.(z.w) = A(y)x.w. Write

y.(z.w) = z.(yw) — [zy].w
= Ay)(z.w) = A(fzy])w,

where the second line follows since [zy] € K. We then need A\([zy]) =0forallz € Land y € K.
Since dim V' < 0o, choose n minimal such that {w, z.w, z2w,- - ,2".w} is linearly dependent.
Set W; = spang {w, z.w, - - - ,:Ui.w}, so Wy = 0, W = spang {w}, and so on, noting that

o dimW,, = n,
o Wyhir =W, forall £ >0,
o« . W, CW,.

Claim: Forall y € K,

y.xtaw = \y)z'.wmod W;.

To be continued!

7 ‘ Wednesday, August 31

— 7.1 Section 4.1, continuing the proof ~

Remark 7.1.1: Recall dim L,dim V' < oo, F is algebraically closed, and ch F = 0. For L < gl(V)
solvable, we want a common eigenvector v € V for L. Steps for the proof:

Wednesday, August 31 20
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1. Find a K < L proper of codimension 1.
2. Set W = {U eV ‘ x.v = Nz)vVr € K} # 0 for some linear A\ : K — F.
3. Show L.W C W; we needed to show A([LK]) = 0.

Proof (Continued).
Step 3: Fix x € L, w € W and n minimal such that {xiw}Kn is linearly dependent. For ¢ > 0

set W; = F(w,zw, -,z w). Then dim W,, = n,W,, = W,,; for i > 0, and 2W,, C W,,.
Claim: For all y € K,

yz'.w = A(y)z'w mod W;.

Proof (?).
This is proved by induction on ¢, where ¢ = 0 follows from how W is defined. For ¢ > 1,
use the commuting trick:

yr'.w = yxx' w

Given this claim, for ¢ = n this says that the matrices of any y € K with respect to the basis
{xiw}0<i<n_1 is upper triangular with diagonal entries all equal to A(y). Thus tr(y)|y, =
nA(y), and so [zy] ~ W,, with trace nA([zy]). On the other hand, x,y both act on W), (e.g. by
the formula in the claim for yz’.w) and so

[93?/]|Wn = l"y|wn - Z/x|an

thus tr([zy])lyy, = 0. Since F is characteristic zero, we have nA([zy]) =0 = A([zy]) = 0.
Step 4: By step 1, L = K ® Fz for some z € L\ K. Viewing 2 : W — W and using F = F, 2
has an eigenvector v € W. Since v € W it is also a common eigenvector for K and thus an
eigenvector for L by additivity.

Corollary 7.1.2(A: Lie’s theorem).
Let L < gl(V) be a solvable subalgebra, then L stabilizes some flag in V. In particular, there
exists a basis for V' with respect to which the matrices in L are all upper triangular.

Remark 7.1.3: Recall that for V' € Vect g, a complete flag is an element of

FI(V) = {0=VOC V! C-..CV" =V | dimV’ =}

7.1 Section 4.1, continuing the proof 21
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A subalgebra L stabilizes a flag if LV? C V' for all 4, which implies there is a compatible basis
(got by extending one vector at a time from a basis for V1) for which L acts by upper triangular
matrices.

Proof (?).

Use the theorem and induct on n = dim V' as in Engel’s theorem — find a common eigenvector
for V1, since L stabilizes one gets an action L ~ V?/Vi~! which is smaller dimension. Then
just lift through the quotient.

|
Corollary 7.1.4(B).
Let L be a solvable Lie algebra, then there exists a chain of ideals

0=LoGCLi G- GCLy=L

such that dim L; = 1.
Proof (?).
Consider adL < gl(L). Apply Lie’s theorem: (adL)L; C L; < [LL;] C L;, making L; < L
an ideal.

|

Corollary 7.1.5(C).
Let L be solvable, then z € [LL] = adpx is nilpotent. Hence [LL] is nilpotent by Lie’s
theorem.

Proof (?).

Find a flag of ideals by Corollary 7.1.4 and let {z1,---,x,} be a compatible basis. Then
the matrices {adz ’ T € L} are all upper triangular. If x € [LL], without loss of generality
x = [yz] for some y, z € L. Then

ad, = [adyad,] = adyad, — ad,ad,

will be strictly upper triangular (since these are upper triangular and the commutator cancels
diagonals) and hence nilpotent.
|

" 7.2 Section 4.3 ~

Remark 7.2.1: We'll come back to 4.2 next time. For this section, assume F = F and chF = 0.
Cartan’s criterion for a semisimple L (i.e. Rad(L) = 0) involves the Killing form, a certain

7.2 Section 4.3 22
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nondegenerate bilinear form on L. Recall that if L is solvable then [LL] is nilpotent, or equivalently
every x € [LL] is ad-nilpotent. &

Lemma 7.2.2(Checking nilpotency with a trace condition (technical)).
Let A C B be subspaces of gl(V) (really End(V') as a vector space) with V finite-dimensional.
Let

M = {w e gi(V) | [wB] C 4}
and suppose some w € M satisfies tr(wz) = 0 for all z € M. Then w is nilpotent.

Proof (?).
Later!

Definition 7.2.3 (Bilinear form terminology)
A bilinear form is a map

B(—,—):LxL—F,

which is symmetric if 5(z,y) = S(y,z) and associative if S([zyl],z) = B(z,[yz]) for all
z,y,z € L. The radical of j is

Rad(8) = {w e V | B(w,V) =0},
and (3 is nondegenerate if Rad(f) = 0.
Example 7.2.4(%): For L = gl(V), take B(x,y) := tr(xy). One can check this is symmetric,
bilinear, and associative — associativity follows from the following;:

[xy|z = xyz — yzz

zlyz] = xyz — xzy.

Then note that y(zz) and (xz)y have the same trace, since tr(AB) = tr(BA). e

Proposition 7.2.5(7).
If § is associative, then Rad() < L.

Proof (?).
Let z € Rad(f) and z,y € L. To see if [zx] € Rad(3), check

/6([Zx]ay) = 5(27 [ﬂ?y]) =0
since z € Rad(f3). Thus [zz] € Rad(f).

7.2 Section 4.3 23
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— 8.1 4.2: Jordan-Chevalley decomposition ~

Remark 8.1.1: Let F = F of arbitrary characteristic and V' € Vectf/‘%J with € Endg(V). The
JCF of z is of the form D+ N where D is diagonal and NN is nilpotent where D, N commute. Recall
x is semisimple (diagonalizable) iff the minimal polynomial of x has distinct roots.

Proposition 8.1.2(?).
If x € End(V),

a. There is a decomposition z = x5 4+ x, where x is semisimple and x,, is nilpotent. This
is unique subject to the condition that x, x,, commute.

b. There are polynomials p(T"), ¢(T') without constant terms with =, = p(x), z,, = ¢(z). In
particular, x4, x,, commute with any endomorphism which commutes with z.

Lemma 8.1.3(%).
Let x € gl(V) with Jordan decomposition = x5 + x,. Then ad, = ad,, + ad,, is the Jordan
decomposition of ad, in End(End(V)).

Proof (?).

If z € gl(V) is semisimple then so is ad, since the eigenvalues for ad, are differences of
eigenvalues of x. Le. if {v1, -+ ,v,} is an eigenbasis for V' and z.v; = a;v; in this bases, we
have [ze;;] = (a; — aj) = €45, so {e;;} is an eigenbasis for ad,. If = is nilpotent then ad, is

nilpotent, since ad,(y) = A\z(y) — pz(y) where A, p are left /right multiplication, and sums of
nilpotents are nilpotent. One can check [ad;,ad.,] = ad[;,,, = 0 since they commute.
|

Remark 8.1.4: One can show that if L is semisimple then ad(L) = Der(L), which is used to show
that if L is an arbitrary Lie algebra then one has

* =I5+ Tn,
d [xsl'n] = 07
o ad,, is semisimple and ad, is nilpotent.

This gives a notion of semisimplicity and nilpotency for Lie algebras not of the form gl(V).

Lemma 8.1.5(?).
Let U € Algl;(i;, then Der(U) is closed under taking semisimple and nilpotent parts.

Friday, September 02 24
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Proof (?).
Let § € Der(U) and write 6 = o + v be the Jordan decomposition of ¢ in End(U). It STS o is
a derivation, so for a € F define

Ua::{xEU‘(5—a)kx:0forsomek}.

Note U = @,cp Uq where A is the set of eigenvalues of §, which are also the eigenvalues of o —
this is because o, v are commuting operators, so eigenvalues of § are sums of eigenvalues of s
and v.

Claim: For any a,b € F, U,Up C Ugyp.

Assuming this, it STS o(zy) = o(z)y + zo(y) when z € U,,y € U, where a, b are eigenvalues.

Using that eigenvalues of § are also eigenvalues of o, since zy € U, by the claim, o(zy) =
(a + b)zy and thus

o(x)y + xo(y) = axy + by = (a + b)xy.

So o € Der(U).

|

Proof (of claim).

A sub-claim:

6—(@+b))ay) = 3 (7;) (6 — al)™iz(6 — bl)iy.
0<i<n

|
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— 9.1 4.3: Cartan’s criterion for semisimplicity ~

Remark 9.1.1: For the rest of the course, V is a vector space of finite dimension. Goal: get a
criterion for semisimplicity. A

Theorem 9.1.2(Cartan’s criterion for linear Lie algebras).
Let L < gl(V') be a linear Lie algebra and suppose tr(zz) =0 for all x € [LL] and z € L. Then
L is solvable.

Lemma 9.1.3(?).
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Let A C B be subspaces of End(V) = gl(V') and define
M ={wegl(V) | [w,B] C A}.

Suppose that w € M satisfies tr(wz) = 0 for all z € M. Then w is nilpotent.
Proof (of Cartan, assuming the lemma).
To show L is solvable, it STS that [LL] is nilpotent since the ideals used to check nilpotency
are bigger than those to check solvability. By Engel’s theorem, it STS to show each w € [LL]
is ad-nilpotent. Since L < gl(V), it STS to show each w € [LL] is a nilpotent endomorphism.
As in the setup of the lemma, set B = L, A = [LL], then

M = {z € gi(V) ] [2L] € [LL]} 2 L2 [LL].
Let w € [LL] C M, then note that tr(wz) = 0 for all z € L, but we need to know this for all
z € M. Letting z € M be arbitrary; by linearity of the trace it STS tr(wz) = 0 on generators

w = [zy] on [LL] for z,y € L. We thus WTS tr([zy]z) = 0:

tr([zy]2) = tr(zlyz])
= tr([yz]x) € tr(LMz) C tr([LL]L)

by assumption. By the lemma, w is nilpotent.

Corollary 9.1.4(Cartan’s criterion for general Lie algebras).
Let L € LieAlg with tr(ad,ad,) = 0 for all z € [LL] and y € L. Then L is solvable.

Proof (of corollary).

Use ad : L — gl(V'), a morphism of Lie algebras. Its image is solvable by Cartan’s criterion

above, and ker ad = Z(L) which is abelian and hence a solvable ideal.” Therefore L is solvable.
[ |

“The derived series terminates immediately for an abelian algebra.

Proof (of lemma).

Let w = s + n be the Jordan-Chevalley decomposition of w. Choose a basis for V' such that
this is the JCF of w, i.e. s = diag(ay,--- ,a,) and n is strictly upper triangular. Idea: show
s = 0 by showing A := Q (a1, ,a,) = 0 by showing AY = 0, i.e. any Q-linear functional
f:A— Qiszero. If Y a;f(a;) =0 then

0=fO aif(a)) = fla;)> = f(a;) =0V,

so we'll show this. Let y = diag(f(ai1), -, f(an)), then ad, is a polynomial (explicitly
constructed using Lagrange interpolation) in ads without a constant term. So do this for ad,

9.1 4.3: Cartan’s criterion for semisimplicity 26
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and ad; (see exercise). Since ad; is a polynomial in ad,, with zero constant term, and since
ad, : B — A, we have ads(B) C A and the same is thus true for ad,. So y € M and w € M,
and applying the trace condition in the lemma with z =y we get

0= tr(wy) = Z a; f(a;),

noting that w is upper triangular and y is diagonal. So s = 0 and w = n is nilpotent.

Exercise 9.1.5 (7)
Show ad, is a polynomial in ad;.

Remark 9.1.6: Recall that Rad L is the unique maximal (not necessarily proper) solvable ideal
of L. This exists, e.g. because sums of solvable ideals are solvable. Note that L is semisimple iff
Rad L = 0. Vs

Definition 9.1.7 (Killing form)
Let L € LieAlg! and define the Killing form

k:LxL—F
k(x,y) = tr(ad, o ady).

This is an associative® bilinear form on L.

“Associative is f([zy]z) = f(z[yz]), sometimes called invariant.

Example 9.1.8(%): Let L = C(z,y) with [zy] = z. In this ordered basis,
0 1 10
adm—lo 0] ady—[o 0],
and one can check k(z,x) = k(z,y) = k(y,x) = 0 and k(y,y) = 1. Moreover Rad k = C (x).

See the text for k defined on sls. P

Lemma 9.1.9(?).
Let I < L. If x is the Killing form of L ad 7 that of I, then

Kr = ﬁ|1x1-

Proof (?).
Let « € I, then ad, (L) C I since I is an ideal. Choosing a basis for I yields a matrix:

9.1 4.3: Cartan’s criterion for semisimplicity 27
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T L

—
9
*

—— ——

f
So if x,y € I, we have
k(x,y) = tr(ad, o ady)
= tr(adr, o adry)
= r(z,y).
|

1 O ‘ Friday, September 09
— 10.1 5.1: The Killing form ~

Remark 10.1.1: For the rest of the course: k = k and chk = 0. Theorem from last time: L is
semisimple iff its Killing form (z,y) := tr(ad,ad,) is nondegenerate.

Proof (?).

Let S = Rad(k) 9 L, which is easy to check using “invariance” (associativity) of the form.
Given s,s' € S, the restricted form kg(z,y) = tr(adgsadsy) = tr(adr sady, &), which was
proved in a previous lemma. But this is equal to (s,s’) = 0. In particular, we can take
s € [SS5], so by (the corollary of) Cartan’s criterion for solvable Lie algebras, S is solvable as
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a Lie algebra and thus solvable as an ideal in L.

= : Since Rad(L) is the sum of all solvable ideals, we have S C Rad(L), but since L is
semisimple Rad(L) = 0 and thus S = 0.

< : Assume S = 0. If I < L is a solvable ideal so I(™ = 0 for some n > 0. If [(*~1) #£0, it
is a nonzero abelian ideal — since we want to show Rad(L) = 0, we don’t want this to happen!
Thus it STS every abelian ideal is contained in S.

So let I < L be an abelian ideal, z € I, y € L. Define an operator

A2, = (adyad,)? : [ 2% [ ey 1 2%, | 2dey g

which is zero since [[1] = 0. Thus A, is a nilpotent endomorphism, which are always traceless,
so 0 = tr(adzady) = k(z,y) for ally € L, and so z € S. Thus I C S.

|
AWarning 10.1.2
Rad(k) C Rad(L) always, but the reverse containment is not always true — see exercise 5.4.
— 10.2 5.2: Simple ldeals of L ~

Definition 10.2.1 (Direct sums of Lie algebras)
Let L; € LieAlg )y, then their direct sum is the product L; X Ly with bracket

[1 @ 22,51 © y2] = [T131] © [T292].

Remark 10.2.2: In particular, [L1, Lo] = 0, and thus any ideal I; < L; yields an ideal Iy &0 < L1®
Lo. Moreover, if L = @ I; is a vector space direct sum of ideals of L, this is automatically a Lie
algebra direct sum since [I;, I;] = I; N 1; = 0 for all ¢ # j.

AWarning 10.2.3
This is not true for subalgebras! Also, in this theory, one should be careful about whether direct
sums are as vector spaces or (in the stronger sense) as Lie algebras.

Theorem 10.2.4(?).
Let L be a finite-dimensional semisimple Lie algebra. Then there exist ideals I,, of L such that
L = @ I; with each I; simple as a Lie algebra. Moreover every simple ideal if one of the I;.

Proof (?).
Let I < L and define
It = {JJ €L ) k(z,I) :0},

the orthogonal complement of I with respect to k. This is an ideal by the associativity of «.
Set J :== I NI+ < L, then x([JJ],J) = 0 and by Cartan’s criterion .J is a solvable ideal and

10.2 5.2: Simple Ideals of L 29
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thus J = 0, making L semisimple.

From the Endman-Wildon lemma in the appendix (posted on ELC, lemma 16.11), dim L =
dim I + dim I+ and L = I @ I+, so now induct on dim L to get the decomposition when L is
not simple. These are semisimple ideals since solvable ideals in the I, I+ remain solvable in
L. Finally let I < L be simple, then [I, L] C L is a ideal (in both L and I), which is nonzero
since Z(L) = 0. Since [ is simple, this forces [I, L] = I. Writing L = @ I; as a sum of simple
ideals, we have

I=[1,L)=[I,p L =Pl 1],

and by simplicity only one term can be nonzero, so I = [I, I;] for some j. Since I; is an ideal,
[I,1;] C I;, and by simplicity of I; we have I = I;.
[ |

Corollary 10.2.5(%).
Let L be semisimple, then L = [LL] and all ideals and homomorphic images (but not sub-

algebras) are again semisimple. Moreover, every ideal of L is a sum of simple ideals I; of
L.

Proof (?).
Take the canonical decomposition L = @ I; and check

L, L = [P LPL =P, L =P L,

where in the last step we’ve used that the I; are (not?) abelian. Let J < L to write L = J @ J*,
both of which are semisimple as Lie algebras. In particular, if ¢ : L — L', set J :=kerp < L.
Then imyp = L/J = Jt as Lie algebras, using the orthogonal decomposition, so im ¢ is
semisimple. Finally if J < L then L = J @ J+ with J semisimple, so by the previous theorem
J decomposes as J = @K; with K; (simple) ideals in J — but these are (simple) ideals in L as
well since it’s a direct sum. Thus the K; are a subset of the I, since these are the only simple
ideals of L.

|

1 1 ‘ Monday, September 12

Remark 11.0.1: Question from last time: does L always factor as Rad(L)® Lgs with Lgg semisimple?
Not always, instead there is a semidirect product decomposition L = Rad(L) x s where s is the Levi

subalgebra. Consider L = gl,,, then Rad(L) # b since [h, e;;] =

(hi — hj)e;j, so in fact this forces

Rad(L) = CI,, = Z(L) with complementary subalgebra s = sl,,. Note that gl,, = CI,, & sl,, where
sl, = [LL] is a direct sum, and gl,, is reductive.

- 11.1 5.3: Inner Derivations ~
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Theorem 11.1.1(In semisimples, every derivation is inner).
If L is semisimple then ad(L) = Der L.

Proof (?).
We know ad(L) < Der L is a subalgebra, and L semisimple implies 0 = Z (L) = kerad, so
ad : L —»ad(L) is an isomorphism and ad(L) is semisimple. The Killing form of a semisimple
Lie algebra is always nondegenerate, so r,q(z) is nondegenerate, while £pe; 7, may be degenerate.
Recall that ad(L) < Der L, so [Der L,ad(L)] € ad(L). Define ad(L)* < Der L to be the
orthogonal complement in Der(L) with respect to Kper 1, which is an ideal by the associative
property.
Claim: ad(L) N ad(L)* = 0, This follows readily from the fact that Kad(L) 1 nondegenerate
and so Rad(Kaq(r)) = 0.
Note that ad(L),ad(L)* are both ideals, so [ad(L),ad(L)*] C ad(L) Nad(L)* = 0. Let
6 € ad(L)* and x € L, then 0 = [§,ad,] = ads(,) where the last equality follows from an
earlier exercise. Since ad is injective, 6(z) = 0 and so § = 0, thus ad(L)* = 0. So we have
Rad kperz, € aud(L)L = 0 since any derivation orthogonal to all derivations is in particular
orthogonal to inner derivations, and thus kperz is nondegenerate. Finally, we can write
Der L = ad(L) ® ad(L)* = ad(L) © 0 = ad(L).

|

— 11.2 5.4: Abstract Jordan Decompositions ~

Remark 11.2.1: Earlier: if A € Algl;ci;, not necessarily associative, Der A contains the semisimple

and nilpotent parts of all of its elements. Applying this to A = L € LieAlg yields L = ad(L) = Der L

ad ad; = s+n € ad(L)+ad(L), so write s = ady, and n = adg,,, then ad, = ad,, +ad;, = ady, 44,

S0 x = xs + x, by injectivity of ad, yielding a definition for the semisimple and nilpotent parts of
x. If L < gl(V), it turns out that these coincide with the usual decomposition — this is proved in

section 6.4.

11.3 6.1: Modules (Chapter 6: Complete
Reducibility of Representations)

Definition 11.3.1 (L-modules and representations)
Let L € LieAIgﬁ%, then a representation of L on V is a homomorphism of Lie algebras
¢ : L — gl(V). For V € Vect,c with an action of L, i.e. an operation

LxV =V
(z,v) — x.,
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is an L-module iff for all a,b € C,z,y € L,v,w € V,

e (M1) (ax + by).v = a(z.v) 4+ b(y.v).
o (M2) z.(av + bw) = a(xz.v) + b(z.w).
o (M3) [zy].v = z.(y.v) — y.(z.v).

Remark 11.3.2: An L-module V is equivalent to a representation of L on V. If ¢ : L — gl(V) is
a representation, define z.v := p(x)v = p(z)(v). Conversely, for V' € pMod define ¢ : L — gl(V)

by ¢(x)(v) = z.v.
Example 11.3.3(%): L € ;Mod using ad, this yields the adjoint representation.

Definition 11.3.4 (Morphism of L-modules)

A morphism of L-modules is a linear map ¢ : V. — W such that ¢ (x.v) = z.4(v) for all
x € L,v € V. It is an isomorphism as an L-module iff it is an isomorphism of the underlying
vector spaces.? In this case we say V, W are equivalent representations.

Tt turns out that the inverse map of vector spaces ¥~ : W — V is again a morphism of L-modules.

Example 11.3.5(%): Let L = Cx for z # 0, then

o What is a representation of L on V7 This amounts to picking an element of End(V').

e When are 2 L-modules on V equivalent? This happens iff the two linear transformations are
conjugate in End(V).

Thus representations of L on V are classified by Jordan canonical forms when V' is finite dimensional.

Definition 11.3.6 (Submodules, irreducible/simple modules)

For V' € ;Mod, a subspace W C V is a submodule iff it is in invariant subspace, so x.w € W
for all x € L,w € W. V is irreducible or simple if V' has exactly two invariant subspaces V'
and 0.

AWarning 11.3.7
Note that this rules out 0 as being a simple Lie algebra.

Definition 11.3.8 (Quotient modules)

For W < V € pMod a submodule, the quotient module is V/WW has underlying vector
space V/W with action z.(v + W) = (x.v) + W. This is well-defined precisely when W is a
submodule.

AWarning 11.3.9

I 9L < ad(I) < ad(L), i.e. ideals corresponds to submodules under the adjoint representation.

However, irreducible ideals need not correspond to simple submodules.
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— 12.1 6.1: Structure theory ~

Definition 12.1.1 (Natural representation)
Note that all of the algebras g we’ve considered naturally act on column vectors in some F" —
this is the natural representation of g.

Example 12.1.2(?): Letting b, be the upper triangular matrices in gl,,, this acts on F". Taking a
standard basis F" =V := (e1, - , en)p, one gets submodules V; = (e, - - - , ;)p which correspond
to upper triangular blocks got by truncating the first ¢ columns of the matrix. This yields a
submodule precisely because the lower-left block is zero.

Remark 12.1.3: Let ¢ : L — gl(V) be a representation, noting that End(V') is an associative
algebra. We can consider the associative unital algebra A generated by the image ¢(L). Note
that the structure of V' as an L-module is the same as its A-module structure, so we can apply
theorems/results from the representation of rings and algebras to study Lie algebra representations,
e.g. the Jordan-Holder theorem and Schur’s lemma.

Definition 12.1.4 (Direct sums of L-modules)
Given V,W € rMod, their vector space direct sum admits an L-module structure using
z.(v,w) = (z.v,x.w), which we’ll write as z.(v + w) = zv + zw.

Definition 12.1.5 (Completely reducible modules)
V € rMod is completely reducible iff V' is a direct sum of irreducible L-modules. Equiva-
lently, for each W < V there is a complementary submodule W’ such that V =W & W’

AWarning 12.1.6
“Not irreducible” is strictly weaker than “completely reducible”, since a submodule may not admit
an invariant complement — for example, the flag in the first example above.

Example 12.1.7(%): The natural representation of b, is completely reducible, decomposing as
VieVo® .-V, where V; = Fe;.

Definition 12.1.8 (Indecomposable modules)
A module V is indecomposable iff V # W & W’ for proper submodules W, W’ < V. This is
weaker than irreducibility.

Example 12.1.9(?): Consider the natural representation V for L = b,,. Every nonzero submodule
of V must contain e, so V is indecomposable if n > 1.
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Remark 12.1.10: Recall that the socle of V' is the (direct) sum of all of its irreducible submodules.
If Soc(V) is simple (so one irreducible) then V' is indecomposable, since every summand must
contain this simple submodule “at the bottom”. For L = b,,, note that Soc(V) = Fe;.

Remark 12.1.11: For the reminder of chapters 6 and 7, we assume all modules are finite-
dimensional over F = F.

Theorem 12.1.12(Jordan-Holder).

Let L € LieAIgf/‘i«, then there exists a composition series, a sequence of submodules 0 = V) C
Vi C--- CV, =V such that each composition factor (sometimes called sections) V;/V;_; is
irreducible/simple. Moreover, any two composition series admit the same composition factors
with the same multiplicities, up to rearrangement and isomorphism.

Example 12.1.13(%2): If V. =W @ W' with W, W’ simple, there are two composition series:

e 0 C W CV with factors W, V/W = W/
e 0C W' CV with factors W/, V/W' = W.

These aren’t equal, since they’re representations on different coset spaces, but are isomorphic.

Theorem 12.1.14 (Schur’s lemma).
If p : L — gl(V) is an irreducible representation, then Endz (V) = F.

Proof (?).

If V is irreducible then every f € ;Mod(V, V) is either zero or an isomorphism since f(V) <V
is a submodule. Thus Endy (V) is a division algebra over F, but the only such algebra is F
since F = F.

Letting ¢ be as above, it has an eigenvalue A € F, again since F = F. Then ¢ — A\ € Endy (V)

has a nontrivial kernel, the A-eigenspace. So ¢ — Al =0 = ¢ = Al.
[ |

/\Warning 12.1.15
Schur’s lemma is not always true for Lie superalgebras.

Definition 12.1.16 (Trivial modules)

The trivial L-module is F € ;Mod equipped with the zero map ¢ : L — gl(F) where z.1 := 0
for all x € L. Note that this is irreducible, and any two such 1-dimensional trivial modules are
isomorphic by sending a basis {e;} to 1 € F.

More generally, an V' € pMod is trivial iff z.v = 0 for all x € L,v € V, and V is completely
reducible as a direct sum of copies of the above trivial module.

Definition 12.1.17 (Homs, Tensors, and duals)
Let V,W € Mod, then the following are all L-modules:
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o V®p W: the action is z.(v @ w) = (z.v) Qw + v ® (z.w).*
o Homp(V,W): the action is (z.f)(v) = z.(f(v)) — f(z.v) € W.
o VV :=Homp(V,F): the action is a special case of the above since z.w = 0, so®

(2.)(v) = —f(z.0).

“Note that groups would act on each factor separately, and this is more like a derivative.
®One might expect an inverse from group theory, which differentiates to a minus sign.

Remark 12.1.18: These structures come from the Hopf algebra structure on the universal asso-
ciative algebra U(g), called the universal enveloping algebra. Note that we also have

Hom(V, W) VY or W.

~
LMOd

].3 ‘ Friday, September 16

13.1 6.2: Casimir element of a
representation

Remark 13.1.1: Last time: L semisimple over C implies s(z,y) = tr(ad,ad,) is nondegenerate.
Using Cartan’s criterion, we can show that for any faithful representation ¢ : L — gl(V') we can
define a symmetric bilinear form S, on L defined by S, (z,y) = tr(¢(z)e(y)). Note that fuq = k.
Since Rad(B,) = 0, it is nondegenerate. This defines an isomorphism L = LY by z — [(z,—),
so given a basis B := {x;},, for L there is a unique dual basis B’ = {y;},.,, for L such that
B(x;,y;) = d;j. Note that the y; € L are dual to the basis 8(x;, —) € LV. -

0
Example 13.1.2(?): For L := sl3(C), the matrix of x is given by [0 with respect to the
4

S oo O
S O =

ordered basis B = {z, h, y}.3 Thus B’ = {%y’ %h, ix}

Definition 13.1.3 (Casimir element)
Now let ¢ : L — gl(V') be a faithful irreducible representation. Fix a basis B of L and define
the Casimir element

cp = cp(B) ==Y @(i) o p(y:) € Endg(V).

i<n

Remark 13.1.4: One can show that ¢, commutes with ¢(L). Supposing ¢ is irreducible, Endr (V) =

3See Humphreys p.22.
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C by Schur’s lemma, so ¢, is acts on V as a scalar. This follows from

tr(cy) = > tr(e(z)e(yi) =D Blxiy) =n=dmL = ¢, =

i<n

since there are dim V' entries. In particular, c, is independent of the choice of B. This will be
used to prove Weyl’s theorem, one of the main theorems of semisimple Lie theory over C. If L
is semisimple and ¢ : is not faithful, replace L by L/ker p. Since ker ¢ < L and L is semisimple,
ker ¢ is a direct sum of certain simple ideals of L and the quotient is isomorphic to the sum of the
remaining ideals. This yields a representation @ : L/ker ¢ — gl(V') which is faithful and can be

i<n

used to define a Casimir operator.

Example 13.1.5(?): Let L = sl3(C) and let VV = C? be the natural representation, so ¢ : L —
gl(V) is the identity. Fix H = {x, h,y}, then (u,v) = tr(uv) since p(u) = u and p(v) = v. We get

the following products:

dim L .
dimV1

dV7

01 1 0 [0 0
0 0 0 -1 10
0 1] 0 -1 1 0
0 0 0 0 0 0
1 0 . 0 0
0 -1 —-10
0 0
10 0
00 1
Thus 5=10 2 0 ,andB':{y,%h,x},so
100
co=aytinyye=|t Ol 00238 _ dimC
P ITRTYET g o T2 T o 1| T 27 T dimsk(C)

Lemma 13.2.1(%).

Let ¢ : L — gl(V') be a representation of a semisimple Lie algebra, then ¢(L) C sl(V).

13.2 6.3: Complete reducibility

In

particular, L acts trivially on any 1-dimensional L-module since a 1 x 1 traceless matrix is
zero. The proof follows from L = [LL].

AWarning 13.2.2

Arbitrary reductive Lie algebras can have nontrivial 1-dimensional representations.

13.2 6.3: Complete reducibility
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Theorem 13.2.3 (Weyl’s theorem).
Let ¢ : L — gl(V) be a finite-dimensional representation of a finite-dimensional semisimple Lie
algebra over C. This ¢ is completely reducible.

/A\'Warning 13.2.4
This is not true for characteristic p, or infinite dimensional representations in characteristic 0.

13.2.1 Proof of Weyl’s theorem

Remark 13.2.5: Replace L by L/ ker ¢ if necessary to assume ¢ is faithful, since these yield the
same module structures. Define a Casimir operator c,, as before, and recall that complete reducibility
of V is equivalent to every L-submodule W < V admitting a complementary submodule W” such
that V =W @& W"”. We proceed by induction on dim V', where the dimension 1 case is clear.

Case I: codimy W =1, i.e. dim(V/W) = 1. Take the SES W — V — V/W.

Case 1: Suppose W/ < W is a proper nonzero L-submodule. Schematic:

~

L
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Using the 2nd isomorphism theorem, there is a SES W/W' — V/W' — V/W. Since dim W’ > 0,
dim V/W' < dim V, so by the IH there is a 1-dimensional complement to W/W’ in V/W’. This lifts
to W’ <V with W/ < W with dim W/W’ = 1, and moreover V/W’' = W/W' @ W/W'. Take the
SES W' < W — W/W' with dim W < dim V. Apply the IH again to get a subspaces X < W <V
with W = W’ @ X. We'll continue by showing V =W @ X.

14 ‘ Monday, September 19

s 14.1 Proof of Weyl's theorem (continued) ~

Remark 14.1.1: Recall: we’re proving Weyl’s theorem, i.e. every finite-dimensional representation
of semisimple Lie algebra over C is completely reducible. Strategy: show every W <y V has a
complement W <; V such that V =W @& W”; induct on dim V.

Proof (of Weyl’s theorem, continued).

Case I dim V/W = 1.

Case 1: W is reducible. We got 0 < W/ < W < V (proper submodules), represented
schematically by a triangle. We showed V/W’ = W/W' @& W/W’, since

« WnW W, i
. ‘{:W+W+W’:W+WsinceW’§IfV.
e W =W'® X for some submodule X <; W < V.

Thus replacing W in the second point yields V=W +W =W + W' + X = W + X; we want
to prove this sum is direct. Since X is contained in W, we can write

XnW=XnW)nWw
=XN(WnNW) byl
CXNW'=0 by?2,

soV=WaeopX.

Case 2: Let ¢, be the Casimir element of ¢, and note that ¢, (W) C W since ¢, is built out
of endomorphisms in ¢(L) sending W to W (since W is a submodule). In fact, p(L)(V) =W
since V/W is a 1-dimensional representation of the semisimple Lie algebra L, hence trivial.
Thus ¢, (V') € W and thus ker ¢, # 0 since W < V is proper. Note also that ¢, commutes with
anything in c,(L) on V, and so defines a morphism ¢, € rMod(V,V) and kerc, <;, V. On
the other hand, ¢, induces an element of Endy (W), and since W is irreducible, c,|,, = Aidw
for some scalar A\. This can’t be zero, since tr(cyl|y,) = (’i‘liirrnn‘,%, > 0, so kerc, N W = 0. Since
codimy W =1, i.e. dimW = dimV — 1, we must have dimkerc, = 1 and we have a direct
sum decomposition V = W @ ker c,,.

Use of the Casimir element in basic Lie theory:
producing a complement to an irreducible submod-
ule.
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Case 2: Suppose 0 < W < V with W any nontrivial L-submodule; there is a SES W —
V — V/W Consider H := homc(V, W), then H € L-Mod by (z.f)(v) = z.(f(v)) — f(z.v) for

feHxeLvelV. LetV::{f’H‘ flw = aidw forsomeozEC}gH. For f € V and
w € W, we have

(x.f)(w) =z.f(w) — f(zw) = ar.w — azx.w = 0.

So let W = {f ey ‘ fw) = 0} C V, then we’ve shown that L.)V C W. Now roughly, the

complement is completely determined by the scalar. Rigorously, since dim V/W = 1, any
[ €V is determined by the scalar f|,;; = aidwy: we have f — axw € W where xw is any
extension of idy to V' which is zero on V/W | e.g. by extending a basis and having it act by
zero on the new basis elements.
Now W <= V — V/W € L-Mod with codimy) = 1. By Case I, ¥V = W & W for some
complement L-submodule W”. Let f : V — W span W, then f|, is a nonzero scalar — a
scalar since it’s in V, and nonzero since it’s in the complement of V. By rescaling, we can
assume the scalar is 1, so im f = W and by rank-nullity dimker f = dim V' — dim W. Thus
ker f has the right dimension to be the desired complement. It is an L-submodule, since
LfCW'NW =0 since W is an L-submodule and f € W since L.Y C W. Noting that if
(x.f) = 0 then x.(f(v)) = f(z.v), making f an L-Mod morphism. Thus W” := ker f < V,
and WNW"” =0so f|, =idw. Since the dimensions add up correctly, we get V. =W & W".
|

14.2 6.4: Preservation of Jordan
decomposition

Theorem 14.2.1(?).

Let L < gl(V) be a subalgebra with L semisimple and finite-dimensional. Given =z € L,
there are two decompositions: the usual JCF z = s + n, and the abstract decomposition
ad, = ad,, +ady, . L contains the semisimple and nilpotent parts of all of its elements, and in
particular the two above decompositions coincide.

Proof (Idea,).
The proof is technical, but here’s a sketch:

o Construct a subspace L < L' <y gl(V') such that I’ contains the semisimple and nilpotent
parts of all elements where L ~ gl(V') by ad : L — gl(gl(V)).

» Check L'qNyy)(L) (the normalizer), so [LL'] C L.

e Show L' = L:

— If I’ # L, use Weyl’s theorem to get a complement with L' = L & M.

— Check [LM] C [LL'] C L and [LM] C M since M <, M, forcing [LM] C LNM = 0.

— Use Weyl’s theorem on all of V' splits it into sums of irreducibles, bracket against
the irreducibles, and use specific properties of this L’ to show M = 0.
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e Since s,n € L when x = s+ n and ad, = ads + ad,, = ad,, + ady,,, the result follows
from uniqueness of the abstract JCF that s = z5,n = x,, (using that ad is injective when
L is semisimple since Z (L) = 0).

Corollary 14.2.2(7?).
If L € LieAlgjc (not necessarily linear) and ¢ € L-Mod, writing « = s+ n the abstract Jordan
decomposition, ¢(z) = ¢(s) + ¢(n) is the usual JCF of ¢(x) € gl(V).

Proof (Sketch).
Consider ad,r)¢(s) and ad,ryp(n), which are semisimple (acts on a vector space and decom-
poses into a direct sum of eigenspaces) and nilpotent respectively and commute, yielding the
abstract Jordan decomposition of ad,,). Now apply the theorem.

|

15 Ch. 7: Representations of sl,(C)
(Wednesday, September 21)

Remark 15.0.1: If L € LieAlg and s is a semisimple element, then ¢(s) is semisimple in any
finite-dimensional representation ¢ of L. In particular, taking the natural representation, this yields
a semisimple operator. For the same reason, ad, is semisimple. Similar statements hold for nilpotent
elements.

— 15.1 7.1: Weights and Maximal Vectors ~

Remark 15.1.1: Let L := sl3(C), then recall

|01
~ 0
1
s h=e
o o]
Y711 0
.« [zy] =
o [hx] =2z
o [hyl = =2y

Ch. 7: Representations of sla(C) (Wednesday, September 21) 40
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Goal: classify L-Mod™. By Weyl’s theorem, they’re all completely reducible, so it’s enough to
describe the simple objects.

Definition 15.1.2 (Weight decomposition and weight spaces)

Note that L < gl,(C) = gl(C?), and since h is semisimple, (h) acts semisimply on any
finite-dimensional representation V' with ¢ : L — gl(V'). Le. ¢(h) acts diagonally on V. Thus
V =@, V) which are eigenspaces for the ¢(h) action, where

VA::{UGV‘h.v:)\v,)\EC}.

If V) # 0 we say A is a weight of h in V and V), is the corresponding weight space.

Lemma 15.1.3(?).
If v € V), then z.v € V49 and y.v € V)_s.

Exercise 15.1.4 (7)
Prove this using the commutation relations.

Definition 15.1.5 (Highest weights)

Note that if V is finite-dimensional then there can not be infinitely many nonzero V), so there
exists a A € C such that V) # 0 but Vy4 o = 0. We call A a highest weight (h.w.) of V
(which will turn out to be unique) and any nonzero v € V' a highest weight vector.

15.2 7.2: Classification of Irreducible
sl (C)-Modules

Lemma 15.2.1(?).
Let V € L-Mod™ "™ and let vy € V) be a h.w. vector. Set v_; = 0 for i > 0 and v; = %yivo,
then for 7 > 0,

1. ha; = (A — 20);
2. yu; = (’L + 1)Ui+1
3. T.u; = ()\ —i+ 1)1}1'_1.

Proof (?).
In parts:

1. By the lemma and induction on .
2. Clear!

3. Follows from iz.v; = x.(y.vi—1) = y.(x.v;—1) + [zy].vi—1 and induction on i.
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Remark 15.2.2: Some useful facts:

The nonzero v; are linearly independent since they are eigenvectors of h with different eigen-
values — this is a linear algebra fact.

The subspace of V' spanned by the nonzero v; is an L-submodule, but since V is irreducible
the v; must form a basis for V.

Since V is finite-dimensional, there must be a smallest m > 0 such that v, # 0 but v,,41 = 0,
and thus v, = 0 for all k. Thus dimc V' = m + 1 with basis {vg, v1, - ,vm}.

Since vpm41 = 0, we have 0 = z.vp+1 = (A — m)vy, where vy, # 0, s0 A =m € Z>¢. Thus its
highest weight is a non-negative integer, equal to 1 less than the dimension. We’ll reserve A
to denote a highest weight and p an arbitrary weight.

Thus the weights of V are {m,m — 2,--- ,%,--- ., —m + 2, —m} where * = 0 or 1 depending on
if m is even or odd respectively, each occurring with multiplicity one (using that dim 'V, =1

if v is a weight of V).

Theorem 15.2.3(%).
Let V € L-Mod™™ for I := sly(C), then

1. Relative to h, V is a direct sum of weight spaces V,, for p € {m,m —2,--- ,—m +2, —m}
where m + 1 = dim V' and each weight space is 1-dimensional.

2. V has a unique (up to nonzero scalar multiples) highest weight vector whose weight (the
highest weight of V') is m € Z>g

3. The action L ~ V is given explicitly as in the lemma if the basis is chosen in a prescribed
fashion. In particular, there exists a unique finite-dimensional irreducible slo-module of
dimension m + 1 up to isomorphism.

Corollary 15.2.4(?).

Let V € L-Mod™" then the eigenvalues of h ~ V are all integers, and each occurs along
with its negative with the same multiplicity. Moreover, in a decomposition of V' in a direct
sum of irreducibles, the number of simple summands is dim Vj + dim V;.

Remark 15.2.5: Existence of irreducible highest weight modules of highest weight m > 0:

e m = 0: take the trivial representation V = C.
e m = 1: take V = C? with the natural representation.
e m = 2: take V = L with the adjoint representation.

15.2 7.2: Classification of Irreducible sl (C)-Modules 42

)4



I Ch. 8: Root space decompositions (Friday, September 23)

Remark 15.2.6: The formula in the lemma can be used to construct an irreducible representation
of L having highest weight A = m for any m € Zx(, which is unique up to isomorphism and denoted
L(m) (or V(m) in Humphreys) which has dimension m + 1. In fact, the formulas can be used
to define an infinite-dimensional representation of L with highest weight A for any A € C, which
is denoted M (\) — we just don’t decree that v,11 = 0, yielding a basis {vg, v, ---}. This yields
a decomposition into 1-dimensional weight spaces M () = @2, M_9; (Verma modules) where
My _2; = (vi) -

]_6 Ch. 8: Root space decompositions (Friday,
September 23)

Remark 16.0.1: Recall that the relations from last time can produce an infinite-dimensional
module with basis {vg, v1, - - -}. Note that if m € Z>¢, then z.vp11 = (A—m)v,, = 0. This says that
one can’t raise vy, +1 back to vy, so {Upm+1, Umy2 - - -} spans a submodule isomorphic to M(—m — 2).
Quotienting yields L(m) := M(m)/M(—m — 2), also called V(m), spanned by {vg, - , v, }. Note
that M (—m — 2) and L(m) are irreducible.

Remark 16.0.2: Let L € LieAIg;l;dc’JSS for this chapter.

16.1 8.1: Maximal toral subalgebras and
roots

Remark 16.1.1: Let L > ©z = 5 + xz,, € L + L be the abstract Jordan decomposition. then if
T = x, for every x € L then L is nilpotent which contradicts Engel’s theorem. Thus there exists
some x = x5 # 0.

Definition 16.1.2 (Toral subalgebras)
A toral subalgebra is any nonzero subalgebra spanned by semisimple elements.

Example 16.1.3(?): The algebraic torus (C*)™ which has Lie algebra C", thought of as diagonal
matrices.

Lemma 16.1.4(%).
Let H be a maximal toral subalgebra of L. Any toral subalgebra H C L is abelian.

Proof (?).

Let T' < L be toral and let = € T" be a basis element. Since z is semisimple, it STS adr, = 0.
Semisimplicity of = implies ady , diagonalizable, so we want to show adr, has no non-zero
eigenvalues. Suppose that there exists a nonzero y € T such that adr,(y) = Ay for A # 0.
Then adry(z) = [yz] = —[ry] = —adrz = —Ay # 0, and since ad7,(y) = —[yy] =0, y is an
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eigenvector with eigenvalue zero. Since adr, is also diagonalizable and = € T', write x as a
linear combination of eigenvectors for it, say = 3 a;v;. Then adry(x) = Y Nja;v; and the
terms with \; = 0 vanish, and the remaining element is a sum of eigenvectors for adr, with
nonzero eigenvalues. £

Example 16.1.5(%): If L = sl,,(C) then define H to be the set of diagonal matrices. Then H is
toral and in fact maximal: if L = H @ Cz for some z € L'\ H then one can find an h € H such that
[hz] # 0, making it nonabelian, but toral subalgebras must be abelian. e

Definition 16.1.6 (Roots)

Recall that a commuting family of diagonalizable operators on a finite-dimensional vector
space can be simultaneously diagonalized. Letting H < L be maximal toral, this applies
to adr(H), and thus there is a basis in which all operators in ad;(H) are diagonal. Set

L, = {x €L ’ [hz] = a(h)x Vh € H} where o : H — C is linear and thus an element of H".

Note that Ly = Cp(H), and the set ® := {a e HY ’ a#0,L, # O} is called the roots of H

in L, and L, is called a root space. Note that Lg is not considered a root space. This induces
a root space decomposition

L= CL(H) Pacd Lq-

Remark 16.1.7: Note that for classical algebras, we’ll show Cp(H) = H and corresponds to the
standard bases given early in the book. Vi

Example 16.1.8(?): Type A, yields sl,,11(C) and dim H = n for H defined to be the diagonal
traceless matrices. Definee; € HY as ¢; diag(ay, -+ ,ani1) == a;, the ® := {Ei —&j ‘ 1<i#j5<,n+ 1}
and Lgifsj = Ceij. Why:

[h, ei]‘] = [Z AkCLk, 617} = Q;€4i€j5 — Aj€5€55 = (ai — aj)eij = (5i - Ej)(h)eij.

17 ‘ Monday, September 26
- 17.1 8.1 Continued ~

Remark 17.1.1: A Lie algebra is toral iff every element is semisimple — this exists because any
semisimple Lie algebra contains at least one semisimple element and you can take its span. Let H
be a fixed maximal toral subalgebra, then we have a root space decomposition

L=Cy(H)® @ Lo La={zeL|ha]=amavheH}.
acedCHY
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Let L be semisimple and finite dimensional over C from now on.

Proposition 17.1.2(%). 1.

[La,Lg] C Loys Vo,B € HY.

x € Ly,a #0 = ad, is nilpotent.

3. Ifa,8 € HY and a + 3 # 0 then L, L Lg relative to x, the Killing form for L.

Proof (?).
1. Follows from the Jacobi identity.

2. Follows from (1), that dim L < oo, and the root space decomposition. This is because
Ly # Loy # Latop # -+ - and there are only finitely many 3 to consider.

3. If a4+ B # 0 then 3h € H such that (o + 3)(h) # 0. For z € Lo,y € Lg,

a(h)k(z,y) = r([hz], y)
= —n([zh],y)
= —r(z, [hy])
= —B(h)k(z,y)
= (a+B)(h)r(z,y) =0
= k(x,y) = 0 since (a + B)(h) # 0.

Corollary 17.1.3(?).
K| L, is nondegenerate, since Lo L Lo for all @ € @, but  is nondegenerate. Moreover, if
Lo # 0 then L_, # 0 by (3) and nondegeneracy.

— 17.2 8.2: C1(H) ~

Proposition 17.2.1(7).
Let H < L be maximal toral, then H = CL(H).

Proof (?).
Skipped, about 1 page of dense text broken into 7 steps. Uses the last corollary along with
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Engel’s theorem.

Observation 17.2.2

If L is a classical Lie algebra over C, we choose H to be diagonal matrices in L, and = € L\ H is
non-diagonal, then there exists an h € H such that [hz] # 0. Note that toral implies abelian and
nonabelian implies nontoral, thus there is no abelian subalgebra of L properly containing H — adding
any nontoral element at all to H makes it nonabelian. This same argument shows Cp(H) = H
since nothing else commutes with H. This implies that L = H ®nco La-

Corollary 17.2.3(?).
k| is nondegenerate.

Remark 17.2.4: As a result, k induces an isomorphism H = H" by h +— k(h,—) and HY = H
by ¢ > t,, the unique element such that x(t,, —) = ¢(—). In particular, given o € ® C H" there
is some t, € H. The next 3 sections are about properties of ®:

e Orthogonality,
o Integrality,
o Rationality.

— 17.3 8.3: Orthogonality properties of . ~

Proposition 17.3.1(Big!).

® spans HV.

If @ € @ is a root then —a € ® is also a root.

Let « € @,z € Lo,y € L_,, then [xy] = k(z,y)tq-

If € ® then [Ly, L_,] = Ct, is 1-dimensional with basis .

For any o € @, we have a(t,) = k(ta,ta) # 0.

(Important) If o € ®,z, € L, \ {0} then there exists some y,L_, in the opposite
root space such that zu, Yo, ha = [Za,Ya) span a 3-dimensional subalgebra sl(«) < L
isomorphic to sly(C).

g hg = H(fj;a), a(ha) =2,ha = h_q.

, O 0 TP

Proof (?).

a. If it does not span, choose h € H \ {0} with a(h) = 0 for all « € . Then [h,L,] =0
for all o, but [hH] = 0 since H is abelian. Using the root space decomposition, [hL] =0
and so h € Z(L) = 0 since L is semisimple. #
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b. Follows from proposition 8.2 and x(La, Lg) = 0 when § # .

c. Let h € H, then

w(h, [zy]) = K([hz],y)
= a(h)k(z,y)
(tas h)K(,y)
= k(k(z,y)ta, h)
= k(h, k(z,y)ta)
= r(h, [zy] — K(z,y)ta) =0
= [zy] = K(z, Y)ta,

I
=

where we’ve used that [ry] € H and & is nondegenerate on H and [Ly, L_o] C Lo = H.

d. (c) shows [Ly,L_,] is spanned by t, if it is nonzero. Let x € L, \ {0}, then if
k(z,L_o) = 0 then k would have to be degenerate, a contradiction. So there is
some y € L_, with x(x,y) # 0. Moreover ¢, # 0 since a # 0 and « > t,, is an
isomorphism. Thus [zy] = k(z, y)ta.

e. Suppose a(ty) = K(ta,ta) = 0, then for x € Lo,y € L_,, we have [to, 2] = a(ty)z =0
and similarly [to,y] = 0. As before, find x € L,y € L_, with k(x,y) # 0 and scale one
so that x(x,y) = 1. Then by (c), [z, y] = ta, S0 combining this with the previous formula
yields that S := (x,y,ts) is a 3-dimensional solvable subalgebra.® Taking ad : L < gl(L),
which is injective by semisimplicity, and similarly ad|g : S < ad(S) < gl(L). We'll use
Lie’s theorem to show everything here is a commutator of upper triangular, thus strictly
upper triangular, thus nilpotent and reach a contradiction.

|
“Note that this don’t actually exist! We’re in the middle of a contradiction.
]_ 8 ‘ Wednesday, September 28
— 18.1 Continued proof ~

Recall the proposition from last time:

Proposition 18.1.1(Big!).

a. ® spans HV.
b. If &« € ® is a root then —a € ® is also a root.
c. Let a € ®,x € Lo,y € L_,, then [zy] = k(x,y)tq.
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d. If @ € ® then [L,, L_,] = Ct, is 1-dimensional with basis t,.

e. For any a € ®, we have a(t,) = k(ta,ta) # 0.

f. (Important) If @ € ®,z, € L, \ {0} then there exists some yoL_, in the opposite
root space such that xu, Yo, ha = [Za,Ya) span a 3-dimensional subalgebra sl(«) < L
isomorphic to sly(C).

g ha = H(%?w)v a(ha) =2,hq = h_q.

Proof (continued).
Part e: We have a(ty) = k(ta, ta), so suppose this is zero. Pick x € L,,y € L_, such that
k(z,y) =1, then

o [ta,x] =0,
° [touy] =0,
® [$,y] = 1o

Set S :=sl(a) = C(z,y,ts) and restrict ad : L < gl(L) to S. Then ad(S) = S by injectivity,
and this is a solvable linear subalgebra of gl(L). Apply Lie’s theorem to choose a basis for L such
that the matrices for ad(S) are upper triangular. Then use that adz([SS]) = [ad(S)ad(S)],
which is strictly upper triangular and thus nilpotent. In particular, ady (¢,) is nilpotent, but
since t, € H which is semisimple, so ady,(t,,) is semisimple. The only things that are semisimple
and nilpotent are zero, so ady(tq) =0 = t, = 0. This contradicts that « € H" \ {0}. #
Part f: Given z, € L, \ {0}, choose y, € L_, and rescale it so that

2

H($a7ya) = m
ay Yo

Set hy, == ﬁ, then by (c), [Ta, Ya)] = K(Za, Ya)ta = ha. SO

2
[haaxa] = m[tavxa] = a(ta)a(ta)xa = 2z4,
and similarly [hq, Ya] = —2ya. Now the span (x4, ha, Ya) < L is a subalgebra with the same

multiplication table as sl (C), so S = sly(C).

Part g: Note that we would have h_, = ﬁ = —hgy if t, = t_,. This follows from the

fact that HY = H sends a + tq, —a — t_q, but by linearity —o +— —t,.

|
Corollary 18.1.2(?).
L is generated as a Lie algebra by the root spaces {La ‘ a € <I>}.
Proof (?).
It STS H C ({La}qeq) Given a € @,
x4 € Loy Yo € L_q  such that (x4, Yo, ha = [Ta, Ya)) = sla(C).
Note any h, € C*t, corresponds via s to some a € HY. By (a), ® spans HY, s0 {ta},co
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spans H.

— 18.2 8.4: Integrality properties of ¢ ~

Remark 18.2.1: Any a € ® yields sl(a) = sl(a), and in fact that the generators entirely determined
by the choice of z,. View L € g, Mod via ad.

Lemma 18.2.2(%).
It M < L € g(o)Mod then all eigenvalues of ho ™~ M are integers.

Proof (?).
Apply Weyl’s theorem to decompose M into a finite direct sum of irreducibles in 4, c)Mod.
The weights of h, are of the form m,m —2,--- ,—m+2,—m € Z.°

“This fails for infinite dimensional modules, e.g. Verma modules. The highest weight can be any complex
number.

Example 18.2.3(%): Let M = H + sl(a) < L € 4()Mod, which one can check is actually a
submodule since bracketing either lands in sl(«) or kills elements. What does Weyl’s theorem say
about this submodule? There is some intersection. Set K := kera C H, so codimyg K = 1 by
rank-nullity. Note that ho € K, so M = K & sl(a). Moreover sl(a) ~ K by zero, since bracketing
acts by o which vanishes on K. So K 2 C®""" decomposes into trivial modules.

Example 18.2.4(?): Let 3 € ® U {0} and define M = @.cc Lgtca, then L < L € g, Mod. Tt
will turn out that Lgycq # 0 <= c € [—r,q] C Z with r,q € Z>o.

Proposition 18.2.5(A).
Let a € ®, then the root spaces dim L4, = 1, and the only multiples of a which are in ® are
+a.

Proof (?).
Note L, can only pair with L_, to give a nondegenerate Killing form. Set

M= La=H® P L.

ceC cacd

By Weyl’s theorem, this decomposes into irreducibles. This allows us to take a complement of
the decomposition from before to write M = H @ sl(a) @ W, and we WTS W = 0 since this
contains all L., where ¢ # +1. Since H C K @ sl(a), we have W N H = 0. If ¢, is a root of L,
then h, has (ca)(ha) = 2c as an eigenvalue, which must be an integer by a previous lemma.
SocEZorcEZ+%.
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Suppose W # 0, and let V(s) (or L(s) in modern notation) be an irreducible s[(a)-submodule
of W for s € Z>¢. If s is even, V(s) contains an eigenvector w for h, of eigenvalue zero by
applying y. s/2 times. We can then write w = 3 cc Vea With ey € Leq, and by finiteness of
direct sums we have v., = 0 for almost every ¢ € C. Then

0 = [ha, W]

= Z [hom Uca]

ceC

= Z (ca)(ha)vea

ceC

= Z 2CVcq

= Ueq = 0 when ¢ # 0,

forcing w € H, the zero eigenspace. But w € W,sow € WNH =0. ¢

]_9 ‘ Friday, September 30

___ 19.1 8.4 ~

Proposition 19.1.1(A).
a€P® = dimLy,=1,and o, \a € & =— A = £1.

Proof (of proposition A).
Consider M == @@ cc Lea < L € g(oyMod. Write sl(a) = (x4, ha;Ya), we decomposed
M =K @ sl(a) ® W where kera < H and WNH =0. WIS: W = 0. So far, we've shown
that if L(s) C W for s € Z>o (which guarantees finite dimensionality), then s can’t be even —
otherwise it has a weight zero eigenvector, forcing it to be in H, but W N H = 0.
Aside: o € & = 2a ¢ P, since it would have weight (2a)(ha) = 2ah, = 4, but weights
in irreducible modules have the same parity as the highest weight and no such weights exist
in M (only 0,£2 in K & sla(e) and only odd in W). Suppose L(s) € W and s > 1 is odd.
Then L(s) has a weight vector for h, of weight 1. This must come from ¢ = 1/2, since
(1/2)a(hq) = (1/2)2 = 1, so this is in L, /,. However, by the aside, if « € ® then a/2 ¢ .
Thus it W can’t contain any odd roots or even roots, so W = (0. Note also that L, & K® W,
forcing it to be in sl(a), so Ly = (z) and L_y = (Ya)-

[

Proposition 19.1.2(B).
Let a, § € ® with 8 # +« and consider 5 + ko for n € Z.
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a. B(hqy) € Z.

b. 3r,q € Z> such that for k € Z, the combination 5+ ka € ® <= k € [-r,q] 0. The
set {5 + ka ‘ k€ [—r, q]} C @ is the a-root string through £.

c. f a+p € ® then [LoLg] = Layp.

d. B — Blha)a € .

Proof (?).
Consider

M = EB Lﬁ-}-ka <L € 5[(a)l\/|0d.
keZ

a. B(hq) is the eigenvalues of h, acting on Lg. But by the lemma, 5(hq) € Z.

b. By the previous proposition, dim Lg;, = 1 if nonzero, and the weight of h, acting
on it is B(hy) + 2k all different for distinct k. By slo-representation theory, we know
the multiplicities of various weight spaces as the sum of dimensions of the zero and one
weight spaces, and thus M is a single irreducible sl(«)-module. So write M — L(d) for
some d € Z>o, then hy ~ M with eigenvalues {d,d — 2,--- ,—d + 2, —d}. But ho ~ M
with eigenvalues ((hqa) + 2k for those k € Z with Ly, # 0. Since the first list is an
unbroken string of integers of the same parity, thus the k£ that appear must also be an
unbroken string. Define r and ¢ by setting d = B(hy) + 2q and —d = [(hy) — 2r to
obtain [—r, g]. Adding these yields 0 = 28(hy) + 2q — 2r and r — ¢ = S(hq).

c. Let M = L(d) € g(o)Mod and 25 € Lg \ {0} € M with x4 € La. If [2475] = 0 then zp
is a maximal sl(«)-vector in L(d) and thus d = f(hy). But a+ € ® = [)(hqa) + 2
is a weight in M bigger than d, a contradiction. Thus o+ 5 € & = [z,25] # 0. Since
this bracket spans and dim Ly4g = 1, so [LoLg] = Lays.

d. Use that ¢ > 0,7 > 0 to write —r < —r + ¢ < ¢q. Then
B—B(ha)a=B—(r—qa=p+(-r+qa) =+ Ll

where ¢ € [—r,q]. Thus § + o € ® is an unbroken string by (b).

[
Question 19.1.3
Is it true that @pcz Latra = Becc Lo+ca? The issue is that c € Z + % is still possible.
" 19.2 8.5: Rationality properties of ¢ ~

Remark 19.2.1: Recall that x restrict to a nondegenerate bilinear form on H inducing HY = H
via ¢ — t, where k(t,, —) = ¢(—). Transfer to a nondegenerate symmetric bilinear form on H" by
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(A, 1) == K(ta, ty). By prop 8.3 we know H" is spanned by ®, so choose a C-basis {a, - - -

Given € &, write 8 = ¢;a; with ¢; € C.

Claim: ¢; € Q for all 3!

20 ‘ Monday, October 03
— 20.1 Integrality and Rationality Properties

Claim: Setup:

Decompose L = H ® P cq La

Use the isomorphism
H= HY
Yty

to define (A, p) == k(ty,t,) on H.

Choose a basis {a;} C® C HY

For any 8 € @, write 8 = > ¢;a; with ¢; € C. Then

c € Q.

Proof (?).
Write (5, a;) = > ¢i(a4, ) and m

2(8,045) . 2(ai, o))

(aj,a5) " (o,05)
2(

af’a_j). On the other hand
(aj,04)

2(8,05) _ 2(tprta;) B
(O‘j’o‘j) - K(tay; Kay) = (tg, ha;) = Blhoy)

where the LHS is in Z, as is

,ant C 0.

using that (ay, o) = K(ta;,ta;) # 0 from before.” Since {«;} is a basis for HY and (—, —) is

nondegenerate, the matrix [(c, a;)]1<i j<n is invertible. Thus so is [ (o]
- - 707

2(ag,005)

, since it’s

given by multiplying each column as a nonzero scalar, and one can solve for the ¢; by inverting

Monday, October 03
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it. This involves denominators coming from the determinant, which is an integer, yielding
entries in Q.
|

“More generally,

Remark 20.1.1: Given A\, u € HY then
(A, ) = K(tx, ty) = Trace(ady, oady,) = Z a(ty) - alty),
aced

using that both ads are diagonal in this basis, so their product is given by the products of their
diagonal entries. One can write this as Y cq K(ta,tr)k(ta,ty), so we get a formula

(/\7/” - Z(O&,)\)(OJ,,U,), ()\,A) - Z(av)‘)Q'

aced aed

Setting A = § and dividing by (3, 3)? yields

[\e}
—_

1 (@B’ 1
.8~ 2 (B.57 € 1%

acd

since (6(5)7?12' So (8,8) € Q and thus («, ) € Q for all a, 5 € ®. It follows that the pairings
) 2

(A, ) on the Q-subspace Eq of H" spanned by {a;} are all rational.

Claim: (—,—) on Eq is still nodegenerate

Proof (?).
If A € Eq,(\ p) =0Vu € Eq, then (A, ;) = O0Vi = (A\,v)=0Vv € HY =— A =0.
|

Remark 20.1.2: Similarly, (A, A) = 3 cacrq (@, A)? is a sum of squares of rational numbers, and
is thus non-negative. Since (A,A\) = 0 <= X = 0, the form on Eq is positive definite. Write
E:=Eq ®q R = R{«;}, then (—, —) extends in the obvious way to an R-values positive definite
bilinear form on E, making it a real inner product space.

Theorem 20.1.3(?).
Let L, H,®,E /r be as above, then

a. ® is a finite set which spans E and does not contain zero.
b. If &« € ® then —a € ® and thus is the only other scalar multiple in ®.
c. If a, € ® then

2(8,a)

(o, @)

/B_B(ha)a:,ﬁ— OZG@,

20.1 Integrality and Rationality Properties 53



I Monday, October 03

which only depends on E. Note that this swaps £a.
d. If a, B € ® then B(hy) = 229 ¢ Z.

 (wa)

Thus ® satisfies the axioms of a root system in E.

Example 20.1.4(?): Recall that for sl3(C), k(z,y) = 6 Trace(zy). Taking the standard basis
{vi} = {&i, hi,y; = xt}, the matrix Trace(v;v,) is of the form

0 0 I
0 A O A= [_21 _211
I 0 O

This is far from the matrix of an inner product, but the middle block corresponds to the form
restricted to H, which is positive definite. One can quickly check this is positive definite by checking
positivity of the upper-left k£ x k minors, which here yields det(2) =2,det A =4 —1 = 3.

— 20.2 Part Ill: Root Systems ~

20.3 Ch. 9, Axiomatics. 9.1: Reflections in
a Euclidean Space

Remark 20.3.1: Let E be a fixed real finite-dimensional Euclidean space with inner product («, /),
we consider property (c) from the previous theorem:

_ 2(8,0)

(o, @)

p cP Vo, € ®.

Definition 20.3.2 (Reflections)
A reflection in E is an invertible linear map on an n-dimensional Euclidean space that fixes
pointwise a hyperplane P (of dimension n — 1) and sending any vector v L P to —uv:
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—alpha | o

Remark 20.3.3: If ¢ is a reflection sending o — —a;, then

calf)=5- 2090 ygeR

(o, @)

One can check that o2 = id. Some notes on notation:

o Humphreys writes (8, a) = % This is linear in 8 but not in a!

e More modern: (3,a") = (B, Oé>7 where o = (aZO&)

e Modern notation for the map: s, instead of o,.

corresponds to hg.

20.3 Ch. 9, Axiomatics. 9.1: Reflections in a Euclidean Space
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21 ‘ Wednesday, October 05

" 21.1 Reflections in E” ~

Remark 21.1.1: Recall the formula

2
5a(AN) = A —(\,a)a, o’ = 7@,(1 #0,

(v, @)

which is a reflection through the hyperplane P, =« 1:

S@)\ ‘ 2\
N e

o L

Lemma 21.1.2(%).

Let @ C E be a set that spans E, and suppose all of the reflections s, for a € ® leave ®
invariant. If o € GL(E) leaves ® invariant, fixes a hyperplane P pointwise, and sends some
a€ ®\{0} to —a, then 0 = s, and P = P,.

Proof (?).

Let 7 = 054 = 05, € GL(E), noting that every s, is order 2. Then 7(®) = ® and 7(a) = a,
so 7 acts as the identity on the subspace Ra and the quotient space E/Ra since there are
two decompositions E = P, & Ra = P @& Ra using s, and ¢ respectively. So 7 — id acts as
zero on E/Ra, and so maps E into Ra and Ra to zero, s (7 —id)? = 0 on E and its minimal
polynomial m, (t) divides f(t) :== (t — 1)2.

Note that @ is finite, so the vectors 8,78, 728,73/, -- can not all be distinct. Since 7 is
invertible we can assume 7%3 = j for some particular k. Taking the least common multiple
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of all such k yields a uniform k that works for all § simultaneously, so 783 = 3 for all 8 € ®.
Since R® = E, 7% acts as id on all of E, so 7% — 1 = 0 and so m.(t) | t* — 1 for some k.
Therefore m.(t) | ged((t — 1)%,#* — 1) =t — 1, forcing 7 = id and o = s, and P = P,.

|
— 21.2 Abstract root systems ~

Definition 21.2.1 (Root systems)
A subset ® C E of a real Euclidean space is a root system iff

e Rl: i® <00, R®P=E, and 0 &€ P,

e R2: a € & = —a € ¢ and no other scalar multiples of o are in P,
e R3: If a € ® then s,(®) = P,

e R4: If a, 8 € ® then (B,a") = % €Z.

Notably, £ := || — sq 3] is an integer multiple of «:

! € Z«

Saf

Definition 21.2.2 (Weyl groups)
The Weyl group W associated to a root system ® is the subgroup (sq,a € ®) < GL(E).

Remark 21.2.3: Note that §i/V < oco: W permutes ® by (R3), so there is an injective group
morphism W < Perm(®), which is a finite group — this is injective because if w ~ ® as id, since
R® = E, by linearity w ~ E by id and w = id. Recalling that s,(\) = A — (A\,a")a, we have
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(sa(A)ysa(p)) = (A, p) for all A\, € E. So in fact W < O(E) < GL(E), which have determinant
+1 — in particular, det s, = —1 since it can be written as a block matrix diag(1,1,---,1,—1) by
choosing a basis for P, and extending it by a.

Note that one can classify finite subgroups of SO,,.

Example 21.2.4(%): Let ® = {57; —€j ‘ 1<i,j<n+1,i# j} be a root system of type A,, where

{&;} form the standard basis of R"*! with the standard inner product, so (g;,¢;) = ;. One can
compute

€j k :’i
)(6i —gj)=¢cp—(er&i—¢gj)lei—¢gj) = e k=3 = €(ij).k

€ otherwise.

2(ek, €0 — €5)
Ei — €j, Ei — Ej

Se;—e; (5k) = 516(

where (ij) € Sp41 is a transposition, acting as a function on the index k. Thus there is a well-defined
group morphism

W — Sn—H

Se;—e; > (i)

This is injective since w acting by the identity on every e implies acting by the identity on all of E
by linearity, and surjective since transpositions generate Sy,+1. So W = S, 41, and A, corresponds
to sl,41(C) using that

[, €ij] = (hi — hj)eij = (ei — 5)(h)es;.

In G = SL,(C) one can define Ng(T)/Cq(T) for T' a maximal torus.

Exercise 21.2.5 (?)
What are the Weyl groups of other classical types?

Lemma 21.2.6(%).
Let & C E be a root system. If 0 € GL(E) leaves ® invariant, then for all o € ®,

0500 = Sg(a)s (B,av) = (o’(ﬂ),g(a)v) Va, B € .

Thus conjugating a reflection yields another reflection.

Proof (?).
Note that os,0~! sends o(a) to its negative and fixes pointwise the hyperplane o(P,). If
B € ® then s,(8) € @, s0 0s,(8) €  and

(05a07)(0(B)) = 75a(B) € 0@,

S0 05,01 leaves invariant the set {U(B) ‘ B e <I>} = &. By the previous lemma, it must equal
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So(a), and so

(0(B),0(e)”) = (B,2")

by applying both sides to o(5).

AWarning 21.2.7
This does not imply that (o(5),0()) = (5, «)! With the duals/checks, this bracket involves a ratio,
which is preserved, but the individual round brackets are not.

22 ‘ Friday, October 07

Lemma 22.0.1(%).
Let ® C E be a root system with Weyl group W. If o0 € GL(E) leaves ® invariant then

0Sq0 L = So(a) Va € ®
and

(B,aY) = (0(B),0(a)¥)  Va,B € .

AWarning 22.0.2

(0(B),0()) # (8, ),

i.e. the (—)" is important here since it involves a ratio. Without the ratio, one can easily scale to
make these not equal.

Definition 22.0.3 (?)
Two root systems ® C E, ®’ C E’ are isomorphic iff there exists ¢ : E — E’ of vector spaces
such that ¢(®) = ® such that

2(8, @)

(p(B), p(a)’) = (B,) = (@)

Ya, 5 € O.

Example 22.0.4(?): One can scale a root system to get an isomorphism:
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I
Remark 22.0.5: Note that if ¢ : ® =5 & is an isomorphism, then
@(Sa(ﬁ)) = Sw(a)(so(ﬁ)) Va,3 € ® = ¢po 50490_1 = Sp(a)-

So ¢ induces an isomorphism of Weyl groups

w=Sw

Sa 7 Sp(a):
By the lemma, an automorphism of ® is the same as an automorphism of E leaving ® invariant. In
particular, W < Aut(®). Vs

Definition 22.0.6 (Dual root systems)
If ® C E is a root system then the dual root system is

@V::{av’aefb}, aV::%.

Exercise 22.0.7 (7)
Show that ® is again a root system in E.

Remark 22.0.8: One can show W (®) = W(®V) and (A, a¥)a’ = (), a)a = (\,a") for all
a € d €L, so s, =S, as linear maps on E.
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e 22.1 9.3: Example(s) ~
Definition 22.1.1 (Ranks of root systems)

Let ® C E be a root system, then ¢ := dimg E is the rank of ®.

Remark 22.1.2: Rank 1 root systems are given by choice of a € R:

Sa

0 R

— Y

Remark 22.1.3: Recall % € Z, and from linear algebra, (v, w) = ||v|| - ||w| cos(6) and ||a||* =
(o, ). We can thus write
2(8,0) _, 1Al [lex]
(6, a) = —2lBleoso), o, gy =20 cos),
() o] 18]l

and so

(o, BY(B, @) = 4cos*(6),

noting that L, 3 = (o, ), (B, a) are integers of the same sign. If positive, this is in QI, and if
negative QII. This massively restricts what the angles can be, since 0 < cos?(#) < 1.

First, an easy case: suppose L, g = 4, so cos?(§) =1 = cos(f) = £1 = 0 =0, .
o If 0, then «, 8 are in the same 1-dimensional subspace and thus 8 = «. In this case, (8, «a) =

2 ={a, ).
o If m, then @ = —f3. Here (8, a) = —2.
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So assume [ # *a, and without loss of generality ||3]| > |||, or equivalently (o, ) < (5, a).
Note that if (o, §) # 0 then

B, @) _8I°
(@ B)  al?
The other possibilities are as follows:
(@, 8) (8, a) o 1812/l
0 0 /2 Undetermined
1 1 /3 1
-1 -1 27/3 1
1 2 /4 2
-1 -2 3r/4 2
1 3 /6 3
-1 -3 5m/6 3

Cases for the norm ratios:

. 1:A2
e 2:By=0C9
031G2

These are the only three irreducible rank 2 root systems.

Lemma 22.1.4(%).
Let «, 8 € ® lie in distinct linear subspaces of E. Then

1. If (a, B) > 0, i.e. their angle is strictly acute, then a — 3 is a root
2. If (o, ) < 0 then o+ f is a root.

Proof (?).
Note that (2) follows from (1) by replacing 8 with —/3. Assume (o, 3) > 0, then by the chart
(o, B) =1 or (B, a) = 1. In the former case,
¢ > sg(a)=a—(a, Bf=a—p.
In the latter,

salf)=p—0a€ed = —(f—a)=a—-Fc.
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Remark 22.1.5: Suppose rank(®) = 2. Letting o € ® be a root of shortest length, since R® = E
there is some 3 € E not equal to . Without loss of generality assume Z, g is obtuse by replacing
B with —f if necessary:

Also choose /8 such that Z, g is maximal.

Case 0: If § = 7/2, one gets Ay x Aj:
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b
S /

We’'ll continue this next time.

23 ‘ Monday, October 10

— 23.1 Classification of Rank 2 Root Systems ~

Remark 23.1.1: If 8 # +q,

o (,f)>0 = a—pcd
e (,f)<0 = a+pcd

Remark 23.1.2: Rank 2 root systems: let a be a root of shortest length, and 5 a root with angle
0 between «, 8 with > m/2 as large as possible.

o If9:7r/2 A1XA1.
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o If0=21/3: Ay

23.1 Classification of Rank 2 Root Systems
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S

One can check (o, ) =2(—1/2) = -1 and (a+ 6, ) ={(a, B)+ (B, f)=—-1+2=1.
o If 0 =3m/4: By
o If 0 =57/6: Gy

One can check that using linearity of (—, —) in the first variable that

i 3a626+3aa
e sa(B+a)=[F+2q,
e sg(f+3a)=(B+3a)—(f+3a, B) =28+3ac .

Remark 23.1.3: Note that in each case one can see the root strings, defined as
R = {ﬁ+ka \ kez}mcb.

Let r,q € Z>¢ be maximal such that 8 — ro, 8 4+ qa € ®. The claim is that every such root string
is unbroken.

Suppose not, then there is some k with —r < k < ¢ with 8+ ka ¢ ®. One can then find a maximal
p and minimal s with p < s and +pa € ® but 5+ (p+ 1)a € @, and similarly 5+ (s — 1)ac & but
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B+ sa € . By a previous lemma, (5 + pa, «) > 0 and similarly (5 + sa, a) < 0. Combining these,

pla,a) > s(a,a) = p > s since (a,a) >0 ‘.

The picture:

6—7“04 | 6—|—qo¢
|

04

So s, reverses the root string, since it sends the line containing the root string to itself but reflects
through P,. One can compute

B —ra=s.(8+qa)
= (B +qa) — (B +qa, a)a
= (B8 +qa) — (B, a)ga — 2qa
=3 - (B, a) +q)

sor = (08, a) and r — q = (B, a) = [(h,) for a semisimple Lie algebra.

Supposing |(5, a)| < 3. Choose § in R, such that 5 — « is not a root and § is at the left end of
the string and r = 0:
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a

Then ¢ = — (5, «), so the root string contains at most 4 roots (for ® of any rank). V-

23.2 Ch. 10 Simple Roots, 10.1 Bases and
Weyl Chambers

Definition 23.2.1 (Base (simple roots))
A subset A C @ is a base (or more modernly a set of simple roots) if

e Bl: A is a basis for E,
e B2: Each 8 € ® can be written as 3 = ) A koo with k, € Z with either all k, € Z>
or all k, € Z<p.

Example 23.2.2(?): 1. The roots labeled a, § in the rank 2 cases were all simple systems.
2. For A,,, a base is {e1 — 9,690 — €3, -+, — Ent1}, Where & = {si —€j ‘ i # j}. P

24 ‘ Wednesday, October 12

Remark 24.0.1: Today: finding bases for root systems. It’s not obvious they always exist, but
e.g. in the previous rank 2 examples, «, 5 formed a base. yd

I Definition 24.0.2 (Height, positive/negative roots)
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Given a base A C @, the height of a root 8 = 3 ca koo is

ht(8) = ka.

If all k, > 0, we say [ is positive and write 3 € ®T. Similarly, 3 is negative iff k, < 0 for
all v, and we write 3 € ®~. This decomposes a root system into ® = ®*[[®~, and moreover
—dt =@~

Remark 24.0.3: A choice of A determines a partial order on ® which extends to E, where
A > p <= X — pis a non-negative integer linear combination of elements of A.

Lemma 24.0.4(?).
If A C ®isabase and o, 5 € A, then

a#pf = (a,f)<0and a— 3 & P.

Proof (?).
We have a # +[3 since A is a linearly independent set. By a previous lemma, if («, 5) > 0
then 5 — a € ® by a previous lemma. ¢

|

Definition 24.0.5 (Regular)
An element v € E is regular iff v € E\ U,cqp Po Where P, = a’, otherwise v is singular.

Lemma 24.0.6(%).
Regular vectors exist.

Remark 24.0.7: The basic fact used is that over an infinite field, no vector space is the union of
a finite number of proper subspaces. Note that this is a union, not a sum!

Given a regular vector v € E, define

o*(y) ={ac®|(a,7) >0},

the roots on the positive side of the hyperplane o’
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(a, A) >0

)
>
A
-

8}

CEJ‘

This decomposes ® = &1 (7)[[® (v) where ®~ () := —®T (). Note that v lies on the positive side
of a’ for every a € ®* (). s

Definition 24.0.8 (Decomposable roots)
A positive root § € ®T is decomposable iff 3 = 81 + 32 for 5; € Pt (7). Otherwise 3 is
indecomposable.

Theorem 24.0.9(?).
There exists a base for ®.

Theorem 24.0.10(%).
Let v € E be regular. Then the set A(v) of all indecomposable roots in ®*(v) is a base for ®.
Moreover, any base for ® arises in this way.

Proof (in 5 easy steps).
1. Claim: each root in ®* () is in Z>oA(y).

The proof: if not, pick 8 € ®*(vy) which cannot be written this way and choose it such that
(8,7) is maximal (by finiteness). Since 5 ¢ A(7), it is decomposable as § = (1 + B2 with
Bi € ®. Now (B,7) = >(B4,7) is a sum of nonnegative numbers, so (8;,7) < (8,7) for
i = 1,2. By minimality, 5; € Z>0A(), but then by adding them we get 5 € Z>oA(7).

2. Claim: if o, B € A(y) with a # S then (a, f) < 0. Note a # —f since («,7), (8,7) > 0.
By lemma 9.4, if (o, 3) > 0 then a — 3 € ® is a root. Then one of o — 3,8 — a € ®1 (7).
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In the first case, 8+ (o — ) = «, decomposing «. In the second, a+ (8 — «) = 3, again
a contradiction.

3. Claim: A := A(y) is linearly independent. Suppose Y ,ca raa = 0 for some r, € R.
Separate the positive terms o € A’ and the remaining o € A” to write e := ) car ra =
>_gear tpB where now ro,t5 > 0. Use the two expressions for € to write

(e,e) = Z ratg(c, B) <0,

ISTANNGISVANG

since 7oty > 0 and (o, ) < 0. So € = 0, since (—, —) is an inner product. Write
0= (7,¢) = X aen rale,0) where ro > 0 and (,7y) > 0, so it must be the case that
A’ = (). Similarly A” =0, so 7, =0 for all a € A.

4. Claim: A(7) is a base for ®. Since ® = ®T(7)[[® (v), we have B2 by step 1. This
also implies A(7) is a basis for E, since we have linear independent by step 3. Thus
ZA(y) O ® and R® =E.

5. Claim: every base of ® is A(vy) for some regular 7. Given A, choose v € E such that
(7,a) > 0 for all & € A. Then v is regular by B2. Moreover ®* C ®*(v) and similarly
®~ C & (), and taking disjoint unions yields ® for both the inner and outer sets, forcing
them to be equal, i.e. ®* = ®*(y). One can check that A C A(7y) using ®T = ®F(v)
and linear independence of A — but both sets are bases for E and thus have the same
cardinality ¢ = dim E, making them equal.

25 ‘ Bases A for & (Friday, October 14)

Remark 25.0.1: From a previous discussion: given a rank n root system ® with n > 2, is
R (o, 8) NP always a rank 2 root system? The answer is yes! This follows readily from just checking
the axioms directly. A~

Remark 25.0.2: For a regular v € E\U,cq Pa, define 1 (v) == {5 €d ‘ (B,7) > O} and let A(7)
be the indecomposable elements of ®*(~):
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Theorem 25.0.3(?).
A(7y) is a base for @, and every base is of this form.

Definition 25.0.4 (7)
The connected components of E\ J,cq Pa are called the (open) Weyl chambers of E. Each
regular v belongs to some Weyl chamber, which we’ll denote C(7).

Remark 25.0.5: Note that C(y) = C(7') <= =,/ are on the same side of every root hyperplane
P, for a € ®, which happens iff T (y) = ®T(y;) < A(y) = A(Y'), so there is a bijection

{Weyl chambers} = {Bases for (I)} .

Note also that W sends one Weyl chamber to another: any s, preserves the connected components
E\ Ugea Ps; so if v is regular and o € W and o(7y) = 7' for some regular o, then ¢(C(v)) = C(v').
W also acts on bases for ®: if A is a base for ®, then o(A) is still a basis for E since o is an
invertible linear transformation. Since o(®) = @ by the axioms, any root a € ® is of the form o(3)
for some § € ®, but writing f = > ,ca ko with all k, the same sign, o(8) = > ca kao(a) is a
linear combination of elements in o(A) with coefficients of the same sign.

The actions of W on chambers and bases are compatible: if A = A(v) then o(A) = A(o(y)), since
a(®T(v)) = & (o(v)) since W < O(E) and thus (o7,00a) = (v, a).
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Lemma 25.0.6(4).
Fix a base A C ®, which decomposes ® = ®T[[®~. If 3 € T\ A, then f —a € & for some
a €A,

Proof (?).
If (B,a) <0 for all @ € A, then the proof of theorem 10.1 would show 8 = 0 by taking ¢ :=
in step 3. One can then find an o € A with (8,a) > 0, where clearly f # +a. By lemma
9.4, —a € &. Why is this positive? Note that § has at least one coefficient for a simple
root (not the coefficient for o) which is strictly positive, and thus all coefficients are > 0. This
coefficient stays the same in § — «, so its coefficients are all non-negative by axiom B2 and
B—aecdT.

|

Corollary 25.0.7(?).

Each 8 € ®T can be written as aj + - - - + o, where a; € A not necessarily distinct, such that
each truncated sum aj + -+ -+ «; for 1 < i < k is a positive root. One proves this by induction
on the height of 5.

Lemma 25.0.8(B).
Let a € A, then s, permutes @1\ {a}.

Proof (?).

Let B € ®F\ {a};if 8= > ven kyy with ky € Zxo, since 8 # «, some k, > 0 for some v # a.
Using the formula s,(8) = 8 — (8, a)« still has coefficient & for 7. Thus s,(8) € ®* and
5a(B) # « since so(—a) = a and s, is bijective, and so s,(8) € &1\ {a}. As a result, s,
permutes this set since it is invertible.

Corollary 25.0.9(?).
Let

p::% Z B8 €Lk

pedt

Then s4(p) = p — a for all @ € A, and s,(p) = p.

Note that Humphreys uses 6, but nobody uses this
notation.

Lemma 25.0.10(C, The Deletion Condition).
Let aj,---a; € A be not necessarily distinct simple roots, and write s; = sq,. If
s1+++8t—1(ag) < 0, then for some 1 < u < ¢ one has

818t = 81 Su—15u+15t-1,
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so one can delete s, and s; to get a shorter product of reflections.

Proof (?).

For 0 <i<t—1,let B; == si41---st—1(w) and Bt_1 == ay. Since By = s1---s4—1(ay) < 0 and
Bi—1 = ay > 0, there must be a smallest index u such that 5, > 0. Note that u > 1 since fy is
negative. Then

Su(ﬁu) = SuSu+1-"" St—l(at)
= Bu—l

<0

by choice of u. Noting that 8, = Sy+1 - s¢—1(), by lemma B, s, = s,, permutes roots other
than «,, since 3, > 0 and s,, (8,) < 0. By lemma 9.2, write

— _ _ —1
So, = By = Ssup1si_1(a) = (Sut1 " St—1)San, (Sug1 - St—1)

Multiply both sides on the left by (s1---s,) and on the right by (sy41---$t—1) to obtain

(517 Sumt)(Sutt - 8e-1) = (517~ 5)(Sup1 - 8t)y St = Sape

Corollary 25.0.11(?).
If 0 = s1--- 5 is an expression for w € W in terms of simple reflections (which we don’t yet
know exists, but it does) with ¢ minimal, then o(ay) < 0.

26 ‘ Monday, October 17

— 26.1 10.3: The Weyl group ~

Theorem 26.1.1(?).
Fix a base for ®.

a. (W acts transitively on the set of Weyl chambers) If v € E is regular (not on a root
hyperplane), there exists o € W such that (o(d),a) > 0 for all a € A, i.e. a(y) € C(A),
the dominant Weyl chamber relative to A.

b. (W acts transitively on bases) If A’ is another base for @, then there exists o € W such
that o(A") = A, so W acts transitively on bases.

c. (Every orbit of W® contains a simple root) If § € ® then there exists a o € W such that
o(p) € A.
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d. (W is generated by simple roots) W = <sa ‘ a € A> is generated by simple roots.

e. (Stabilizers are trivial) If 0(A) = A for some o € W, then o = 1.

Proof (?).

Part c: Set W' = <sa ‘ o € A>, we’ll prove (¢) with W replaced W', which is larger. First
suppose 3 € ®* and consider W’3 N ®*. This is nonempty since it includes 3 and is a finite
set, so choose 7 in it of minimal height. Claim: ht(y) = 1, making v simple. If not, supposing

ht(y) > 1, write v = 3" ,ca ko with ko > 0. Since v # 0, we have (y,v) > 0, so substitute to
yield

0< (1M =0 kat) = Y ka7, ),

a€A acA

so (v,a) > 0 for some o € A, and s,y =7 — (7, a)a € D7 is positive where (v, a) > 0. This
is a contradiction, since it has a smaller height. Note that if 3 € ®~ then —3 € ®T and there
exists a 0 € W’ such that o(—f) = a € A. So o(8) = —a, and $,0(8) = sa(—a) = a € A.
Part d: Given 3, pick o € W’ such that 0~(8) = a € A. Then

88 = Sg(a) = 0sq0 L €W,

so W < W' < W, making W = W".
Parts a and b: Recall p = %Zﬁe.@—o— and choose 0 € W such that (o(d), p) is maximal
(picking from a finite set). Given ao € A, we have s,o0 € W, and so

((9), p)

v

a(9),p)

0(9), sap)

o(9),
)

o~ o~~~

—q)
) = (0(9),a),

and so (0(d),a) > 0 for all & € A. Importantly, ~ is regular, so this inequality is structure for
all @ € A. So W acts transitively on the Weyl chambers, and consequently on simple systems
(i.e. bases for @) by the discussion at the end of §10.1.2

Part e: Suppose 0(A) = A and o # 1, and write 0 = [[;<;<; si with s; == s, for oz € A
with ¢ > 1 minimal. Note o(A) = A and ay € A, we have o(ay) > 0 and [[j<;<;(ow) =
[i<icrq Si(—ay) 50 TTj<icr_q si(ay) < 0. This fulfills the deletion condition, so [[j«;«; =
$1 -5y & which is of smaller length. -

o(d

I

Remark 26.1.2: In type A, W (A,,) = n!, and since bases biject with W there are many choices
of bases. v

Definition 26.1.3 (7)
Let A C @ be a base and write 0 € W as 0 = [[1<;<; Sa; With a; € A and ¢ minimal. We say
this is a reduced expression for o and say ¢ is the length of o, denoted /(o). By definition,
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| (1) = 0.

Remark 26.1.4: Since W < GL(E), there is a map det : W — GL;(R) = R*. The determinant
of a reflection is —1 by writing it in a basis about the fixed hyperplane, and so det ¢ = (—1)(?) and
in fact det : W — {£1}. Thus ¢(c0’) = ¢(0) + ¢(0) mod 2.

Note also that if o/ = s, for « simple, then ¢(os,) = ¢(c) = 1. The proof: l(os,) < £(o) + 1,
similarly for os,, and use det(cs,) = —deto. #

AWarning 26.1.5
Reduced expressions are not unique: for Az, one has 5,535, = 535453, and these two reflections do
not commute. e

Remark 26.1.6: Some temporary notation for this section: for o € W, set
n(o) = §(@~ No(e)),

the number of positive roots that ¢ sends to negative roots. i

Lemma 26.1.7(A).
For all c € W,

Proof (?).

Induct on ¢(0): if zero, then o = 1 and n(1) = 0 since it fixes all positive roots. If {(c) =1
then o = s, for some simple «, and we know from the last section that o permutes ®* \ {a}
and o(a) = —a, so n(o) = 1.

27 ‘ Wednesday, October 19

Proof (of lemma A, continued).

We're proving £(o) = n(o) = §(®~ No(P)) by induction on ¢(o), where we already checked
the zero case. Assume the result for all 7 with ¢(7) < ¢(o) for 7 € W. Write o = s7 - - - s; with
Si = Sa;,; € Areduced. Set T := 0s; = s1 - -+ s;—1 which is again reduced with ¢(7) = ¢(c) —1.
By the deletion condition, sj---s;—1(ca) > 0, 80 51+ s—18¢(a) = 81+ $4—1(—ay) < 0. Thus
n(r) = n(o) — 1, since s; permutes ®* \ {ay}, so

lo)—1=4L(1)=n(T) =n(c) —1 = L(o) =n(o).
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Remark 27.0.1: This is useful for finding reduced expressions, or at least their length: just compute
how many positive roots change sign under o. Using the deletion condition and lemma A, it’s
clear that any expression for ¢ as a product of simple reflections can be converted into a reduced
expression by deleting pairs of simple reflections, and this terminates after finitely many steps. iy

Lemma 27.0.2(B).
Recall that the open Weyl chambers are the complements of hyperplanes. The closure of any
Weyl chamber is a fundamental domain for the action W ~ E.

s 27.1 10.4: Irreducible root systems ~

Definition 27.1.1 (Irreducible root systems)
A root system ¢ C E is irreducible if it cannot be partitioned into mutually orthogonal
nonempty subsets. Otherwise, ® is reducible.

Proposition 27.1.2(%).
Let A C ® be a simple system. Then ® is irreducible iff A is irreducible, i.e. A cannot be
partitioned into nonempty orthogonal subsets.

Proof (?).

® reducible implies A reducible: write ® = ®;][®2 where (1, ®2) = 0; this induces a similar
partition of A. Then (A, ®2) =0 = (E,®2) =0 = E = () using nondegeneracy of the
bilinear form. ¢

Now A reducible implies @ reducible: write A = A1[[Ay with (A1, Ag) = 0. Let ®; be the
roots which are W-conjugate to an element of A;. Then elements in ®;are obtained from A;
by adding and subtracting only elements of A;, so (®1,P2) = 0 and & = &; U Py by a previous
lemma that every 8 € ® is conjugate to some o € A.

Lemma 27.1.3(A).

Let ® O A be irreducible. Relative to the partial order < on roots, there is a unique maximal
root &. In particular, if 5 € ® and 8 # &, then ht(f) < ht(a) and (&,«) > 0 for all a € A.
Moreover, one can write & = > ,ca With k, > 0, i.e. it is a sum where every simple root
appears.

Proof (?).

Existence: Let & be any maximal root in the ordering. Given a € A, (&, ) > 0 — otherwise
Sa(@) = & — (&, a)a > «, a contradiction. £ Write & = > ca ko With ko € Z>(, where
it’s easy to see these are all non-negative. Suppose some k. = 0, then (&,vy) < 0 — otherwise
sy(&) = & — (&, )7 has both positive and negative coefficients, which is not possible. Since
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(&, ) > 0, we must have (&,v) = 0. So write

0= (d77) = Z ka(aﬁ) S 07
acA

so (a,7) = 0 whenever k, # 0, otherwise this expression would be strictly < 0. Thus A =
A1][As where Ay = {a €A ‘ K, # O} and Ay = {a €A ’ = O}. This is an orthogonal
decomposition of A, since any v € Ag is orthogonal to any @ € A;. Note that A; # since
@ # 0, and if Ay # then this is a contradiction, so Ay must be empty. So no such 7y exists.
Uniqueness: let & be any maximal root in the ordering and let @ be another such root.
Then (&, &) = Y 4en ka(a, @) with kq > 0 and (o, @) > 0. So (&, &) > 0 since A is a basis
for E and anything orthogonal to a basis is zero by nondegeneracy of the form. Since & # 0,
it is not orthogonal to everything. By Lemma 9.4, either &, & are proportional (which was
excluded in the lemma), in which case they are equal since they’re both positive, or otherwise
a:=a&—a € ®is aroot. In the latter case,a >0 = a >d ora <0 = & < &, both
contradicting maximality.

|

Remark 27.1.4: If 8 =3 ca Mo € T, then my < kq for all a since 8 < a.

Lemma 27.1.5(B).
If @ is irreducible then W acts irreducibly on E (so there are no W-invariant subspaces). In
particular, the W-orbit of a root spans [E.

Proof (?).
Omitted.

Lemma 27.1.6(C).
If & is irreducible, then at most two root lengths occur, denoted long and short roots.

Proof (?).
Omitted.

Example 27.1.7(?): By has 4 long roots and 4 short roots, since they fit in a square:
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Long

Short

Similarly G has long and short roots, fitting into a star of David.

Lemma 27.1.8(D).
If @ is irreducible then the maximal root & is a long root.

Remark 27.1.9: There is also a unique maximal short root.

Proof (?).
Omitted.
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28 ‘ Friday, October 21

" 28.1 11.1: The Cartan Matrix ~

Definition 28.1.1 (Cartan matrix)
Fix A C & a rank ¢ root system with Weyl group W. Let A = {aq, -+ ,ay} and then the

(i, aj>
(), aj)
the ordering of A permutes the rows and columns of A, but beyond this, A does not depend
on the choice of A since they are permuted by W and W preserves the inner products and
thus the ratios defining the Cartan numbers A;j. More A € GL,(Z) since the inner product is

nondegenerate and A is a basis for E.

matrix A where A;; = (q;, a;) =2 is the Cartan matrix of A. Note that changing

Example 28.1.2(?): Note that the diagonals are always 2. Some classical types:

. A1XA1:[2 0‘|

) 0 _2
* Ao —21 _21=
e By: :_21 _22=
e (g -_23 _21_

Remark 28.1.3: The Cartan matrix A determines the root system ® up to isomorphism: if
@' C E' is another root system with base A" = {a/1, -+ ,a/s} with Aj; = Aj; for all i,j then
the bijection «; + o} extends to a bijection ¢ : E-5E’ sending ® to ® which is an isometry,
ie. (p(a), ¢(B)) = (o, B) for all a,f € ®. Since A, A’ are bases of E, this gives a vector space
isomorphism ¢(a;) == ao}. If a, f € A are simple, then

Sp(a) (P(B)) = 0(B) — (B, ' )p(e)

=¢(B) — (B, a)¢(a)
= Sp(ﬁ - <ﬁ) Oé>0£)
= (10(304(5))7

so this diagram commutes since these maps agree on the simple roots, which form a basis:

E—*% L F
E— S &

)
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Link to Diagram

Since W, W' are generated by reflections and s,() = ¢ 054 o™l for a € A, there is an isomorphism
W =W

Sq > S wsap Ya e A.

pla) =
If g € @, then f = w(a) for some a € A and w € W by theorem 10.3C. Thus ¢(f8) = (powo
0 H(p(a)) € @ since powo =t € W'. Thus p(®) = ®’. Using lemma 9.2, 5p(8) = spp L, S0 @
preserves all of the Cartan integers (3, ) for all v, 3 € ®.

Remark 28.1.4: Read the last paragraph of §11.1 which gives an algorithm for constructing ®*
from A and A.

28.2 11.2: Coxeter graphs and Dynkin
diagrams

Definition 28.2.1 (Coxeter graph)

If « # 8 € ® then (8, a){a, B) = 0,1,2,3 from the table several sections ago. Fix A =
{a1, -+ ,ag}, then the Coxeter graph I of ® is the graph with £ vertices 1, - - - , £ with vertices
i, j connected by (o, aj){aj, ;) edges.

Example 28.2.2(%): Recall that the table was

(a, B) (B, @)
0 0
-1 -1
-1 -2
-1 -3

Here « is the shorter root., although without loss of generality in the first two rows we can rescale
so that |||l = ||8]|. The graphs for some classical types:

A xA, o o

A, o—a0
B, a—
G, E——

Remark 28.2.3: If ® has roots all of the same length, the Coxeter graph determines the Cartan
integers since A;; = 0,1 for i # j. If i — j is a subgraph of I then (o, o) = (o, o) = —1, so
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a;, a;j have the same length. However, if there are roots of multiple lengths, taking the product to
determine the number of edges loses information about which root is longer.

Definition 28.2.4 (Dynkin diagram)
The Dynkin diagram of ® is the Coxeter graph I' where for each multiple edge, there is an
arrow pointing from the longer root to the shorter root.

Example 28.2.5(?): In rank 2:

B, o s J—
G, ===

We also have the following diagram for Fj:
|o——a—>—0 0 |

Remark 28.2.6: Note that ® is irreducible iff A can not be partitioned into two proper nonempty
orthogonal subsets iff the Coxeter graph is connected. In general, if I" has ¢ connected components,
let A =]];<;<;A; be the corresponding orthogonal partition of simple roots. Let E; = spang A;,
then E = ®1;i<t E; is an orthogonal direct sum decomposition into W-invariant subspaces, which
follows from the reflection formula. Writing ®; = (ZA;) N®, one has ® = [[,«;«, ®; since each root
is W-conjugate to a simple root and ZA; is W-invariant and each ®; C E; is itself a root system.
Thus it’s enough to classify irreducible root systems.

29 ‘ Monday, October 24

Remark 29.0.1: Classifying root systems: A C ® C E a base yields a decomposition

e E= @2:1 E;,

e &= @gzl @i,

« A = @!_,A;, where are orthogonal direct sums with respect to (—,—). Note that the
sub-bases A; biject with connected components of the Coxeter graph I' of A. We saw
(aj, ag)(oy, o) € {0,1,2,3} is the number of edges between nodes i and j in I', using
that the first term is 4cos?(f) € [0,3] N Z. Tt suffices to classify irreducible root systems,
corresponding to connected Coxeter graphs. Recall arrows point from long to short roots.
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Theorem 29.0.2(?).
If @ is an irreducible root system of rank £, then its Dynkin diagram is one of the following;:

e The four infinite families, corresponding to classical types:

A, (Z=1) o
1

B O
w0

B, ({=2: o0——0 "+ O0—a—>5—

Cd. (f:_* 3): o——0 **** Oo— z D

1 2 £=2 £=1 £
b - e @ J_l
D, (/> 4): o— o
1 2 £=3 -2
F g

o Exceptional classes

Iz
Eg: o o o o o
1 3 4 5 6
Iz
E, 0 e 0 o o 0
1 3 4 5 6 7
2
Eg: O- 0
1 3 4 5 6 7 8
Fa o—a——->—0—0
1 2 3 4
G, ===
1 2
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I Types ADE are called simply laced since they have no multiple edges.

Remark 29.0.3: Idea: classify possible connected Coxeter graphs, ignoring relative root lengths.

If «, B are simple roots, note that for any c,

2(ca, B) 2(5, ca)
(8,8) (ca,ca)

80 o +— ca leaves this number invariant and we can assume all simple roots are unit vectors.

(o, BY(B, o) = €{0,1,2,3},

Definition 29.0.4 (7)
Let E be a finite dimensional Euclidean space, then a subset A = {e1,--- ,&,} C E of linearly
independent unit vectors satisfying

° (ei,€j) < 0 for all i,j,
o 4(gi,e5)? = 4cos?(0) € {0,1,2,3} for all i # j where 6 is the angle between ¢; and ¢;

is called admissible.

Example 29.0.5(%): Any base for a root system where each vector is normalized is admissible.

Remark 29.0.6: To such an A we associate a graph I' as before with vertices 1,--- ,n where 1, j
are joined by 4(g;,£;)? edges. We'll determine all connected graphs I' that can occur, since these
include all connected Coxeter graphs.

" 29.1 Proof of classification ~

Proof (Sketch).
An easy 10 steps:

1. If some ¢g; are discarded, the remaining ones still form an admissible set in E whose graph
is obtained from I' by omitting the corresponding discarded vertices.

2. The number of pairs of vertices in I connected by at least one edge is strictly less than
n.

Proof: Set ¢ := Y7, &;, which is nonzero by linear independence. Then 0 < (e,&) = n +
> i<j 2(¢iy€5), and if i < j are joined, so (gi,€;) # 0, then 4(g,e4)2 = 1,2,3 and so 2(g;,g5) <
—1. However, since the sum is positive, there are < n — 1 such pairs.

3. T contains no cycles.

Proof: A cycle is subgraph that corresponds to an admissible subset A’ C A with m vertices
and m edges corresponding to m connected pairs. This contradicts (2).

4. No more than 3 edges can be incident to any vertex of I'.

29.1 Proof of classification 84

P



Monday, October 24

Let € € A be a vertex, and suppose 71, - - - , 7 are the vertices connected to &:

72

1k

By (3), no two n;,n; are connected, so (n;,n;) = 0 for all i,j. Apply Gram-Schmidt to
{n,--+ ,nk,e} only involves modifying e since {7y, - ,nx} are already orthonormal. Call the
new vector ng and let {ng,--- ,nr} be the resulting orthonormal set. One can then write € =
Sk (e, m:)mi, which implies (g,70) # 0 by linear independence. Then 1 = (e,¢) = 3% (g, m)?,
but (g,70)2 > 050 3% ,(¢,7:)? < 1 and thus 3%, 4(e,m;)? < 4. But this sum is the number
of edges incident to € in I'.

5. The only connected graph which contains a triple edge is the Coxeter graph of Go by
(4), since the triple edge forces each vertex to already have 3 incident edges.

6. Let {e1,---,ex} € A have a simple chain - — - — .-+ — - as a subgraph. If A’ ==
{A\ {e1, - ,ex}} U {e} where ¢ := 3% | &, then A’ is admissible. The corresponding
graph I" is obtained by shrinking the chain to a point, where any edge that was incident
to any vertex in the chain is now incident to ¢, with the same multiplicity.

Proof: number the vertices in the chain 1,--- ,k. Linear independence of A’ is clear. Note
e ei1)? =1 = 2e,8401) = (6,6) = k+2X,i(e,85) = k+ (-1)(k—-1) = 1.
Any n € A\ {e1,--- ,exr} is connected to at most one of €1, - - , & since this would otherwise

form a cycle, so (n,e) = (n,&;) for a single i. So 4(n,¢)?> = 4(n,&)* € {0,1,2,3} and
(n,€) = (n,&;) <0, which verifies all of the admissibility criteria.

7. T contains no graphs of the following forms:
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e — o —- e — ©
»
P ——— _ //
-3 ° : e \\
9
’ ‘ -
N
N | 4
® — — e
/
Py
o \C

Proof: collapsing the chain in the middle produces a vertex with 4 incident edges.

|
3 O ‘ Wednesday, October 26
Missed first 15m/!
[ Proposition 30.0.1(Step 8).
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Proposition 30.0.2(Step 9).
The only connected I' graphs of the second type in Step 8 are either Fy or By = Cy.
Compute

p—1

k
(g,¢) :Zz’z—Zi(i—i—l)

i=1
p—1
i=1
_ 5 plp—1)
_plp+1)
2 9
.. 1 2 2
and similarly (n,n) = @. Note 4(gp, 79)* = 2, s0 (g,1)? = p?¢*(gp, 1g)* = L5, By Cauchy-
Schwarz, (,1)? < (g,€)(n,7n), where the inequality is strict since 7, are linearly independent.
Then check

2 2 2
pl_p+l g+l
2 2 2
2pg <pg+p+q+1,

P - p(p+1) qlg+1)

and so combining these yields pg — p — ¢ + 1 < 2 and thus
p—-1(—-1) <2
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Since p > g > 1, this yields two possible cases:

Proposition 30.0.3 (Step 10).

The only connected T' of type (d) are Dy, Eg, E7, Es.

Set € := > ig;, n == 1in;, and { = > i(;. Note that €,7n,( mutually orthogonal by inspecting
the graph, and v is not in their span. Let 61 (resp. 62,03) be the angles between € (resp. 7, ()
and 1. Since ¢, 7, ( are linearly independent, the idea is to apply Gram-Schmidt to {e,n,(, ¥}
without normalizing. The first 3 are already orthogonal, so we get a new orthogonal basis
{11 = e, = n,13 := (,p} where (¢g,1) # 0. We can expand ¢ in this basis to write

. . N2
Y =33, (1[1, H%II) II%II Note that (1,4) = 1, and consequently $°2_, (1/), ﬂ%ll) <1l =
3 cos?(6;) < 1. So

cos?(61) + cos?(62) 4 cos?(63) < 1.

As in Step (9), (g,¢) = p(p72—1) and similarly for 7, , and so

cos! (61) = (&,9)° (= 1D*(ep-1,9)°
(:€)(¥, ) ple-l)

_p—11/4

o 12

303)
2 D

where we’ve used that 4(e,—1,) = 1. Similarly (and summarizing),

cos?(hy) = % (1 - ]1))
cos?(hy) = % (1 - 2)
cos?(63) = % (1 - i)

1 1 1 1
= (1—+1—+1—><1
2 P q T

— pfl —i—q*l +r7 > 1.

and sincep>qg>r>2 = p ! <q¢ ! <r ! <271 we have % > 1 by replacing p, ¢ with r
above. So r < 3, forcing r = 2, and there is only one “top leg” in the graph for (d) above.
We also have

(%)-

SRR
v
K=
S
N | =

so q < 4 forces ¢ = 2, 3.
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o If ¢ = 2, then (x) is true for any p > 2, and the bottom leg has two vertices and this
yields type Dy.
e If g =3 then % > % —% = é implies p < 6, forcing p = 3,4, 5 corresponding to Fg, F'7, Eg.

Remark 30.0.4: Note that the diagrams we’ve constructed are the only possible Coxeter graphs
of a root system, since normalizing any set of simple roots yields an admissible set. This proves one
direction of a correspondence, but what are all possible Dynkin diagrams? Note that types By, Cy
have the same underlying Coxeter graph, and only differ by directions on the multi-edges.

Question 30.0.5
Does every connected Dynkin diagram correspond to an irreducible root system.

Yes: types A, B,C,D can be constructed from root systems in classical Lie algebras, and the
corresponding Dynkin diagrams can be constructed directly. The 5 exceptional types must be
constructed directly.

Question 30.0.6
Does each irreducible root system occur as the root system of some semisimple Lie algebra over C?

The answer is of course: yes!

Next time: starting Ch. V.

Part V: Existence Theorem. Ch. 17: The
31 Universal Enveloping Algebra (Monday,
October 31)

31.1 17.1: The tensor algebra and
symmetric algebra

Remark 31.1.1: Let F be an arbitrary field, not necessarily characteristic zero, and let L € LieAlg g
be an arbitrary Lie algebra, not necessarily finite-dimensional. Recall that the tensor algebra T'(V')
is the Z>o graded unital algebra where gr,, T(V) = T"(V) := V¥ where T°(V) := F. Note
T(V) = @z T"(V). T V has a basis {2k} e then T(V) = F (a
in the noncommuting variables x;. Degree n monomials in this correspond to pure tensors with n
components in T'(V).

ke K >, a polynomial ring
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There is an F-linear map V' AN T(V), and T(V) satisfies a universal property: given any linear
map ¢ € gMod(V, A) where A has the structure of an associative algebra, there exists a unique
¥ € AssocAlg g (T(V'), A) making the diagram commute:

V —— 5 T(V)
A

Link to Diagram

In fact, one can explicitly write ¢ as (g, @ -~ zg,,) = @(zk) - - - (T, ) using the multiplication in
A.

The symmetric algebra and exterior algebra are defined as

S(V) ::T(V)/<x®y—y®x ’ x,y€V>,/\.(V) ::T(V)/<:c®y+y®x ‘ x,er>.

Definition 31.1.2 (The Universal Enveloping Algebra)

Let L € LieAlg p with basis {#1},cx- A universal enveloping algebra for L is a pair (U, 1)
where U is a unital associative F-algebra and i : L — Uy, (where Uy, is U equipped with the
commutator bracket multiplication) is a morphism of Lie algebras, i.e.

iley]) = i(2)i(y) — i(y)i(z) = [i(2)i(y)] Va,y e L.

It satisfies a universal property: for any unital associative algebra A receiving a Lie algebra
morphism j : L. — Ap, there is a unique ¢ in the following:

LieAlg AssocAlg

B 4ommeees
£

Link to Diagram

Remark 31.1.3: Uniqueness follows from the usual proof for universal objects. Existence: let

U(L):=T(L)/J, J::<x®y—y®x—[my]‘x,yeL>.
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Warning: J is a two-sided ideal, but is not homogeneous!

One can form the required map:

L)
L)

T
e
\U(
(L,4)

jeLieAlg(L, :
13

A

Link to Diagram

This satisfies Y(x @ y —y @z — [zy]) = j(x)j(y) — j(y)j(x) — j([zry]) = O using the properties of j.
¢ is unique because U(L) is generated by 1 and imi, since T'(L) is generated by 1 and the image
of L =TY(L).

Remark 31.1.4: If L is abelian, U(L) = S(L) is the symmetric algebra.

Note that J C @,,>, T"(L) so F = T°(L) maps isomorphically into U(L) under . So F — U(L),
meaning U(L) # 0, although we don’t yet know if L injects into U(L).

Theorem 31.1.5 (Poincaré-Birkhoff- Witt (PBW) Theorem).
Let L be a Lie algebra with basis {z;},cx, and filter T(L) by T, := @<, T*(L). Then Ty,
is the span of words of length at most m in the basis elements xy. Note T}, - T, C Tin,
and the projection 7 : T(L) — U(L) induces an increasing filtration Uy C U; C --- of U(L).
Let G™ := U,,/Up,—1 be the mth graded piece. The product on U(L) induces a well-defined
product G™ x G™ — G™*" since Uy, 1 X Up—1 C Upan—2 € Upin_1. Extending this bilinearly
to @,,>0 G™ to form the associated graded algebra of U(L).

Note that this construction generally works for any

filtered algebra where the multiplication is compat-
ible with the filtration.

Example 31.1.6(?): Let L = sl3(C) with ordered basis {z,h,y}. Then y@ h®@ z € T3(L) —
denote the image of this monomial in U(L) by yhx € Us. We can reorder this:

yhx = hyx + [yh]z = hyx + 2yx e Us + Uy

)
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I Wednesday, November 02

so in G2 we have yhx = hyz. This is a general feature: reordering introduces error terms of lower
degree, which are quotiented out. Continuing,

hyx + 2yx = hxy + hlyx] + 2xy + 2[yx]
= hay — h* 4 2zy — 2h
= xhy + [haly — h* + 2zy — 2h
= zhy + 22y — h% + 2zy — 2h
::Uhy+41:y—h2—2h e Us+ Uy + Uz + Us.

32 ‘ Wednesday, November 02

Remark 32.0.1: Clarification from last time: for L € LiepAlg over F an arbitrary field:

> J = <x®y—y®x—[my] ‘ :):,yeL:Tl(L)>

Link to Diagram

Then i is a Lie algebra morphism since i([zy]) = i(x)i(y) — i(x)i(y) = [i(x)i(y)]. We know
O=mz@y—y®z—|zy])
= m(io(2)io(y) — io(y)io(x) — io([zy]))
= i(x)i(y) —i(y)i(z) — i([zy)).

Remark 32.0.2: Recall that we filtered 0 C U; C --- C U(L) and defined the associated graded
G" =Upn/Upn—1 and G(L) = @,,>o G™, and we saw by example that yhz = hyz = xhy in G3(slp).
There is a projection map 7" (L) — U(L) whose image is contained in Uy,, so there is a composite
map

T™(L) = Uy = Up/Up-1=G™.
Since T'(L) = @,,507™ (L), these can be combined into an algebra morphism 7'(L) — G(L).
It’s not hard to check that this factors through S(L) = T'(L)/ <:1c QY-—yQx ‘ x,y € L> since

r®y=y®x+ [zry] and the [zy] term is in lower degree. So this induces w : S(L) — G(L), and
the PBW theorem states that this is an isomorphism of graded algebras.
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Corollary 32.0.3(C).
Let {x1},cx be an ordered basis for L, then the collection of monomials zy, - - - x,, for m >0
where k1 < ---ky, is a basis for U(L).

Proof (?).
The collection of such monomials of length exactly n forms a basis for S™ (L), and via w, a
basis for G™(L). In particular these monomials form a linearly independent in Uy, /Up,—1, since
taking quotients can only increase linear dependencies, and hence these are linearly independent
in U,, and U(L). By induction on m, U,,_1 has a basis consisting of all monomials of length
< m — 1. We can then get a basis of U,, by adjoining to this basis of U,,_1 any preimages in
U, of basis elements for the quotient U, /Up,—1. So a basis for Uy, is all ordered monomials
of length < m. Since U(L) = Up,>oUn,, taking the union of bases over all m yields the result.
|

Corollary 32.0.4(B).
The canonical map ¢ : L — U(L) is injective.
This follows from taking m = 1 in the previous corollary.

Corollary 32.0.5(D).

Let H < L be a Lie subalgebra and extend an ordered basis for H, say {hi, he,---}, and
extend it to an ordered basis {h1, ha, -+, 21,22, --}. Then the injection H — L induces an
injective morphism U(H) < U(L). Moreover, U(L) € ¢ H)Modf’ree with a basis of monomials
Tky Thy * ** Tk, for m > 0.

This follows directly from corollary C.

Remark 32.0.6: We'll skip 17.4, which proves the PBW theorem. The hard part: linear indepen-
dence, which is done by constructing a representation of U(L) in another algebra. e

o 32.1 17.5: Free Lie algebras ~

Definition 32.1.1 (Free Lie algebras)
Let L € LiepAlg which is generated as a Lie algebras (so allowing commutators) by a subset
X C L.* We say L is free on X and write L = L(X) if for any set map ¢ : X — M with
M € LiepAlg there exists an extension:
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LiepAlg

Set X —— L
©

Link to Diagram

“Note that sly has a basis {z, h,y} but is freely generated by z,y since h = [zy].

Remark 32.1.2: Existence:

e Let V=V (X) be the free rMod on X.
o Let L(X) < T(V)1* be the Lie subalgebra generated by X (or equivalently by V'), which has
elements like

r,y,2€X, zzy-y®r, 2@y-yer)-(@y-—yez)z, .

o Check that L(X) is free on X by letting ¢ : X — M for M a Lie algebra, then by the universal
property of V(X) we get a unique linear map ¢ : V(X) — M extending ¢:

Link to Diagram
One checks that ¢ restricts to a Lie algebra morphisms ¢ : L(X) — U(M) whose image is the

Lie subalgebra of U(M) generated by M — but this subalgebra is precisely M, since e.g. U(M) >
r®y—y®x=[ry] € M. Thus we can view ¢ as a map ¢ : L(X) — M.

Remark 32.1.3: One can check that U(L(X)) = T(V(X)).

Wy is W made into a Lie algebra via [zy] = zy — yz.
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33 §18: Generators and Relations for Simple
Lie Algebras (Friday, November 04)

Remark 33.0.1: Recall that the free Lie algebra of a set X, L(X) satisfies a universal property:

X —*t LX)

i
|

.
Y e

v
M
Link to Diagram 4

— 33.1 §18.1: Relations satisfied by L ~

Definition 33.1.1 (Relations)

Given an arbitrary L € Lie-Alg and fix a set X of generators for L and form LX(), then there
is a Lie algebra morphism 7 : L(X) — L which is surjective since X generates L. Defining
R :=kerm, one has L = L(X)/R, so R is called the ideal of relations.

Remark 33.1.2: Let L € Lie-AIgg’SS, let H C L be a maximal toral subalgebra, and ® its root

system. Fix a base A = {ai, - ,ap} C ®. Recall
2(%’,%’) 20
) = ————= = aj(hi), i = ho, = :
<Oé], a> (047;7042') aj( ) g i (Oli,ai)

The root strings are of the form 8 —ra, -+, 8,---, 8 + qoo where r — ¢ = B(hy,). For any ¢ we can
fix a standard sly triple {x;, h;, y;} such that x; € La,,yi € L_q,, hi € [ziyi]. Vs

Proposition 33.1.3(Serre relations).

L is generated as a Lie algebra by the 3¢ generators X = {xi, hi, Y

1< < E} subject to at
least the following relations:

e SI: [hlh]] = 0,

¢ S2: [xiyj] = 5ijhi7

o S3: [hiz;] = (aj, a;)z; and [hiy;] = —(a;, a;)y;.
o Sfady " T ay) = 0 for i #

o S;: adyim” O”Hl(xj) =0fori#j

)
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Proof (?).

Recall that differences of simple roots are never roots, since the coefficients have mixed signs.
Since a; — oj & @, we have [z;y,] = 0 for i # j since it would have to be in Lo—a;- Consider
the «; root string through a;: we have r = 0 from above, and the string is

a,a+ 0y, 05 — (@, )y

since Lg = 0 for = oj — ((tj, o) + 1) ;. The relations for Sij][- follow similarly.
|

Remark 33.1.4: Note that these relations are all described in a way that only involves the Cartan
matrix of ®, noting that changing bases only permutes its rows and columns.

Theorem 33.1.5(Serre).

These five relations form a complete set of defining relations for L, i.e. L = L(X)/R where
R is the ideal generated by the Serre relations above. Moreover, given a root system ® and
a Cartan matrix, one can define a Lie algebra using these generators and relations that is
finite-dimensional, simple, and has root system ®.

33.2 §18.2: Consequences of Serre relations
S1, S2, S3

Remark 33.2.1: Fix an irreducible root system ® of rank ¢ with Cartan matrix A. Let L := L(X)
where X = {5@,?%,@- 1<i< E}. Let K < L be the 2-sided ideal generated by the relations
S1, S2, S3. Let Lo = E/f(\ and write 7 for the quotient map L — Lo — note that Lo is infinite-

dimensional, although it’s not yet clear that Lo # 0. We’ll study Lg by defining a representation of
it, which is essentially the adjoint representation of Ly acting on {y;}.

Remark 33.2.2: Recall that a representation of M € Lie-Alg is a morphism ¢ € Lie-Alg(M, gl(V))
for V € pMod. This yields a diagram

AssocAlg
M——— U(M)
o iﬂ!tp
End(V)

Link to diagram
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Conversely given an algebra morphism ¢ : U(M) — End(V), and restricting ¢ to M C U(M)
gives a Lie algebra morphism ¢ : M — End(V') = gl(V'). This representations of M (using gl(V))
correspond to associative algebra representations of U (M) (using End(V)). Since U(M) = T(V (X)),
using the various universal properties, having a representation V' of L is equivalent to having a set

map X — End(V), i.e. elements of X should act linearly on V.

Remark 33.2.3: Let V be the tensor algebra on a vector space with basis {v1,- -, vg}, thinking of
each v; being associated to y;. Write vive - v = 1] @ Ua ® - - - ® v, and define elements of End (V)
by

e hj-1:=0
j )
° hj'vh' Uiy ::*(<O‘i17 aj>+"'<aita aj>)vi1"'vita
o Yj vy v, =00 - v, for t >0,
. 53\]'-11:0,

-v; == 0 for all 4,
" U4y Uy = Uiy (i‘\jvlé o 'Uit) - 6i17j (<ai2’ aj> +oeeet <ai27 O‘j))”b ©rr Uy for t > 2.

L]
&

34 ‘ Monday, November 07

Remark 34.0.1: Last time: constructing a semisimple Lie algebra that has a given root system.

Setup:

e A={ar,- )

o L the free Lie algebra on {:’v\i,ﬁi, gji}1<‘<l.
_Z_

e K the ideal generated by the Serre relations.

o Ly:= Z/f{\ with quotient map 7.

e »:L — gl(V) a representation we constructed.
« H the free Lie algebra on {h;}.

Theorem 34.0.2(?).
K C ker ¢, so @ induces a representation ¢ of Ly on gl(V)

L ‘ gl(V)

Link to Diagram
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Proof (?).
Straightforward but tedious checking of all relations, e.g.

B(hs) 0 (&) — (@;)B(hs) = (e, )B(E;).

Theorem 34.0.3(?).
In Ly, the h; form a basis for an ¢-dimensional abelian subalgebra H of Ly, and moreover
Lo=Y @& H & X where Y, X are the subalgebras generated by the x; and y; respectively.

Proof (?). R
Steps 1 and 2: ::{.claim} n(H) = H is (-dimensional.
|

Clearly the R span an (-dimensional subspace of L so we need to show that 7 restricts to an
isomorphism 7 : H = H. Suppose h = Zg 1 c]h € ker, so go(h) = 0. Thus

v; = chhj S = ch Q;, aj Zawcj Vi,
J

so Ac = 0 where A is the Cartan matrix, and so ¢ = 0 since A is invertible (since it was essentially
a Gram matrix).

Step 3: Now Y. Fz; + > Fh; + 3. Fy; = Lo maps isomorphically to Lo, and S2, S3 show that for
each i. Then Fx; + Fh; + Fy; is a homomorphic image of slo, which is simple if ch F # 2. Note
7(hi) = hi # 0 in Lo by (1), so this subspace of L is isomorphic to sly(F). In particular {z;, ki, y;
is linearly independent in Lg for each fixed i. Supposing 0 = Z?zl(ajwj + bjh; + cjy;), applying
adr, », for each i to obtain

V4 V4
Z a;j{aj, a)z; +b;0 — cj{aj, a;)y;)) Z aj, a;)(ajz; — xTyy;),
j=1 Jj=1

and by invertibility of A we have a;x; —cjy; = 0 for each j. So aj = ¢; = 0 for all j, and > bjh; =0
implies b; = 0 for all j from (1).

Step 4: H = Z§:1 Fh; is an /-dimensional abelian subalgebra of Ly by (1) and SI.

Step 5: Write [z;, -+ x4,] == [%i[®iy] - [%i,_,2i,]---]] € X for an iterated bracket, taken by
convention to be bracketing from the right. We have

adro,n; ([wi - wi]) = (g, ag) + -+ (i, ag) [y 2] 21,
and similarly for [y;, - - - y;,].

Step 6: For t > 2, [y;[x;, - - - x;,]] € X, and similarly with the roles of x;, y; reversed. This follows
from the fact that adg,,,; acts by derivations, and using 52 and S3.
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Step 7: It follows from steps 4 through 6 that Y + H + X is a subalgebra of L. One shows that
[[xiy -~ ®i,], [Yiy - - - ¥4, )], which comes down to the Jacobi identity and induction on s +t. E.g.

[[z122], [ysyal] = [w1[22lysyal]] — [za[z1[ysya]] € [21, Fys + Fya] +--- € H+ -,

which lands in H since there are as many x; as y;, whereas if there are more x; than y; this lands
in X, and so on. Since Y + H + X is a subalgebra that contains the generators x;, h;,y; of Lo, it
must be equal to Lg.

Step 8: The decomposition Ly = X + H + Y is a direct sum decomposition of L into submodule
for the adjoint action of H. Use the computation in the previous step to see that every element of
X is a linear combination of elements [x;, - - - z;,] and similarly for Y. These are eigenvectors for the
action of adg ~ Loy by (5), and eigenfunctions for X have the form A = Z 1 Cioy with ¢; € Z>p.
The ); is referred to as a weight, and ¢; is the number of times ¢ appears is an index in 41, - - - , 4.
So every weight space X, is finite-dimensional, and the weights of Y are —\. Since the We1ghts in
X, H,Y are all different, their intersections must be trivial and the sum is direct. ::

Remark 34.0.4: Lo =Y @ H P X is known as the triangular decomposition, where the x; are
on the super diagonal and bracket to upper-triangular elements, and the y; are their transposes. A

35 ‘ Wednesday, November 09

Remark 35.0.1: Progress so far: we start with the data of an irreducible root system ® O A =

1<z’<£>

(ST, S2, S3) =
Y®H®X. Letting h € H act by ady,, we get weight spaces (Lg)y = {v € Ly ‘ [hv] = A(h)vVh € H}

Ti,Yi,h
{ou,- -+, ay} and Cartan matrix A = ((o4, «a;)) and Weyl group W. Weset Lg :=

" 35.1 § 18.3: Serre’s Theorem ~

Remark 35.1.1: For i # j, set

yij = (ady,) (9 @ (y,),

and similarly for x;;. Recall o;(h;) == (i, o). e

Lemma 35.1.2(4).

adwk (yij) =0 Vi 75 j,Vk.
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Proof (?).
Case 1: k #i.
In this case, [zxy;] = 0 and thus

(ady, ) (ady,) @ 990+ (y;) = (ady,) 7“0 (ady, ) (y;).

e Casei, k # j: then (admk)(yﬂ =0.
o Case ii, k = j: then (ady,)(y;) = h; and (ady,)(h;) = (i, a;)y;.

— Case a, (aj, o) # 0, then
(ady,) 4 0 (ady, ) (gy) = (au, ag)(ady,) ™% @ (y;) = 0.

— Case b, {aj, o;) = 0, then (o, a;) = 0. In this case we have (ady,)(h;) =
(i, aj)y; = 0.

Case 2: k =1.

In this case, we saw that for any fixed i, {z;, h;,y;} spans a standard sly triple in L, so
consider the sly-submodule of Yy < Lo generated by ;. Since i # j, we know [z;y;] = 0, so y;
is a maximal vector for Y; with weight m = —(a;, o).

One can show by induction on t that the following formula holds:

(ads,)(ady, ) (yy) = tm — ¢+ 1)(ady )M (y;) > 1.

So in particular (ady,)(ady,)™ " (y;) = 0, and the LHS is ;.

Definition 35.1.3 (Locally nilpotent and the exponential)
An endomorphism x € End(V) is locally nilpotent if for all v € V there exists some n
depending on v such that 2™ - v = 0. If x is locally nilpotent, then define the exponential as

1 1
exp(z) = ngk:1+x+§x2+~~ € End(V),
k>0 "

which is in fact an automorphism of V' since its inverse is exp(—x).

Lemma 35.1.4(B).
Suppose ad,,,ad,, are locally nilpotent on Ly and define

7; = exp(ady, ) o exp(ad_y,) o exp(ady, ).

Then 7;((Lo)x) = (Lo)s;(x) Where s; i= sq, € W for a; € ®. Here A € HY = C{ay,- -, ap)
since H = C(hy,--- , hy), using that A is invertible. We use the formula sq, (o) = o —
(aj, a;)ay and extending linearly to HY as done previously.
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Proof (?).
Omitted. See §14.3 and §2.3 for a very similar calculation.

Theorem 35.1.5(Serre).

The Lie algebra L generated by the 3¢ elements {x;, hi, y; },<;<, subject to relations S1-S3 and
the remaining two relations S% (which hold in any finite dimensional semisimple Lie algebra)
is a finite dimensional semisimple Lie algebra with maximal torus spanned by {h;},.,-, and
with corresponding root system . -

" 35.2 Proof of Serre’s Theorem ~

Proof (?).
By definition, L = Lo/K where K < L is generated by the elements z;;,y;; where i # j.
Recall that X, Y < Lj are the subalgebras generated by the x; and y; respectively, so let I
(resp. J) be the ideal in X (resp. Y') generated by the z;; (resp. y;;) for i # j. Clearly
I,JCK.

Claim Step 1:
I,J < Lg.

Proof (of Step 1).
We'll prove this for J, and [ is similar. Note J <Y and write J = <yij ’ 1 #£ j>. Fix

1 < k < 4, then (ady,)(y;;) € J by definition. Recall y;; = (ady,) (¥ @)1 (y,;). Note
(adn,, ) (yij) = cijryi; for some constant c;j;, € Z, and (ady, )(yi;) = 0 by lemma A above.
Since xy, hy, Y, generate Lo, we have [Lg,y;;] C J. Using the Jacobi identity and that
ad, is a Lie algebra derivation for z € Ly, it follows that [Lg, J] C J.

This essentially follows from [he,Y] C Y and
[2¢,Y] € H+Y, and bracketing these against
yij lands in J.

Claim Step 2:
K=1+J.

Proof (of Step 2).
We have I + J C K, but I 4+ J < Ly by claim 1 and it contains the generators of K —
since K is the smallest such ideal, K C I + J.

[ |

Observation (Step 3)
We have a decomposition Lo =Y @& H & X as modules under adg, and K = J®&0® I. Taking
the quotient yields L .= Lo/K =Y/J®& H&® X/I =N~ @& H® N,
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Observation (Step 4)

As in the proof last time, {x;, h;,y;} C L spans a copy of sly. We deduce that > .,«, Fz; +
Fh; + Fy; C Ly maps isomorphically into L, so we can identify x;, h;, y; with their images in
L, which are still linearly independent and still generate L as a Lie algebra.

Observation (Step 5)
For A€ HY, set Ly = {2 €L ‘ [h2] = A(h)2Vh € H} and write A > 0 <= X € ZxpA and

similarly define A\ < 0. View «; € H", extended linearly as before. Note H = Lo, NT =
E/\>O Ly,N~ = Z/\<0 Ly, and thus

L=N"@®H®NT,

which is a direct sum since the eigenvalues in different parts are distinct.

36 Serre’s Theorem, Continued (Friday,
November 11)

Proof (of Serre’s theorem, continued).
Recall that we have

L=N"®H®ON" =Y/{(S;)®Ch, - ,he) ® X/ ((S}))-

Remark 36.0.1(Step 6): For 1 < i < ¢, note ady, 5, (and similarly ady,,,) is locally nilpotent
on L. Let M C L be the subspace of elements on which ad,, acts nilpotently. By the Leibniz
rule, (ady,)” "™ ([uv]) when (ady,)™(v) = 0 and (ad,,)"(u) = 0, so M < L is a Lie subalgebra.
By the Serre relations, (ady,)?(h;) = 0 and (ad,)?(y;) = 0, so the generators of L are in M
and thus L = M.

Remark 36.0.2(Step 7): Defining 7; := exp(ady,) o exp(ad_y,) o exp(ad,,) € Aut(L), by
lemma (B) we have 7;(Ly) = Ls,» where s; :== s,, and A € H".

Remark 36.0.3(Step 8): Let \,u € HY and suppose w\ = p; we want to show dim Ly =
dim L,. Note W is generated by simple reflections s;, so it STS this when w = s;, whence it
follows from lemma (B).

Remark 36.0.4(Step 9): Clearly dim(Lg)a, = 1 since it’s spanned by x;. Then dim(Lo)ga, =
0 for k # 0,=£1, so dim Ly, < 1 and dim Li, = 0 for k£ # 0, 1. Since x; € L,, has a nonzero
image in L, dim L, = 1.

Remark 36.0.5(Step 10): If § € ®, conjugate it to a simple root using f = wa; with
we W,a; € A. By step 8, dim Lg = 1 and Lyg = 0 for k # 0, £1.

Remark 36.0.6 (Step 11): Suppose Ly # 0 where A # 0. Then A € Z>¢A or Z<pA, i.e. all
coefficients are the same sign. Suppose A € ®, then \ € Z® by (10). Exercise 10.10 yields
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Jw € W such that wAZA with both positive and negative coefficients. Thus wA can not be a
weight, and by step 8, 0 = dim L,y = dim L.
Remark 36.0.7(Step 12): Writing L = N~ ® H ® N* with H = Lo, NT = Y ,. oL\ =

> pgea+ Laand N™ =375 Lx = > gcap- L, by step 10 we can conclude dim L = £ + fip < oc.

This shows that H is toral, i.e. its elements are ad-semisimple.

Remark 36.0.8(Step 13): We have that L is a finite-dimensional Lie algebra. To show
semisimplicity, we need to now L has no nonzero solvable ideals, and as before it’s ETS L

has no nonzero abelian ideals. Suppose A C L is an abelian ideal; we WTS A = 0. Since
[H,A] C A and H ~ L diagonally, H ~ A diagonally as well and thus

A=(AnH)® P(ANLy).
acd

If ANnL, # 0 then AN L, = L,, which is 1-dimensional.
Note: the argument in Humphreys here may not be
quite right, so we have to do something different.
Now Jw € W such that wa = o; € A asin step 8, so writew = s;, -+ 8;,. Then 7, -+ 73, (La) =
L,. Set A" .= 7(A), then A" < L is necessarily an abelian ideal and A’ N L, = Lq,.
So we can replace a by a simple root and replace A by A’. Then z; € Lo, C A’ < L, but
A" 3 —[y;, ;] = hy, but [h;, z;] # 0, contradicting that A’ is abelian. £.
Note [A’, Lo;] € A" € H and [A', La,] € La;, but H ~ Ly, with eigenvalues a; and thus
A C ﬁ§:1 ker a; = 0 since the « span HY. So A’ =0 and L is semisimple.
Remark 36.0.9(Step 14): Since L = H ® @ cp La, it’s easy to check that Cr(H) = H by

considering what happens when bracketing against any nonzero element in @ L. Thus H is
a maximal toral subalgebra with corresponding root system &.

Remark 36.0.10: Next: part VI on representation theory, although we’ll first cover §13 on weights,
especially §13.1,§13.2. Goal: Weyl’s character formula.

37 Part 5: Representation Theory (Monday,
November 14)

— 37.1 §13 Abstract theory of integral weights ~

Definition 37.1.1 (Integral weights and the root lattice)

Let E D ® O A with Weyl group W. An element A € E is an integral weight if (\, §) =
(\,BY) € Z for all 8 € ®, where ¥ = (527’%). We write the set of all weights as A, and write
A, = Z® for the root lattice.
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Remark 37.1.2: Recall AV = {av ‘ a € A} is a base for ®V = {5\/ ‘ B e @}, and so

AeEA <= (\aY)=(\ a) € ZVa € A.

Definition 37.1.3 (Dominant weights)

A weight A € A is dominant iff (\, o) > 0 for all & € A, and we denote the set of all such
dominant weights A™. The weight ) is strongly dominant if (\, «) > 0 for all « € A. Writing
A ={o, -, 04}, let {\i};<,<, be the dual basis for E relative to (—, —), so (A, a;) = d;;.
The ); are referred to as the fundamental dominant weights, written \; = w; = w;.

Remark 37.1.4: If A € A then one can write A = Ele m;\; where m; = (A, a;), so A is a
Z-lattice with lattice basis {\;};,~, containing the root lattice as a sublattice, so in fact A, = ZA.
Writing the Cartan matrix as A = ((ay, «a;)) we have o; = Z§:1 (o, aj)Aj coming from the ith
row of A. So this matrix expresses how to write simple roots in terms of fundamental dominant
roots, and inverting it allows writing the fundamental roots in terms of simple roots.

Fact 37.1.5
The entires of A~! are all nonnegative rational numbers, so each fundamental dominant root is a
nonnegative rational linear combination of simple roots.

2 -1 0
Example 37.1.6(%): For A3 one has A= |—-1 2 —1],so
0o -1 2
o] = 2)\1 — )\2

ag = —A1 +2X2 — A3
a3 = —Ag + 2)3.

Definition 37.1.7 (Fundamental group)
The quotient A/A, is called the fundamental group of ®, and the index f = [A : A,] is
called its index of connection.

Remark 37.1.8: The index is generally small:

e Ajhas f=/¢+1

e f =1 1is obtained from Fy, Gs, Eg,

e f =2 is obtained from types B, C, Er,
o [=3: Egs,

e f=4: type D.
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— 37.2 §13.2 Dominant weights ~

Remark 37.2.1: Note that
Si)\j = )\j — <)\j, Oéi>Oéi = )\j — 51']'(11‘,

so A is invariant under W. In fact, any sublattice of A containing A, is W-invariant.

Lemma 37.2.2(A).
Fach integral weight is W-conjugate to exactly one dominant weight. If A is dominant, then
wA < A for all w € W, and if A is strongly dominant then wA = A <— w = 1.

Proof (Sketch).
Most of this follows from Theorem 10.3, exercise 10.14, lemma 10.3B, and corollary 10.2C,
along with induction on ¢(w). We’ll omit the details.

|

Remark 37.2.3: The ordering < on A is not well-behaved with respect to dominant weights,
i.e. one can have pA with p € AT dominant but A € A* not dominant.

Example 37.2.4(%): Let ® be indecomposable of type A; with two roots a, 3, then 0 € AT is
dominant, but 0 < « € A is not dominant: («,3) <0 = («a, 8) <O0.

Lemma 37.2.5(?).
Let A € AT be dominant, then the number of dominant u € A™ with u < X is finite.

Proof (?).
Let A\, € AT and write A — p as a nonnegative integer linear combination of simple roots.
Note

0< At A=p) =N = (1) = |AI° = llull?,

so p lies in the compact set of vectors whose length is ||A|| and also in the discrete set A™.
The intersection of a compact set and a discrete set is always finite.
|

— 37.3 §13.3 The weight p ~
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Definition 37.3.1 (p)

1
p=3 Y a

aedt

Remark 37.3.2: This section shows p = 3%, A; and ||A 4 p||> > |[wA + p||* when X is the unique
dominant weight in the orbit WA.

— 37.4 §13.4: Saturated sets of weights ~

Remark 37.4.1: This section will be used later to analyze the set of weights in a finite-dimensional
module for semisimple Lie algebra over C.

— 37.5 §520: Weights and maximal vectors. ~

Remark 37.5.1: Let L be finite-dimensional semisimple over C containing H its toral subalgebra.
This corresponds to ® O A with Weyl group W and ® C E = R®.

— 37.6 §20.1 ~

Definition 37.6.1 (Weight spaces and weights for L-modules)
Let V be a finite-dimensional L-module. By corollary 6.4, H ~ V semisimply (diagonally)
and we can simultaneously diagonalize to get a decomposition

V=@ W Vi={veV|hv=AhpVheH}.
AEHY

If V) # 0 then ) is a weight.

Example 37.6.2(?): If p =ad and V = L, then L = H ® ®,cq Lo where H = Ly.

AWarning 37.6.3
If dim V' = oo, V) still makes sense but V may no longer decompose as a direct sum of its weight
spaces. E.g. take V' =U(L) and the left regular representation given by left-multiplication in the
algebra U(L) ~ U(L). This restricts to L = Ly ~ U(L), the regular action of L on U(L). Note
that there are no eigenvectors, since taking a PBW basis one can write [Th;"" - [[,ce 2, which
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strictly increases monomial degrees and thus there are no eigenspaces. So V), = 0 for all A, i.e. there
are no weight spaces at all.

38 ‘ Wednesday, November 16

Remark 38.0.1: Let L € LieAlg™* containing H with ® A, W as usual. Recall that V €
Mod = V = @,pv Vi where V) = {v 2% ‘ h = Ah)vVh € H} which we call a weight

space when A # 0. Note that if if V' is any representation of V, even finite-dimensional,
V' = @yrepv Vo < V is always an L-submodule. The sum is still direct since the terms cor-
respond to eigenspaces with distinct eigenvalues. Note that if h € H,x € Ly, v € V), then

h.(x.v) = z.(h.v) + [hz].v
= Ah)z.v+ a(h)z.v
= A+ a)(h)z.v,

so LoV C Viqa.

Lemma 38.0.2(%).
Let V € pMod, then

a. L, maps V) into V)i,
b. The sum V' := Y cpv Vi is direct and V/ <V is an L-submodule,
c. fdimV < oo then V =V".

— 38.1 §20.2: Highest weight modules ~

Definition 38.1.1 (Maximal vectors)
A maximal vector in an L-module V is a nonzero weight vector v € V) such that Ly.v =0
for all positive roots o € ®*. Equivalently, L,.v = 0 for all o € A.

Definition 38.1.2 (Highest weight vectors)
A highest weight vector is a nonzero v € V) where A is maximal among all weights of V'
with respect to the ordering < corresponding to the choice of A.

Observation 38.1.3
If v is a highest weight vector then v is necessarily a maximal vector, since A + a > A, but the
converse is not necessarily true.
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AWarning 38.1.4
Le., the weight of a highest weight vector need not be maximal.

Example 38.1.5(%): In §18, L is constructed using the Serre relations to get Ly — L where L
involved (Sf;) and Ly involved S1-S3. Recalling yimHyj = Yij, since z1.y;; = 0, y;; is a maximal
vector in Ly as an L-module but is not a highest weight vector since wty;; = (—m + 1)a; — oj <
—aj = wt(y;) and the weight is not maximal.

Example 38.1.6(?): View L € Mod via ady, then §10.4 shows that there is a unique highest
root & satisfying & > « for all « € ®. Any nonzero v € Lg is a highest weight vector for the adjoint
representation.

Definition 38.1.7 (Borel subalgebras)
A Borel subalgebra of L is a maximal solvable subalgebra B < L.

Proposition 38.1.8(%).
B :=H ® @, co+ La is a Borel subalgebra of L.

Proof (?).
If o, 8 € T then [Ly, Lg] = Lo+p where a + 8 € T (if this is still a root), so H < L. One
has B(® = [B(i_l),B(i_l)] C th(5)>2¢_1 Lg, since bracketing elements of H together will
vanish (since H is abelian) and bracketing height 1 roots yields height 2, bracketing height
2 yields height 4, and so on. Thus B is a solvable subalgebra, since the height is uniformly
bounded above by a finite number. To see that its maximal, note that any subalgebra B’ < L
containing B, it must also contain some L_, for some o € ®1. But then B’ D sl(C) =
L_o®[L_qn,Ls] ® L, which is not solvable, so B’ can not be solvable.

|

Remark 38.1.9: Let V € L-Mod™, then V € gMod by restriction and by Lie’s theorem V must have
a common eigenvector v for the action of B. Since B O H, v is a weight vector, [B, B] = @ ce+ La
acts by commutators of operators acting by scalars, which commute, and thus this acts by zero on
v and makes v a maximal vector in V. So any finite dimensional L-module as a maximal vector.

Definition 38.1.10 (Highest weight modules)
A module V' € L-Mod, possibly infinite dimensional, is a highest weight module if there

exists a A € HY and a nonzero vector v € V) such that V is generated as an L-module by v,
ie. U(L)vt =V.

Remark 38.1.11: Let z, € Lo, Yo € L_qa, ha = [Za, Yo be a fixed standard sly triple in L.

Theorem 38.1.12(%).
Let V € L-Mod be a highest weight module with maximal vector v* € V\. Write &7 =
{/817 o 7/8771}7 A= {CMl, T ,Qg}, then
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a. V is spanned by the vectors yél1 e y%:"n.er for i; € Z>o. In particular, V = @,c v Vpu-

b. The weights of V' are of the form u = \ — Zle kio; with k; € Z>o, and all weights
satisfy u < .

c. For each p € HY, dimV,, < oo, and for the highest weight A, one has dim V), = 1 spanned
by vt.

d. Each L-submodule W of V is a direct sum of its weight spaces.

e. V is indecomposable in L-Mod with a unique maximal proper submodule and a corre-
sponding unique irreducible quotient.

f. Every nonzero homomorphic image of V is also a highest weight module of the same
highest weight.

Proof (Sketch).

a. Use the PBW theorem and extend a basis for any B < L to a basis where the B basis
elements come second. Writing L = N¥ B, one can decompose U(L) = U(N~) @c U(B)
and get U(L)vt =U(N)U(B)vt =UN")UH& NT)v™t

b. Writing the g in terms of « yields this expression.

c. Clear.

We’ll finish the rest next time.

§21.2: A sufficient condition for
39 finite-dimensionality (Monday, November
21)

Remark 39.0.1: Last time: if V € L-Mod then V = L()\) for some dominant weight A € A*,
yielding a necessary condition for finite-dimensionality. Today: a sufficient condition. Ve

Lemma 39.0.2(?).
Write A = {ay,- -+ ,a,} and set z; = Zq,, Yi = Yo, For k >0 and 1 <i,j < ¢, the following
relations hold in U(L):

a. [xj,yzii] =0fori+#j "
b. [hy,y; " = —(k + Dai(hy)y; ™

c. [z, yf“] = (k+ 1)yf(hi —k-1)
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Proof (of (c)).
Use that ad acts by derivations:

[ k+1]

k+1 k+1
Ly Y; Z;

=LY, Y i

= zyiy¥ — yivayl + vizay? — yiyFa

= [ziilyf + vilzayf]

= hayf + yilziyl]

- (y,khz — k;ai(hi)yf) + (kyffl(hi —(k—1)- 1)) by (b) and induction
= yfhi — 2kyf + kyl(hi — (k= 1) - 1)

= (k+ 1)yfhi — (2k + k(k — 1))y}

= (k + 1)yFh; — k(k + 1)y¥

= (k+ D)y (h; — k- 1).

Theorem 39.0.3(?).
Given V € L-Mod, let II(V) = {)\ EHY |V, # 0} be the set of weights. If A € At is a

dominant weight, then V := L(\) € L-Mod™ is finite-dimensional and II(V) is permuted by
W with dimV,, = dim V,, for all 0 € W.

Proof (?).

The main work is showing the last part involving equality of dimensions. It STS this for a
simple reflection s; = s,, since o is a product of such reflections. Write ¢ : L — gl(V') be
the representation associated to V' — the strategy is to show that ¢(x;) and ¢(y;) are locally
nilpotent endomorphisms of V. Let v € V), \ {0} be a fixed maximal vector and set m; := A\(h;)
so h;. vt = myvt.

1. Set w = y;”"ﬂ.v*, then the claim is that w = 0. Supposing not, we’ll show w is a
maximal vector of weight not equal to A, and thus not a scalar multiple of v*. We have
wt(w) = A — (m; + 1)oy < A (a strict inequality). If j # ¢ then zj;.w = mjyimiﬂfr =

ylmiﬂxjv by part (a) of the lemma above, and this is zero since v is highest weight and

thus maximal (recalling that these are distinct notions). Otherwise
TW = :L“Z-y?”'i'lv"r

=y ot + (my + Dy (hs — my - Dot

=0+ (m; + 1)y (m; —m;)vT = 0.

So w is a maximal vector of weight distinct from A, contradicting corollary 20.2 since
this would generate a proper submodule. #

2. Let S; = (z4,vi, hi) = sly, then the claim is that v, y;0™, -,y 0T span a nonzero
finite-dimensional S;-submodule of V. The span is closed under (the action of) h; since
all of these are eigenvectors for h;, and is closed under y; since y; raises generators
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and annihilates y, "o, and is closed under z; by part (c) of the lemma (since it lowers
generators).

3. The sum of two finite-dimensional S;-submodules of V' is again a finite-dimensional
S;-submodule, so let V; be the sum of all finite-dimensional S;-submodules of V' (which
is not obviously finite-dimensional, since we don’t yet know if V' is finite-dimensional).
The claim is V' is a nonzero L-submodule of V. Let w € V’, then w is a finite sum
and there exists a finite-dimensional S;-submodule W of V with w € W. Construct
U = > neco Ta-W where z, = y_, if @« € &7, which is a finite-dimensional vector
subspace of V. Check that

hi(xg. W) = zg(h; W) + [hixg)| W Cxg.W C U
zi(xg. W) = 2g(xs. W) + [z25]. W C 2. W + 281, W CU
Yi(xg W) = 28(ys. W) + [ysxg] W C 2gW + 25_o,. W C U,

and so U is a finite-dimensional S;-submodule of V and thus U C V’. So if w € V' then
To.w € V' for all @ € ® and V' is stable under a set of generators for L, making V/ <V
an L-submodule. Since V/ # 0 (since it contains at least the highest weight space), it
must be all of V' since V is irreducible.

4. Given an arbitrary v € V, apply the argument for w in step 3 to show that there exists a
finite-dimensional S;-submodule W C V with v € W. The elements z;, y; act nilpotently
on any finite-dimensional S;-module, and so in particular they act nilpotently on v and
we get local nilpotence.

5. Now 7; := e?(@i) o ¢P(-¥i) 6 ¢#(i) ig well-defined. As seen before, 7;(Vy) = Vi, ie. 7 is
an automorphism that behaves like s;, and so dim V,, = dim V5, for all x € II(V) and
o € W. Now any p € II(V) is conjugate under W to a unique dominant weight u*, and
by (4) u™ € II(V) and since the weights in V' = L(\) has only weights smaller than
A, we have u™ < A. Note A € AT is dominant, and so by 13.2B there are only finitely
many such weights u™. Now there are only finitely many conjugates of the finitely many
possibilities for uT, so #II(V) < co. By the general theory of highest weight modules, all
weight spaces V,, < L(\) are finite-dimensional. Since dim V), < oo for all p € II(V'), we
have dim V' < oo.

Remark 39.0.4: Skipping the next two sections §21.3 on weight strings and weight diagrams, and
§21.4 on generators and relations for L()) for A € AT dominant.

40 ‘ Monday, November 28

Remark 40.0.1: Setup: L € Lie—AIgidC’SS containing H a maximal toral subalgebra, ® D & =

{B1,-+ s Bm} 2 A ={ay, -, a0} with Weyl group W, and we have x; € Lqo,,yi € L_q;, hi = [Tiyi].
For f € ®*, we also wrote 3 € Lg,ys € L_g. There is also a Borel B = H @ @Dp-o Lp with
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HCBCL.

We saw that if V € L-Mod™ then V = @D cnv Vi and V is a highest weight module of highest
weight A\ where A € AT = {1/ € HY ’ v(hi) € Z>01<i< K}. Writing M (M) for the Verma module

U(L) @y By Ch, there is a unique irreducible quotient M (\) — L(A) with highest weight A. It turns
out that L(\) is finite-dimensional if A € AT.

Question 40.0.2
How can we understand L(\) for A € AT better? What is dim L(\)? What is dim L(\),, (i.e. the
dimensions of weight spaces)?

40.1 522 Multiplicity Formulas; §22.5 Formal
characters

Remark 40.1.1: Let A C HY be the lattice of integral weights. Note that A(hg) € Z VS € ¢ <
A(h;) € Z for all 1 < i < {. Since A € zMod there is a group algebra Z[A], the free Z-module with
basis e()\) for A € A, also written ey or e*. This has a ring structure given by linearly extending

e(A) -e(p) =e(A+p), so

(Z a,\e()\)) . (Z bue(u)) = ane(a), Co = Z axby,.

AMu=co

Note that if V € L-Mod™ then V = @D, cnv Vi, where V, # 0 = p € A. In this case we can
define the formal character

chy = Z(dim Viwe(p) € Z[A].
BEA

Proposition 40.1.2(%).
Let V,W € L-Mod™, then

ChV®W = ChV . ChW .

Proof (?).
Take dimensions in the formula (V @ W), =331, VA @ Wy,

Remark 40.1.3: For A € AT, we have L(\) (noting Humphreys uses V(\)), we write

chy == chyy = > ma(p)e(n)

where m)(p) == dim L(\), € Z>.
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Remark 40.1.4: We now involve the Weyl group to make more progress: let W be the Weyl group
of (L,H), then W ~ Z[A] by w.e(n) = e(wu) for w € W, € A. So W — Autring(Z[A]), and
recalling that dim L(\),, = dim L(\)wu, we have

w.chy = ZmA(,u)e(wu) = Zm)\(w,u)e(wu) = chy,

so chy are W-invariant elements of the group algebra.

Proposition 40.1.5(%).
Let f € Z[A]" be a W-invariant element, then f can be written uniquely as a Z-linear
combination of the chy for A € AT, i.e. these form a Z-basis:

ZIAY = (chy | A e A>z.

Proof (?).
Recall every A € A is conjugate to a unique A € A*. Since f is W-invariant, we can write it as

f= Y e (Z e(w»)

AEAT weW

where ¢(\) € Z and almost all are zero. Given A € AT with ¢()\) # 0, a previous lemma

(13.2B) shows that jj{,u €At ’ w< )\} < o0 by a compactness argument. Set

M; = U {MGAJF‘MS)\},
c(N)A0,NEAT

all of the possible weights that could appear, then §M; < oo since this is a finite union of
finite sets. Choose A € A" maximal with respect to the property that c¢(\) # 0, and set
"= f —c(X\) chy. Note that f’ is again W-invariant, since f and chy are both W-invariant,
and M, € My. However A € My by maximality, since we’ve subtracted c(\)e()) off, so
§My < M. Inducting on My, f' is a Z-linear combination of chy/ for A’ € A, and thus so is
f. One checks the base case L(0) = C where everything acts with weight zero. Uniqueness is

relegated to exercise 22.8.
|

Question 40.1.6

Is there an explicit formula for chy for A € A*? An intermediate goal will be to understand
characters of Verma modules ch M(\) — note that this isn’t quite well-defined yet, since this is an
infinite-dimensional module and thus the character has infinitely many terms and is not an element

in Z[A].

— 40.2 §23.2 Characters and Verma Modules ~
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Question 40.2.1
Let Z(L) CU(L) be the center of U(L), not to be confused with Z(L) C L which is zero since L is
semisimple (since Z(L) is an abelian ideal). How does Z(L) ~ M(\)?

Remark 40.2.2: Note M (\) = U(L) ®y 5y Cx ZU(N~)®@c Cy and write vt for a nonzero highest
weight vector of M (\). Let z € Z(L) and h € H, then

h.(zot) = z.(ho®) = z.(A\(h))vT = A(R)vT,

and z4(z.07) = 2(zq.v") = 0 for all @ € ®F, so z.vT is a maximal vector in M () of weight A,
i.e. there exists xa(z) € C such that

+

zuT = ya(2)v"

since dim M (X)) = 1. Thus there is an algebra morphism

xx: Z(L) — C.

Pick a PBW basis for the Verma module M (\), then

2y gL YT =Yg T = s T

so z.m = xx(z)m for all m € M(X), and thus Z(L) ~ M(X) by the character y,. Consequently,
Z(L) acts on any subquotient of M (\).

Question 40.2.3
When is x) = x, for two integral weights A, € A?

41 ‘ Wednesday, November 30

Remark 41.0.1: Recall: Z(L) := Z(u(L)) acts by a character x, : Z(L) — C on M (\) and thus
any subquotients. For A\, € A C HY, when is xx = x,?

Definition 41.0.2 (Linkage)

Two weights \, € H" are linked iff 3w € W such that u+p = w(A+p), where p == 3 > gea+ B-
In this case, write u ~ A for this equivalence relation, i.e. u = w(A + p) — p. We'll write
w - X :=w(\+ p) and call this the dot action of W on HY.

AWarning 41.0.3
This defines an action of a group on a set, but it is not a linear action.

40.2 §23.2 Characters and Verma Modules 114



I Wednesday, November 30

Proposition 41.0.4(7?).
Let A € A,a € A and suppose m = A(hy) = (), a) € Z>p and let v be a highest weight
vector of M(X). Then w = y™! . v+ is maximal vector in M (\) of weight A — (m + 1)a.

Proof (?).
The proof that w is a maximal vector is step 1 in theorem 21.2, which showed dim L(\) < oo
(using lemma 21.2 and commutator relations in ¢(L)). Then check that

weight(w) = A —(m+1Da=XA—((\, a)+ 1)«
In fact, for any A € HY, o« € A we can define
p=A— (A a)+1)a

so in our case weight(w) = p. Note that

Now w generates a highest weight module W < M () of highest weight u = s, - A. Note that
M (p) is the universal highest weight module with highest weight p, i.e. I'M (u) — W. This
yields a B-module morphism

C,.—-W
1— w,

which yields an L-module morphism U(L) &) C, — W. So W is a nonzero quotient of
M(p) and Z(L) ~ W by x,. On the other hand W < M(X) and so Z(L) ~ W by xa,
yielding x» = xp-

So we conclude that if p = s - A with (A, «) € Z>g, then x, = x\.

Corollary 41.0.5(?).
Let A€ A,a € A, pp=54-A. Then x, = xx.

Proof (?).
p=Sq-A=A—(m-+1)a where m := (A, «).

e Case 1: m = —1, then = A and we’re done.
o Case 2: m > 0, then x\ = x, by the proposition.
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e Case 3: m < —2, then

<M7 CM> = <)‘ - (m + 1)&, Oé>
=m—2(m+1)
=—-m-22>0.
We also have 1 = SqA = Sq -y = s2 - X = X\ by applying the action on both sides.

By the proposition, swapping p, A to get submodules of M (u) of highest weight A and
conclude x) = x-

Corollary 41.0.6(?).
Let A\, € A, then if 1 ~ X then xx = x,.

Proof (?).
Say p = w- X for w € W, then write w = s;, - - - s;, and use induction on ¢, where the base
case is the previous corollary.

Theorem 41.0.7 (Harish-Chandra (§23.2)).
If A\, pu satisfy x\ = xp, then A ~ p.

Remark 41.0.8: Goal: find chy = chyy) = 3 ,ca(dim L(A),)e(p) € Z[A] for A € AT,

41.1 §24: Formulas of Weyl, Kostant,
Steinberg; §24.1 functions on H"

Remark 41.1.1: View Z[A] as finitely-supported Z-valued functions on A with elements f =
> aen axe(A) regarded as functions f(u) = a,. Thus e(X)(u) = 0x—,. The point of this maneu-
ver: Verma modules will be infinite dimensional, but Z[A] only handles finite sums. For f,g €
Homgz (A, Z), define (f * g)(0) = X5y, f(M)g(p). Consider the set X of functions Homg(H"Y, C)

whose support is contained in a finite union of sets of the form A< = {A — Y pca+ kgl ’ kg € Zzo}-

One can show X is closed under convolution and A becomes a commutative associative algebra
containing Z[A] as a subring. Note that supp(f *g) € (A + p)<.
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N AA
A A
\ / \ 2 SU?DG

QP ' < _f)\-;d\h’r(-*\:l / _ \

>
\

>
3

Y(§)=2

Write e(X) as ey for A\ € HY, regarded as a function ey : HY — C where e)(u) = 0x—, is the
characteristic function of A, and note that ey * e, = exy,. Let p = chy () : HY — C, then

M(0) =U(L) @ypy Co ZUN")®c Co € gMod, y—Mod.

By PBW, U(N~) has a basis ygl . yZZL for i; € Z>o where ®* = {p1,---, B }. The weights of
M(0) are p = —>7""; i;8; and p € O<. Note chpyg)(p) = dim M(0),, and so chy;gy € & and thus
peX.

42 ‘ Friday, December 02

" 42.1 Convolution Formulas ~

Remark 42.1.1: Last time:
X = {f € H%m(HV,C) ‘ supp f C U()\Z — Z20<I>+)} ,
i=1

which is a commutative associative unital algebra under convolution, where ey (p) = dy, for p € HY
and ey * e, = exy, with eg = 1. We have chy;(g) which records weights u = 7", —i;3; with
’ij S Zzo, and

dim M(0),, := chpr(o) (1) = ti{i €72, ‘ Y b= —M} = p(n)
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which is the Kostant function — its negative is the Kostant partition function, which records the
number of ways of writing a weight as a sum like this. We’ll regard finding such a count as a known
or easy problem, since this can be done by enumeration.

Define the Weyl function ¢ = [[,cq+ (e% — e_%) where the product is convolution. For « €
&+, f,: HY — Z, define

1 A= —ka f keZ
£.00 _{ « for some =

0 otherwise.

We can regard this as an infinite sum fo, =ep+e_q + €20+ - = 150 €—ka-

Lemma 42.1.2(A).

a. p= Ha@b"’ fcw
b. (eg — e—q) * fo = €0,
c. g =ep*[loco+(e0—e—a).

Proof (of lemma A).
Part a: The coefficient of e, in [[;Z; fs, is the convolution

Z fﬁl(_ilﬁl) T fﬁm(_imﬁm) = p(,u).
i1, im€Z>0,— Y 15 8=N
Part b:
(e0—e—a)*(e0+e—ategat+-)=€ +eq—€qte2s—€24+" =e,

noting the telescoping. This can be checked rigorously by regarding these as functions instead
of series.
Part c: Recall p =} co+ %a, s0 €p = [[aeqp+ €g. Thus the RHS is

H (e% * (eg — e_a)) = H (e

- e%a) =q.
acdt aedt

w|R

Note that ¢ # 0 since ¢g(p) = 1.

Lemma 42.1.3(B).
Let w € W, recalling that w.eq = eyaq,

wq = (—1)"™)g.

Proof (of lemma B).
ETS for a € A. Recall s, permutes ® \ {a} and s,(a) = —a, so0 s,q permutes the factors

(e —e_p) for B # a and negates eg —€=a.
2 2 2
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|
Lemma 42.1.4(C).
q is invertible:
gxp*xep,=€p :}qilzp*ep'
Proof (of lemma C).
Use lemma A:
grpre_,=e,* H(eo—e_a) *P*e_p by C
aedt
= ( 11 (eo—e—a)> *p
acedt
— ( 11 (eo—e_a)*fa) by A
acdt
= J] e byB
acdt
= €p.
|
Lemma 42.1.5(D).
For \,u € HY,
chpyry () =p(p—A) = (prex)(n) = chyny =p*ex.
Proof (of lemma D).
M () has basis yéll ‘e yzﬁ’; -vT where vT is a highest weight vector of weight A. Note that
M m
M==‘X——j£:ijﬁ% S u-—,x==-—j£:ijﬁg,
j=1 i=1
and dim M (), = p(u — A). Now check (pxey)(p) = p(p — A)ex(A) = p(p — A).
|
Lemma 42.1.6 (E).
g * chprn) = extp-
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Proof (of lemma E).

D C
LHS =gx*p*eyx=ce,*ey=exyp.

— 42.2 §24.2 Kostant’s Multiplicity Formula ~

Remark 42.2.1: Recall that characters of Verma modules are essentially known. For A € AT,
we have chy = chpy), recalling that L(\) is a finite-dimensional irreducible representation. Goal:
express this as a finite Z-linear combination of certain chyy(y).

Fix A € HY and let M be the collection of all L-modules satisfying the following:

1. V - ®M€Hv VM,
2. Z(L) A V by xa,
3. chy e X

Note that any highest weight module of highest weight A is in M, and this is closed under
submodules, quotients, and finite direct sums. The Harish-Chandra theorem implies that

My=M, <= A~ p = p=wA

Lemma 42.2.2(?).
If0#V € M) then V has a maximal vector.

Proof (?).

By (3), the weights of V' lie in a finite number of cones \; — Z>o®™". So if u is a weight of V
and o € ®T, then p + ka is not a weight of V for k> 0. Iterating this for the finitely many
positive weights, there exists a weight u such that p + o is not a weight for any o € ®. Then
any 0 # v € V), is a maximal vector.

Definition 42.2.3 (7)
For A € HY, set

@()\)::{MEHV‘MN)\ and ug)\},

which by the Harish-Chandra theorem is a subset of W - A which is a finite set.
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Remark 42.2.4: The following tends to hold in any setting with “standard” modules, e.g. quantum
groups or superalgebras:

Proposition 42.2.5(%).
Let A\ € HY, then

a. M()) has a composition series,

b. Each composition factor of M(A) is of the form L(u) for some p € ©(N). Define
[M(A) : L(p)] to be the multiplicity of L(u) as a composition factor of M (A).

c. [M(\):L(\)]=1.

Proof (?).
By induction on the number of maximal vectors (up to scalar multiples). If M () is irreducible
then it’s an irreducible highest weight module, and these are unique up to isomorphism and
so M(A) = L(\) and we're done. Otherwise M (\) has a proper irreducible submodule V/,
and V € M) by closure under submodules. By the lemma, V' has a maximal vector of some
weight p which must be strictly less than A, i.e. 4 < A. As before, x,, = xx and thus p € O(\).
Consider V' and M(\)/V — each lies in M) and either has fewer weights linked to A than
M () has, or else it must have exactly the same set of weights linked to A, just with smaller
multiplicities. By induction each of these has a composition series, and these can be pieced
together into a series for M since they fit into a SES.

|

43 ‘ Monday, December 05
" 43.1 Kostant’'s Character Formula ~
Remark 43.1.1: Last time: M, defined as a certain category of L-modules for A € HY, and we

defined () = {u cHY ‘ we A p < )\} C W.A. Proposition from last time:

a. M(\) has a composition series,
b. Each composition factor of M ()) is of the form L(u) for some p € 6(N),
c. [IM(N): L(p)]=1.

Note that any character of M is the sum of the characters of its composition factors.

Proof (of proposition).
Part b: Each composition factor of M ()) is in M, hence by the lemma has a maximal vector.
Since it’s irreducible, it is a highest weight module L(u) for some p € ().
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Part c: [M(\) : L(\)] = 1 since dim M (A), = 1 and all other weights are strictly less than A.
|

Remark 43.1.2: Order 6(\) = {pu1,--- , e} such that p<p; = i < j. In particular, gy = A. By
the proposition, chyy(,;) is a Z>¢-linear combination of chy,,,) where ¢ < j, and the coefficient of
ch L(p;) 18 1. Recording multiplicities in a matrix, we get the following:

Char(uy)
chr(u,) 1 . . .
0 1 . .
0 0 .
0 0 0 1

Link to Diagram

This is an upper triangular unipotent matrix, and thus invertible.

Corollary 43.1.3(?).
Let A\ € HY, then

ChL(A) = Z C(:U’) ChM(M)a C(/l) S Z, C()\) = 1.
HeB(N)

Remark 43.1.4: Assume A\ € AT, and recall:

o X = {f :HY — C ‘ the "forest" support condition },
» p = chyo),

o p(u) = £ {[i o tim] € 22},

© ¢=[locar(eg —e—2),

s U= Zlgjgm i85,

o wq=(—1)"gq for we W,

* g*pxe—p =€,

o chyny =pxen,

o g*chpy(n) = extps
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o chy =chrpy =2 co0 (i) char(),
o g*chpoy =2 c(p)g*chyry = 2 c(p)eptp- *1

Fixing w € W, we have
S cliewinip = w(g* chy)

RED(N)
= wq * wchy
= (=1)"®)g chy since chy is W-invariant
= () S (e
m

Since A € At, W acts simply transitively on 6(\) + p = {v +p ) v E 9()\)}. Note p ~ A <=
w4 p = w\+ p) for some w € W, which is unique since \ + p is strongly/strictly dominant,
and lemma 13.2A shows its stabilizer is the identity. So Staby (A + p) = {1}. The equation
w+p=w(\+ p) implies u+ p < XA+ p, since apply W to dominant elements goes down in the
partial order. Thus p € (), and §(\) consists of precisely those u satisfying this equation, and

O(N) =W - \.

Continuing the computation, take p = A on the LHS, so w(A + p) = u + p and
cNewirip) = (=D e(u)eps, = clp) = (=1)e(N).

Substituting this into x; yields

grchy= Y (-1 ey, %2,
weWw
SO

chy =g*xpxe_,*chy

=p*xe_px* Z (_1)€(w)ew(>\+p)
weW

= Z (_1)€(w)p * Cw(A4p)—p = Z (_1)€(w)p * Cw-A-
weW weW

This yields the following:

Theorem 43.1.5 (Kostant).
For A € AT dominant, the weight multiplicities in L()\) are given by

dim L(\) o= ma(n) = 32 (=D p(u+ p— w(A+p)) = 3 (~1)@p( —w - A).
weWw weWw

— 43.2 §24.3 Weyl’s Character Formula ~
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Lemma 43.2.1(?).

g= Y (-1)" ey,

wew

Proof (?).
Take A = 0 in %2, and use that chy = ep where L(0) = C.
Theorem 43.2.2 (Weyl’s Character Formula).
Let A € AT, then
( > (_1)€(w)€wp> schroy = D (=) ™eynpp)-
weW weW
Proof (?).
Apply x2 and the lemma.

Corollary 43.2.3(Weyl’s Dimension Formula).

: Ha€<1>+ <)‘ + P, a>
LX) = = .
dim L(\) Mocar (o) @) %;(/\) m(p)

44 ‘ Tuesday, December 06

— 44.1 Weyl Dimension Formula ~

Remark 44.1.1: Last time:

* (= Dacat (6% - 6_%) = ZwGW(_l)e(w)ewP
e The WCF: g*chy = ZwEW(_l)Z(w)ew(A—&-p)
e An alternative writing of the WCF:

ZwEW(_l)Z(w) Cw(Ap)
Zwew(_l)z(w)ewp ’

where the denominator is denoted the Weyl denominator.

Ch>\ =
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Corollary 44.1.2(Weyl dimension formula).

HUG<I>+ <)‘ + P, Oé>

dim L(\) = Mocos (0, @)

i

which is a quotient of two integers.

Exercise 44.1.3 (7)
Show that W always has an equal number of even and odd elements, so 3,y (—1)%®) = 0.

Proof (?).

Note chy = 3, dim L(A),e, € Z[A], and dim L(A) = 37 ey ma(p). Viewing chy : A — Z as
a restriction of a function HY — C, dim L(\) is the sum of all values of chy. Work in the
C-subalgebra Xy of X generated by the characteristic functions S = {eu ’ w e A}; this equals
the span of S since e, * e, = €,4,,. We have a map

v:Ay— C
fe ) fw),

HEA

which makes sense since fsupp f < co. This function sums the values we’re after, so the goal
is to compute v(chy). By the exercise, attempting to apply this directly to the numerator and
denominator yields 0/0, and we get around this by using a variant of L’Hopital’s rule. Define
Oua(en) = (1, @)ey, extended linearly to Xp. In the basis S this operator is diagonal, and this
is a derivation relative to convolution:

Oa (e x 1) = Oal(eptv)
=(p+v,a)epqn
= ((n, 2)ep) x ey + e x ((v, d)ey)
= (Oatp) * ey + ey * (Oaey).

Moreover they commute, i.e. d,03 = 030g. Set 0 = [[,cqo+ On Where the product here
is composition, and view 0 as an mth order differential operator. Write w(A + p) =
Ewew(—l)f(w)ew(/wp) for A € AT, so ¢ = w(p). Rewriting the WCF we have

w(p) *xchy =w(A+p) *1,

and

11 (e% — e_%) *chy = w(A + p).

acdt

We now try to apply 0 to both sides, followed by v. Note that if any two factors of 0 hit the
same factor on the LHS, then noting that v(ea —e_a) = 0, such terms will vanish. So the
total result will be zero unless all of the factors of 3 are applied to the ¢ factor in the LHS.
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So apply v o 0 to *1 to get
0(@w(p))u(chy) = v(Ow(A + p)).

We can compute

v(Bw(p)) = v (a > <—1>f<w>ewp> = 3 (~1)" ™03 (ewp)).

weWw weW

9(ewp)) wp
a€¢+
= UV% ewp
a€¢+

= [[ (wp,0)

acdt

= H (p,w™ a *9 .

aedt

We have

Note that w~! - ®* is a permutation of ®T, just potentially with some signs changed — in fact,
exactly n(w™1), the number of positive roots sent to negative roots, and n(w=1) = £(w™1!).
Thus the above is equal to

D T (o,
acdt
Continuing %3, we have

v(@ewp)) = Y (D=1 T (p.a)

weW acdt

::ﬁM/ II (p,a)

acdt
which is the LHS. Similarly for the RHS,
v(@A+p) =W [ A +p,a).
acdt

Taking the quotient yields

ﬁm711a6¢+(pva) - IIa€¢+(p7a)

dim L()\) = ﬁW Ha€<I>+ ()\ + p, a) o Hae¢+ ()\ + p, Oé) .

Multiplying the numerator and denominator by [],ce+ @?—Q) yields

Ha€<1>+ <p7 O‘>
Ha€©+ <>‘ + P, Oé).
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Useful Tricks

Remark 44.1.4: If a € ®F, using that o is a basis of ®", one can write ¥ = Y°¢_; ¢®a;" for

some ¢ € Z>p and A = Zle m;\; for m; € Z>g, using that (p, ;") = (p, a;) =1 one can rewrite
the dimension formula in terms of the integers c§* and m;.

o 44.2 New Directions S

Remark 44.2.1: Where you could go after studying semisimple finite-dimensional Lie algebras
over C:

o Infinite-dimensional representations of such algebras, e.g. the Verma modules M (). One has
a SES K(\) — M(X) - L(X), which doesn’t split since M (\) is indecomposable.

o Category O, expressing characters of simples in terms of characters of Vermas.

o Parabolic versions of Verma modules: we’ve looked at modules induced from B = H + N, but
one could look at parabolics P =U + > L;.

o Coxeter groups, i.e. groups generated by reflections, including Weyl groups. These can be
infinite, which ones are finite?

o Quantize Coxeter groups to get Hecke algebras, which are algebras over Clg,q !]. See
Humphreys.

e Representations of Lie groups over R, semisimple algebraic groups, representations of finite
groups of Lie type (see the classification of finite simple groups, e.g. algebraic groups over
finite fields).

e Characteristic p representation theory, which is much more difficult.

o Infinite-dimensional Lie algebras over C, e.g. affine/Kac-Moody algebras using the Serre
relations on generalized Cartan matrices. See also current algebras, loop algebras.

o Quantum groups (quantized enveloping algebras), closely tied to modular representation
theory.

45 ‘ Useful Tricks

o [lwylzl = [zlyz]] + [[z2]y] = [xly2]] - [y[z2]].
o xzW = zx.W + [TZ]W.
o If N, M are upper triangular, [N M] has zeros along the diagonal.
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46 ‘ Summary of main results

— 46.1 Computation ~

e Bracketing elementary matrices:

leij, ent] = djxeq — diiex;.

" 46.2 Classical Algebras ~
o sly(F) is dimension 3, corresponds to type As, and generated by

(o0) (08 )e(10)

[z,y] =h, [h,x]=22, [y,h]="2y.

- s1,,(F) is dimension n? — 1 and corresponds to type A, 1.

e 46.3 Definitions ~

- Ni(8)={zeL|z8]Cs}.
o}.

- Cp(8) ={re L[]
o Lissimple iff L # 0 and Id(L) = {0, L}.

e L is solvable iff L("t1) = [L) [(M] "2 0,

o L is semisimple iff Rad(L) == Y"1 4 1 solvable L = 0-
e L is nilpotent iff L' := [LL"~1] "= 0.

o The Killing form is x(x,y) := Trace(ad, o ady).

e Checking L-Mod actions:

— (M 4+ Ay).v = A (z.v) + A2 (y.v)

— . (AMv 4+ Aaw) = A\ (z.v) + Aa(z.w)

— [zy].v = z.(y.v) — y.(z.v). This is the axiom that introduces weird formulas for hom-
s/tensors/duals.

e Duals: (z.f)(v) = —f(x.v)
o Tensors: z.(vew):=((z.v) @w) + (v® (z.w)).
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The Casimir element: for ¢ : L — gl(V') an irreducible representation of L semisimple, define
B(z,y) = Trace(p(z) o p(y)). Pick a basis and dual basis {e;},{e;"} with respect to 8 and
define c,(8) == p(ei)p(e;”) € End(V).

— This is an endomorphism of V' commuting with the L-action which has nonzero trace.

46.4 Results ~

Engel’s theorem: if every € L is ad-nilpotent then L is nilpotent.

— Since conversely (for free) L nilpotent implies ad, is nilpotent for every x, this becomes
an iff: L is nilpotent iff every « € L is ad-nilpotent.

Lie’s theorem: if L < gl(V) is solvable then L stabilizes a flag in V' (i.e. L has an upper
triangular basis).

Cartan’s criterion: if L < gl(V') and Trace(zy) = 0 for all x € [LL] and y € L, then L is
solvable.

L is semisimple iff k7, is nodegenerate.

If L is semisimple, it decomposes as L = @ L; where the L; are uniquely determined simple
ideals, and every simple ideal of L is one such Lj;.

ker(L 2de, gl(V)) = Z(L) and simple algebras are centerless, so any simple Lie algebra is
isomorphic to a linear Lie algebra gl(V') for some V, namely im ady,.

Schur’s lemma: if L % gl(V) is an irreducible representation, then Caiv)(p(L)) = CI, i.e. the
only endomorphisms of V' commuting with every ¢(x) are scalar operators. Equivalently,
Endz (V)= C.

Weyl’s theorem: if L is semisimple and ¢ : L — gl(V) is a finite-dimensional representation
then ¢ is completely reducible.

47 ‘ Problem Set 1

47.1 Section 1 ~

Problem 47.1.1 (Humphreys 1.1)
Let L be the real vector space R3. Define [zy] = = x y (cross product of vectors) for z,y € L,

and verify that L is a Lie algebra. Write down the structure constants relative to the usual
basis of R3.

Solution:
It suffices to check the 3 axioms given in class that define a Lie algebra:
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o L1 (Bilinearity): This can be quickly seen from the formula
a xb=lal - |bl sin(bup)nap

where N4, is the vector orthogonal to both a and b given by the right-hand rule. The
result follows readily from a direct computation:
(ra) x (tb) = ||ral| - [|tb|| sin(Ora.tb)Pira, b
= (rt)[lall - [[bl] sin(0a,5)7a,b
= (rt) (a x b),

where we’ve used the fact that the angle between a and b is the same as the angle between
any of their scalar multiples, as is their normal.

o L2: that a x a = 0 readily follows from the same formula, since sin(f,q) = sin(0) = 0.
o L3 (The Jacobi identity): This is most easily seen from the “BAC - CAB” formula,
a x (bxc)="bla, c) —cla, b).
We proceed by expanding the Jacobi expression:
ax(bxc)+ex(axb)+bx(cxa)=bla, ¢c)—cla, b)
+ —ble, a)

+ c(a, b) —
=0.

For the structure constants, let {ej,es,e3} be the standard Euclidean basis for R3; we can
then write e; X e; = DA cfjek and we would like to determine the cfj One can compute the
following multiplication table:

€; Xe; €1 €9 €3
€1 0 €3 —€9
€2 —€3 0 €1
€3 €9 —e1 0
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Thus the structure constants are given by the antisymmetric Levi-Cevita symbol,

ko ik {0 if any index 1, j, k is repeated

sgn o, otherwise,

where 05, € S3 is the permutation associated to (7, j, k) in cycle notation and sgn o is the sign
homomorphism.
Remark 47.1.1: An example to demonstrate how the Levi-Cevita symbol works:

1 2
e1 X eg = cyq€1 + C1pe2 + 0?263 = 0ey + Oeg + leg
since the first two terms have a repeated index and

¢y = €123 = sgn(123) = sgn(12)(23) = (-1)2 =1

using that sgno = (—1)" where m is the number of transpositions in o.

Problem 47.1.2 (Humphreys 1.6)
Let x € gl,,(F) have n distinct eigenvalues ay,...,a, in F. Prove that the eigenvalues of ad,
are precisely the n? scalars a; — aj for 1 <1i,j < n, which of course need not be distinct.

Solution:
For a fixed n, let e;; € gl,,(F) be the matrix with a 1 in the (4, j) position and zeros elsewhere.
We will use the following fact:

€ij€kl = 05k€4,
where 0, =1 <= j = k, which implies that
leijert] = eijer — exieij = djkeil — Ojie;.

Suppose without loss of generality® that = is diagonal and of the form x = diag(a1, a2, - ,an).
Then the eigenvectors of x are precisely the e;;, since a direct check via matrix multiplication
shows we;; = a;e;;.

We claim that every e;; is again an eigenvector of ad, with eigenvalue a; — a;. Noting that
the e;; are also left eigenvectors satisfying e;;x = aje;;, one readily computes

admeij = [l’, 61]] = xeij — €ij£L' = aieij — ajeij = (ai - aj)eij,

yielding at least n? eigenvalues. Since ad, expanded in the basis {eijhy <ij<n isann xn
matrix, this exhausts all possible eigenvalues. -

“If x is not diagonal, one can use that z is diagonalizable over F since z has distinct eigenvalues in F. So one
can reduce to the diagonal case by a change-of-basis of F" that diagonalizes .
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Problem 47.1.3 (Humphreys 1.9, one Lie type only)
When ch F = 0, show that each classical algebra L = Ay, By, Cy, or Dy is equal to [LL]. (This
shows again that each algebra consists of trace 0 matrices.)

Solution:
We will check for this type A,,, corresponding to L := sl,,41. Since [LL] C L, it suffices to show
L C [LL], and we can further reduce to writing every basis element of L as a commutator in
[LL]. Note that L has a standard basis given by the matrices

. {xz = e ’ T > j} corresponding to n—,

. {hi = € — €it1it1 ‘ 1< < n} corresponding to b, and

. {yi = eij ‘ i< j} corresponding to nt.
Considering the equation [e;jer] = 0jxeq — diex;, one can choose j = k to preserve the first
term and [ # 4 to kill the second term. So letting ¢,4,j be arbitrary with ¢ # j, we have

[eiter;] = bieeij — dijen = eij,

yielding all of the x; and y;. But in fact we are done, using the fact that h; = [z;y;].

Problem 47.1.4 (Humphreys 1.11)
Verify that the commutator of two derivations of an F-algebra is again a derivation, whereas
the ordinary product need not be.

Solution:
We want to show that [Der(L)Der(L)] C Der(L), so let f,g € Der(L). The result follows from
a direct computation; letting D = [fg], we have

D(ab) = [fg](ab) = (fg — gf)(ab)
—fg( b) — gf(ab)
f(g(a)b+ag(b)) — g (f(a)b+af(b))
f(g(a)b) + f (ag(b)) — g (f(a)b) — g (af(b))
( 9)(a)b+ g(a)f(b)
+ f(a)g(b) +

— (9f)(@)b+ f(a)g(b)
—g(a)f(b) -
gl(a)b —
D(a)b — aD(b).

[

To see that ordinary products of derivations need not be derivations, consider the operators
D, = aax Dy = 8 acting on a finite-dimensional vector space of multivariate polynomials of
some bounded degree as a sub R-algebra of R[z,y]. Take f(x,y) = x +y and g(z,y) = =y,
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so that fg = gf = 2%y + xy®. Then [D,D,] = 0 since mixed partial derivatives are equal, but

Dy(fg) = D, (:c2 1 Qxy) = 22 + 2y # 0.

Problem 47.1.5 (Humphreys 1.12)
Let L be a Lie algebra over an algebraically closed field F and let x € L. Prove that the
subspace of L spanned by the eigenvectors of ad, is a subalgebra.

Solution:

Let E; C L be the subspace spanned by eigenvectors of ad,; it suffices to show [EyE;] C Ej.
Letting y; € E,, we have ad,(y;) = Ajy; for some scalars \; € F, and we want to show
ady ([y1y2]) = A2[y1y2] for some scalar A\j2. Note that the Jacobi identity is equivalent to ad
acting as a derivation with respect to the bracket, i.e.

ady([y2]) = [adz(y)z] + [yads(2)] = [z[y2]] = [[2y]2] + [y[zz]].

The result then follows from a direct computation:

adz([y1y2]) = [[zy1]ya] + [y1[zy2]]
= [My1ye] + [y1X2y2]
= (A1 + A2)[y1y2].

= 47.2 Section 2 ~

Problem 47.2.1 (Humphreys 2.1)
Prove that the set of all inner derivations ad,,z € L, is an ideal of Der L.

Solution:
It suffices to show [Der(L)Inn(L)] C Inn(L), so let f € Der(L) and ad, € Inn(L). The result
follows from the following check:

foadg)(l) = (ady o f)(1)
) [f(D)]
+ [z f(D)] = [ (D))

d (x)(l), and adf(w) S IHH(L).

Problem 47.2.2 (Humphreys 2.2)
Show that sl,, (F) is precisely the derived algebra of gl,,(F) (cf. Exercise 1.9).
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Solution:
We want to show gl,,(F)Y) = [gl,,(F)gl,,(F)] = sl,(F).
C: This immediate from the fact that for any matrices A and B,

tr([AB]) = tr(AB — BA) = tr(AB) — tr(BA) = tr(AB) — tr(AB) = 0.

D: From a previous exercise, we know that [sl,(F)sl,(F)] = sl,,(F), and since sl,,(F) C g[,,(F)
we have

s, (F) = sl (F)Y C gl ().

Problem 47.2.3 (Humphreys 2.5)

Suppose dim L = 3 and L = [LL]|. Prove that L must be simple. Observe first that any
homomorphic image of L also equals its derived algebra. Recover the simplicity of sly(F) when
chF # 2.

Solution:

Let I < L be a proper ideal, then dim L/I < dim L forces dim L/I = 1,2. Since L — L/I,
the latter is the homomorphic image of a Lie algebra and thus (L/I)") = L/I by the hint.
Note that in particular, L/l is not abelian. We proceed by cases:

e dimL/T=1.

— In this case, L/I = Fz is generated by a single element x. Since [zz] = 0 in any
Lie algebra, we have (Fz)(") = 0, contradicting that L/I is not abelian. £

o dimL/I = 2: Write L/I = Fz + Fy for distinct generators z,y, and consider the
multiplication table for the bracket.

— If [xy] = 0, then L/I is abelian, a contradiction. #
— Otherwise, without loss of generality [zy] = x as described at the end of section 1.4.
In this case, (L/I)(Y) C F, C L/I, again a contradiction. £

So no such proper ideals I can exist, forcing L to be simple.
Applying this to L = sly(F), we have dimp sla(F) = 22 — 1 = 3, and from a previous exercise
we know sly(F)(M) = sly(F), so the above argument applies and shows simplicity.

Problem 47.2.4 (Humphreys 2.10)
Let o be the automorphism of sly(F) defined in (2.3). Verify that

® O'(l‘) =Y,
® J(y) = -,
° O'(h) = —h

Note that this automorphism is defined as

o = exp(ad;) o exp(ad_y) o exp(ady).
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Solution:

We recall that exp ad.(y) = 3,59 L-ad”(y), where the exponent denotes an n-fold composition
of operators. To compute these power series, first note that ad(t) = 0 for t = x, y, h by axiom
L2, so

(expady)(t) = 1(t) + ady(¢) + %ad?(t) b= () =t

where 1 denotes the identity operator. It is worth noting that if ady(t) = 0 for some n
and some fixed ¢,#’, then it is also zero for all higher n since each successive term involves
bracketing with the previous term:

ad? T (t) = [tad?(t)] = [t0] = 0.

We first compute some individual nontrivial terms that will appear in o. The first order terms
are given by standard formulas, which we collect into a multiplication table for the bracket:
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x h Y
x 0 —2x h
h 2x 0 —2y

y —h 2y 0
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We can thus read off the following;:

o adg(y) =h

o ady(h) =—2z

« ad_y(x) = [~yz] = [zy] = h

e ad_y(h) = [—yh] = [hy] = 2y

For reference, we compute and collect higher order terms:

« ad;(y):
— adl(y) = h from above,
— ad?(y) = ad,([zy]) = ad, (k) = [zh] = —[hx] = —2z,
— ad3(y) = ad,(—2x) = 0, so ad=3(y) = 0.

o adl(h):

— adl(h) = —2z from above,

— ad2(h) = ad,(—2x) = 0, so ad=2(h) = 0.
o ad” (2):

- adl_y(a:) = h from above,
- adQ_y(x) = ad_y(h) = [~yh] = [hy] = —2y,
— ad®,(z) = ad_,(—2y) =0, so adﬁ?(m) =0.

o ad” (h):

- adly(h) = —2y from above, and so ad?i(h) =0.

Finally, we can compute the individual terms of o:
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(expad_y)(y) =,

and assembling everything together yields
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o(z) =

expad, o expad_, o expad,)(x)
expad, o expad_ )( )
expady)(x +h —y)

)+ (h—2z) = (y+h—x)
=Y

(
= (
= (
= (2

o(y) = (expad, oexpad_, o expad,)(y)
= (expad; oexpad_y)(y + h — x)
=expady ((y) + (h—2y) — (z+h —y))

= expad, (—z)
o(h) = (expad, o expad_y o expady)(h)
= (expad, o expad_ )(h — 271)
— (expady) ((h — 2) — 2( + h — 1))
= (expad,)(—2x — h)
— 2(z) — (h— 20)
= —h.

48 ‘ Problem Set 2

— 48.1 Section 3 ~

Problem 48.1.1 (Humphreys 3.1)
Let I be an ideal of L. Then each member of the derived series or descending central series of
I is also an ideal of L.

Solution:
To recall definitions:

o The derived series of L is L D L©®) := [LL] D LM = [[LL][LL]] D - - - and termination
implies solvability.

o The descending central series of L is L D L' := [LL] D L? = [LILL]] O ---, and
termination implies nilpotency (and hence solvability since [LL] C L = L® C L?).

e IJL = [L,I]C I
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For the derived series, inductively suppose I =1 () is an ideal, so [LI] C I. We then want to
show 10+ := [I,1] is an ideal, so [L,[I,I]] C [I,1]. Letting [ € L, and i, € I, one can use
the Jacobi identity, antisymmetry of the bracket, and the fact that [I,I] := LU+ C T to write

L, [1,1]] 5 [127]]

[[td]5] = [[L414)

(L, 10, 1] = [IL, 1], 1
[

S
C L ], ) € 1, 1.

Similarly, for the lower central series, inductively suppose I := I' is an ideal, so [L,I] C I; we
want to show [L, [L, I]] C [L, I]. Again using the Jacobi identity and antisymmetry, we have

(L, [L, 1]] 3 [l [l2,4]]
= [[¢, L], L] + [[l2, 1], 4]
C [, L], L] + [[L, L], 1]
ClLLI+[L I C[L,I].

Problem 48.1.2 (Humphreys 3.4)
Prove that L is solvable (resp. nilpotent) if and only ad(L) is solvable (resp. nilpotent).

Solution:

— : By the propositions in Section 3.1 (resp. 3.2), the homomorphic image of any solvable
(resp. nilpotent) Lie algebra is again solvable (resp. nilpotent).

<= There is an exact sequence

0= Z(L) = L 2% ad(L) — 0,

exhibiting ad(L) = L/Z(L). Thus if ad(L) is solvable, noting that centers are always solvable,
we can use the fact that the 2-out-of-3 property for short exact sequences holds for solvability.
Moreover, by the proposition in Section 3.2, if L/Z(L) is nilpotent then L is nilpotent.

Problem 48.1.3 (Humphreys 3.6)

Prove that the sum of two nilpotent ideals of a Lie algebra L is again a nilpotent ideal. There-
fore, L possesses a unique maximal nilpotent ideal. Determine this ideal for the nonabelian
2-dimensional algebra Fz + Fy where [zy] = z, and the 3-dimensional algebra Fx + Fy 4+ Fz
where

[ ] [ ]
T
&
I
S w

[ ]
<
X,

Il
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Solution:

To see that sums of nilpotent ideals are nilpotent, suppose IV = JM = 0 are nilpotent ideals.
Then (I + J)M+N C M 4 JN by collecting terms and using the absorbing property of ideals.
One can now construct a maximal nilpotent ideal in L by defining M as the sum of all nilpotent
ideals in L. That this is unique is clear, since M is nilpotent, so if M’ is another maximal
nilpotent ideal then M C M’ and M’ C M.

Consider the 2-dimensional algebra L := Fa + Fy where [zy] = z and let I be the maximal
nilpotent ideal. Note that L is not nilpotent since L* = Fz for all k > 0, since L' = Fz and
[L,Fz] = Fx (since all brackets are either zero or +z). However, this also shows that the
subalgebra Fx is an ideal, and is in fact a nilpotent ideal since [Fz, Fz] = 0. Although Fy is
a nilpotent subalgebra, it is not an ideal since [L,Fy] = Fz. So [ is at least 1-dimensional,
since it contains Fz, and at most 1-dimensional, since it is not all of L, forcing I = Fx.
Consider now the 3-dimensional algebra L := Fx 4+ Fy+ Fz with the multiplication table given
in the problem statement above. Note that L is not nilpotent, since L' = Fy+Fz = LF for all
k > 2. This follows from consider [L, Fy + Fz], where choosing = € L is always a valid choice
and choosing y or z in the second slot hits all generators; however, no element brackets to x.
So similar to the previous algebra, the ideal J := Fz + Fy is an ideal, and it is nilpotent since
all brackets between y and z vanish. By similar dimensional considerations, J must equal the
maximal nilpotent ideal.

Problem 48.1.4 (Humphreys 3.10)
Let L be a Lie algebra, K an ideal of L such that L/K is nilpotent and such that ad;|, is
nilpotent for all € L. Prove that L is nilpotent.

Solution:

Suppose that M = L/K is nilpotent, so the lower central series terminates and M™ = 0 for
some n. Then L™ C K for the same n, and the claim is that L™ is nilpotent. This follows from
applying Engel’s theorem: let z € L™ C K, then ad,|;» = 0 by assumption. So every element
of L™ is ad-nilpotent, making it nilpotent. Since 0 = (L™)* = L"** for some k, this forces L
to be nilpotent as well.

o 48.2 Section 4 S

r

Problem 48.2.1 (Humphreys 4.1)

Let L = s[(V). Use Lie’s Theorem to prove that Rad L = Z(L); conclude that L is semisimple.
Hint: observe that Rad L lies in each mazimal solv-
able subalgebra B of L. Select a basis of V' so that
B = LNt(n, F), and notice that B! is also a
mazimal solvable subalgebra of L. Conclude that
RadL C LnNo(n, F) (diagonal matrices), then
that Rad L = Z(L).]
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Solution:

Let R = Rad(L) be the radical (maximal solvable ideal) of L. Using the hint, if S < L is a
maximal solvable subalgebra then it must contain R. By (a corollary of) Lie’s theorem, S
stabilizes a flag and thus there is a basis with respect to which all elements of S (and thus
R) are upper triangular. Thus S C b; however, taking the transpose of every element in S
again yields a maximal solvable ideal which is lower triangular and thus contained in b~. Thus
RCSCbnb~ =1, which consists of just diagonal matrices.

We have Z(L) C R since centers are solvable, and the claim is that RCh = R C Z(L). It
suffices to show that R consists of scalar matrices, since it is well-known that Z(gl,,(F)) consists
of precisely scalar matrices, and this contains Z(L) since L < gl,(F) is a subalgebra. This
follows by letting ¢ = 3 a;e;; be an element of Rad(L) and considering bracketing elements
of sl,(F) against it. Bracketing elementary matrices e; ; with ¢ # j yields

leij, O] = aje;; — aze;

which must be an element of Rad(L) and thus diagonal, which forces a; = a; for all 4, j.
To conclude that L is semisimple, note that a scalar traceless matrix is necessarily zero, and
so Z(sl(V)) = 0. This suffices since Rad(L) =0 <= L is semisimple.

Problem 48.2.2 (Humphreys 4.3, Failure of Lie’s theorem in positive characteristic)
Consider the p x p matrices:

o1 0 . . O
0010 . O
r=1| . . - - |, y = diag(0,1,2,3,--- ,p—1).
0o - - 1
1 0

Check that [z,y] = x, hence that x and y span a two dimensional solvable subalgebra L of
gl(p, F'). Verify that z,y have no common eigenvector.

Solution:
Note that = acts on the left on matrices y by cycling all rows of y up by one position, and

48.2 Section 4 142



I Problem Set 2

similar yacts on the right by cycling the columns to the right. Thus

0 1 0 00
002 1 00
TY—yr= g : -020
00...0p_ ... 0 3
00. ...00
0 10 00
0 0100
= 0 0010
0 0 0 01
—(p—1) 0 0 0 O
0 1 0 0 0
00100
=/0 0010 € GL,(F,)
00001
00000
= XT.

Thus L := Fz + Fy span a solvable subalgebra, since L)) = Fz and so L(?) = 0.

Moreover, note that every basis vector e; is an eigenvector for y since y(e;) = ie;, while no
basis vector is an eigenvector for = since z(e;) = e;41 for 1 <i <p—1 and z(ep) = €1, so x
cycles the various basis vectors.

Problem 48.2.3 (Humphreys 4.4)

For arbitrary p, construct a counterexample to Corollary C® as follows: Start with L C g[p(F)
as in Exercise 3. Form the vector space direct sum M = L@ F?, and make M a Lie algebra by
decreeing that FP? is abelian, while L has its usual product and acts on F? in the given way.
Verify that M is solvable, but that its derived algebra (= Fa + FP) fails to be nilpotent.

“Corollary C states that if L is solvable then every x € LM s ad-nilpotent, and thus L) is nilpotent.

Solution:
For pairs A; @ v1 and As @ vy in M, we’ll interpret the given definition of the bracket as

[A1 ®v1, A B va] == [A1, A2] ® (A1 (v2) — A2(v1)),

where A;(v;) denotes evaluating an endomorphism A € gl,(F) on a vector v € FP. We also
define L = Fa + Fy with x and y the given matrices in the previous problem, and note that
L is solvable with derived series

L=Fz®FyD LW =FzDL? =o.
Consider the derived series of M — by inspecting the above definition, we have

MY c L) o FP = Fz @ FP.

48.2 Section 4 143



Problem Set 3

Moreover, we have
MACLPaoFr=00 FP,

which follows from considering considering bracketing two elements in M®: set wij = Aj(vj)—
AJ' (Ui), then

[[A1, A2) ® w12, [A3, Ad] ® w3 4]
= [[A1, A2, [A3, Ad]] & [A1, Ao](w3,4) — [A3, Ag](w1,2).

We can then see that M) = 0, since for any w; € F?,
(0@ wi, 0® we] =06 0(w2) — O(w1) =00,

and so M is solvable.
Now consider its derived subalgebra M) = Fz @ FP. If this were nilpotent, every element
would be ad-nilpotent, but let v =[1,1,--- ,1] and consider ad,q. We have

adzpo(0®v) =[2@ 0,00 0] =0 2v =0 v,

where we’ve used that x acts on the left on vectors by cycling the entries. Thus ad};,(0@v) =
O@vforalln>1and 20 € M@ is not ad-nilpotent.

49 ‘ Problem Set 3

" 49.1 Section 5 ~

Problem 49.1.1 (5.1)
Prove that if L is nilpotent then the Killing form of L is identically zero.

Solution:

Note that if L is nilpotent than every ¢ € L is ad-nilpotent, so letting x,y € L be arbitrary,
their commutator £ := [ry] is ad-nilpotent. Thus ad[,,; € End(L) is a nilpotent endomorphism
of L, which are always traceless.

The claim is the following: for any x,y € L,

Trace(ad|,,)) =0 = Trace(ad, o ad,) =0,

from which it follows immediately that 3 is identically zero.
First we can use the fact that ad : L — gl(L) preserves brackets, and so

adjy,), = [adzadylg(z) = adg o ady — ady o ady,

Problem Set 3 144



Problem Set 3

and so
0 = Trace(ad|,,) = Trace(ad,ad, — adyad,) = Trace(ad,ad,) — Trace(ad,ady).
where we’ve used that the trace is an F-linear map gl(L) — F. This forces
Trace(adgad,) = — Trace(adyady, ),
but by the cyclic property of traces, we always have
Trace(ad,ad,) = Trace(adyad,).

Combining these yields Trace(adzad,) = 0.

Problem 49.1.2 (5.7)
Relative to the standard basis of sl3(F), compute det k. What primes divide it?
Hint:  wse 6.7, which says kg (z,y) =

2n Trace(zy).
Solution:
We have the following standard basis:
1 . . .1
xl P . . . x2 P . . . xs f— . . 1
1 i F..
hy=|- - -1 - ho=1|- 1 -
. !
Y1 = 1 - - Yo = . P Y3 = . .
— 1 - - 1
For notational convenience, let {vy,--- ,vg} denote this ordered basis.

Direct computations show

o [r1v1] = [x121] =0

L [$1U2] = [33‘1.1}2] =0

i [331113] = [101963] = €13 = X2 = V2

L [$1U4] = [xlhl] = —26’12 = —21‘2 = —2’02
o [z1vs] = [x1he) = €12 =21 =11

o [z1v6] = [x1y1] = €11 — e =h1 =4

° [361?17] = [9013/2] = —€31 = —Y2 = Vs

o [z1vs] = [z1y3] =0

Let E;; denote the elementary 8 x 8 matrices with a 1 in the (4, j) position. We then have, for
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example,

adg, =0+ 0+ E23 —2E24+ E15+ Es6+ Es7+0

1
1 -2

The remaining computations can be readily automated on a computer, yielding the following
matrices for the remaining ad,,:

e ady, =0+0+ Fo3—2F1 4+ F15+ Esg+ Es7+0

e ady, =0+0+0—FEzy — Eos — E36+ (Ea7+ Es7) + Eig
e adgy; = —F21+0+0+ E34 —2E35 +0+ Eg7+ Fs8

o ady, =2F11 + Fs — E33+0+0—2Es6 — Er7+ Egg

o adp, = —F11 + Foo+2FE33+0+0+ FEgg — Er7 — 2Fgg

e ady, = —FE41 + E32+0+2F64 — Eg5 +0+0— Erg

o ady, = Fs1 — (Ea2 + Es52) — B3+ Era+ E75+0+0+0

e ady, =0—FE12— E53 — Fg4+2FEg5+ E76+0+0

Now forming the matrix (3);; == Trace(ad,,ad,;) yields

2 .
6 -
. . 6
2 -6 - - -
ﬁ:..._612...’
2 .
6 .
6
whence det(3) = (2-6 - 6)%(122 — 36) = —2837.
" 49.2 Section 6 ~
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Problem 49.2.1 (6.1)

Using the standard basis for L = sly(F), write down the Casimir element of the adjoint
representation of L (c¢f. Ezercise 5.5). Do the same thing for the usual (3-dimensional)
representation of sl3(F), first computing dual bases relative to the trace form.

Solution:
A computation shows that in the basis {e;} = {z, h, y}, the Killing form is represented by

= g1 =

sy

Il
- O O
S o O
S O =
O O
O xwl= O
S Owl-

yielding the dual basis {e;"} read from the columns of 377

o 1V
e hY
. yv

Lol
W | =00 | i | =
RS

Thus letting ¢ = ad, we have
Cp = Z <P(€z‘)80(€iv)

= ad(z)ad(z") + ad(h)ad(h") + ad(y)ad(y")
= ad(z)ad(y/4) + ad(h)ad(h/8) + ad(y)ad(x/4)

1 1 1
= Jadzad, + gad,?l + 7adyad,.
For sl3, first take the ordered basis {vy,--- ,vs} = {x1, x2,x3, h1, ha,y1,y2,y3} as in the previ-

ous problem. So we form the matrix (3);; := Trace(v;v;) by computing various products and
traces on a computer to obtain

1 . 1
1 . 1
_ 2 _1 7 2 1
IB - 71 2 — 5 - . z % 9
1 . 1
1 . 1
1 1

which yields the dual basis

o 1/ = Yi
o« MV = %M + %h2
[ h2v = ghl + ghQ
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We can thus compute the Casimir element of the standard representation ¢ on a computer as

co =D p(@i)p(a:) + @lha)p(h’) + p(ha)p(ha”) + D o (yi)e(yi”)
= Z ziy; + hihh” + hohoV + Zyzxz

= Z (z:yi + yizi)

(]

~ir
3

Problem 49.2.2 (6.3)
If L is solvable, every irreducible representation of L is one dimensional.

Solution:
Let ¢ : L — V be an irreducible representation of L. By Lie’s theorem. L stabilizes a flag
inV,say F*=F! C---F" =V where F¥ = (vy,--- ,v}) for some basis {vitic, Since ¢ is

irreducible, the only L-invariant subspaces of V are 0 and V itself. However, each F* is an
L-invariant subspace, which forces n = 1 and F'' = V. Thus V is 1-dimensional.

Problem 49.2.3 (6.5)
A Lie algebra L for which Rad L = Z(L) is called reductive.”

(a) If L is reductive, then L is a completely reducible ad L-module. ® In particular, L is the
direct sum of Z(L) and [LL], with [LL] semisimple.

(b) If L is a classical linear Lie algebra (1.2), then L is semisimple. (Cf. Ezercise 1.9.)

(c) If L is a completely reducible ad(L)-module, then L is reductive.

(d) If L is reductive, then all finite dimensional representations of L in which Z(L) is
represented by semisimple endomorphisms are completely reducible.

“Examples: L abelian, L semisimple, L = gl (F).
If ad L # 0, use Weyl’s Theorem.

Solution:

Part 1: If ad(L) # 0, as hinted, we can attempt to apply Weyl’s theorem to the representation
¢ :ad(L) — gl(L): if we can show ad(L) is semisimple, then ¢ (and thus L) will be a completely
reducible ad(L)-module. Assume L is reductive, so ker(ad) = Z(L) = Rad(L), and by the first
isomorphism theorem ad(L) = L/Rad(L). We can now use the fact stated in Humphreys on
page 11 that for an arbitrary Lie algebra L, the quotient L/ Rad(L) is semisimple — this follows
from the fact that Rad(L/Rad(L)) = 0, since the maximal solvable ideal in the quotient would
need to be a maximal proper ideal in L containing Rad(L), which won’t exist by maximality
of Rad(L). Thus ad(L) is semisimple, and Weyl’s theorem implies it is completely reducible.
To show that L = Z(L) & [LL], we first show that it decomposes as a sum L = Z(L) + [LL],
and then that the intersection is empty so the sum is direct. We recall that a Lie algebra is
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semisimple if and only if it has no nonzero abelian ideals. Since L/Z(L) is semisimple, we have
[L/Z(L),L/Z(L)|] = L/Z(L) since it would otherwise be a nonzero abelian ideal in L/Z(L). We
can separately identify [L/Z(L),L/Z(L)] = [LL]/Z(L), since the latter is also semisimple and
the former is an abelian ideal in it. Combining these, we have [LL]/Z(L) = L/Z(L) = ad(L),

and so we have an extension
0—Z(L)— L — [LL]— 0.

Since this sequence splits at the level of vector spaces, L = Z(L)+ [LL] as an ad(L)-module, al-
though the sum need not be direct. To show that it is, note that Z(L) < L is an ad(L)-invariant
submodule, and by complete reducibility has an ad(L)-invariant complement W. We can
thus write L = W @ Z(L), and moreover [LL] C W, and so we must have W = [LL] and
L=[LL® Z(L).

Finally, to see that [LL] is semisimple, note that the above decomposition allows us to write
L/Z(L) = [LL], and Rad(L/Z(L)) = Rad(L/Rad(L)) = 0 so Rad([LL]) = 0.

Part 2: Omitted for time.

Part 3: Omitted for time.

Part 4: Omitted for time.

Problem 49.2.4 (6.6)
Let L be a simple Lie algebra. Let f(x,y) and y(z,y) be two symmetric associative bilinear
forms on L. If 3, are nondegenerate, prove that § and - are proportional.

Hint: Use Schur’s Lemma.

Solution:

The strategy will be to define an irreducible L-module V and use the two bilinear forms to
produce an element of Endz(V'), which will be 1-dimensional by Schur’s lemma.

The representation we’ll take will be ¢ := ad : L — gl(L), and since L is simple, kerad = 0
since otherwise it would yield a nontrivial ideal of L. Since this is a faithful representation,
we will identify L with its image V' := ad(L) C gl(L) and regard V as an L-module.

As a matter of notation, let 8, (y) = B(z,y) and similarly v, (y) := v(x,y), so that (., v, can
be regarded as linear functionals on V' and thus elements of V. This gives an F-linear map

o :V VY

T = Pe,
which we claim is an L-module morphism.
Assuming this for the moment, note that by the general theory of bilinear forms on vector
spaces, since [ and ~ are nondegenerate, the assignments z — 3, and x — -y, induce vector
space isomorphisms V =+ V. Accordingly, for any linear functional f € V'V, there is a unique
element z(f) € V such that f(v) = v(z(f),v). So define a map using the representing element
for ~:

D, : VV -V
7 =),

which we claim is also an L-module morphism.
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We can now define their composite

P:=Py0P1:V >V
x> 2(Bz),
which sends an element x € V to the element z = 2(8,) € V such that S,(—) = v.(—) as
functionals. An additional claim is that ® commutes with the image V = ad(L) C gl(L).
Given this, by Schur’s lemma we have ® € Endy (V) = F (where we’ve used that a compositions

of morphisms is again a morphism) and so ® = Aidy, for some scalar A € F.
To see why this implies the result, we have equalities of functionals

Bz, =) = Bx(—)
= Y2(6,)(—)
=7(2(Bz), —)
=(®(x), —)
=7(Az, )
= Ay(z, —),

and since this holds for all  we have B(—, —) = Ay(—, —) as desired.

Claim: @, is an L-module morphism.

Proof (?).
We recall that a morphism of L-modules ¢ : V. — W is an F-linear map satisfying

o(l.x) = L.p(x) Vle L VxeV.
I s @ee, Hhe e hamd side i
Py (£.x) = @1(ad(x)) = ®1([¢,x]) = Bl = B(E, %], —).
el e gty hemdl side fs
0.01(x) = L.y = (y = —Bx(L-y)) = (y = =Bx([,¥])) = —B(x, ¢, -]).

By anticommutativity of the bracket, along with F-linearity and associativity of 3, we
have

ﬂ([&XLY) = _6([x7€])Y) = _/B(X7 [67 Y]) VyevV

and so the above two sides do indeed coincide.

|
Claim: &, is an L-module morphism.
Proof (?).
Omitted for time, proceeds similarly.
|
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Claim: & commutes with ad(L).

Proof (?).
Letting z € L, we want to show that ® o ad, = ad, o ® € gl(L), i.e. that these two
endomorphisms of L commute. Fixing ¢ € L, the LHS expands to

®(ad;(£)) = 2(Bad.e) = 2(Blzg);
while the RHS is
ady(®(€)) = ads(2(8e)) = [, 2(Be)]-

Recalling that ®(t) = z(f) is defined to be the unique element ¢ € L such that (¢, —) =
v(2(B¢), —), for the above two to be equal it suffices to show that

B[z, 4], =) = ([, 2(Bo)], —)

as linear functionals. Starting with the RHS of this expression, we have

Y[z, 2(Be)], =) = =v([2(Be), 2], —) Dby antisymmetry
= —v(2(Be), [z, —]) Dby associativity of ~y
= —p(¢,[x,—]) by definition of z(5)
=—B(l¢, ], -)
= B([z, 4], —)-

Problem 49.2.5 (6.7)
It will be seen later on that s, (F) is actually simple. Assuming this and using Exercise 6, prove
that the Killing form « on s, (F) is related to the ordinary trace form by x(x,y) = 2n Tr(xy).

Solution:

By the previous exercise, the trace pairing (z,y) — Trace(zy) is related to the Killing form
by x(x,y) = ATrace(z,y) for some A — here we’ve used the fact that since sl,(F) is simple,
Rad(Trace) = 0 and thus the trace pairing is nodegenerate. Since the scalar only depends on
the bilinear forms and not on any particular inputs, it suffices to compute it for any pair (x, y),
and in fact we can take x = y. For sl,, we can take advantage of the fact that in the standard
basis, ady, will be diagonal for any standard generator h; € h, making Trace(ad%i) easier to
compute for general n.

Take the standard h; = ej1 — ez2, and consider the matrix of ady, in the ordered basis
{1, -+, @k, h1, + ,hn_1,Y1," - ,yr} which has k + (n — 1) + k = n? — 1 elements where
k = (n? —n)/2. We'll first compute the Killing form with respect to this basis. In order to

compute the various [h1,v;], we recall the formula [e;j, ex;] = djreq — djier;. Applying this to
hy yields
[h1,eij] = [e11 — e, €i5] = [e11, €ij] — [eaz, €ij] = (01ie25 — d15€i1) — (02i€25 — d2j€42).
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We proceed to check all of the possibilities for the results as ,j vary with ¢ # j using the
following schematic:

lal|lR -
bl - | Ry
C1 | C2

] o

The possible cases are:

e a:i=1,7=2 = [h1,e;;] = 2e12, covering 1 case.

e b:i=2,j=1 = [h1,e;;] = —2eg; covering 1 case.

e Ri:i=1,j>2 = [hi,e;;] = ey, covering n — 2 cases.

e Ry:i=2,j>2 = [hi,e;5] = ey covering n — 2 cases.

e C1:j=1,i>2 = [hy,ej;] = e;1 covering n — 2 cases.

o Cy:j=2,i>2 = [hy,ej;] = e;n covering n — 2 cases.

o M:i,j>2 = [hi1,e;5] =0 covering the remaining cases.

Thus the matrix of ady, has 4(n — 2) ones and 2, —2 on the diagonal, and ad,zl1 as 4(n — 2)
ones and 4,4 on the diagonal, yielding

Trace(ad} ) = 4(n — 2) + 2(4) = 4n.
On the other hand, computing the standard trace form yields
Trace(h?) = Trace(diag(1,1,0,0,---)) = 2,
and so

Trace(ad%l) =4n =2n-2 = 2n - Trace(h?) = A =2n.

50 ‘ Problem Set 3

" 50.1 Section 7 ~

Problem 50.1.1 (Humphreys 7.2)
M = sl(3,F) contains a copy of L := s[(2,F) in its upper left-hand 2 x 2 position. Write M as
direct sum of irreducible L-submodules (M viewed as L module via the adjoint representation):

V)e V) e V1) e V().
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Solution:
Noting that

o dimV(m)=m+1
. dimsly(F) = 8
« dm(V(0) e V) e V(1)@ V(©2)=1+2+2+3=S8,

it suffices to find distinct highest weight elements of weights 0,1, 1,2 and take the irreducible
submodules they generate. As long as the spanning vectors coming from the various V(n) are
all distinct, they will span M as a vector space by the above dimension count and individually
span the desired submodules.

Taking the standard basis {v1,--- ,v8} == {x1, T2, 3, h1, ha, y1, y2, y3} for sl3(F) with y; = 2,
note that the image of the inclusion sly(F) — sl3(F) can be identified with the span of
{w1,we, w3} = {x1,h1,y1} and it suffices to consider how these 3 x 3 matrices act.

Since any highest weight vector must be annihilated by the xj-action, to find potential highest
weight vectors one can compute the matrix of ad,, in the above basis and look for zero columns:

OO OO OO oOoN

ady, =

OO OO O o oo
OO OO oo oo
_ o O o0 oo oo
OO OO OO oo

OO OO+ O OO

[N eNeNoNeNelN =
(ool oNoNoBoll S

Thus {v; = z1,v2 = z2,vs = y3} are the only options for highest weight vectors of nonzero
weight, since ad;, acts nontrivially on the remaining basis elements.
Computing the matrix of adh;, one can read off the weights of each:

adh1 =

o O O OO

\
N

OO O OO o oo
OO OO O o oo
O O OO o oo
_ o oo oo oo

OO OO OO OoON
[lelelalaBel e
el elalBall o)

o O

Thus the candidates for highest-weight vectors are:

o 1z for V(2),

» 19 for one copy of V (1),

o ys for the other copy of V (1),
o hy or hy for V(0).

We can now repeatedly apply the y;-action to obtain the other vectors in each irreducible
module.

For V(2):
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e vg = 1 which has weight 2,
e v] =y1.99 = [y1,x1] = —h1 which has weight 0,
o Uy = %y%-vo = %[yl, [y1,x1]] = —y1 which has weight -2.

Since we see h1 appears in this submodule, we see that we should later take ho as the maximal
vector for V(0). Continuing with V'(1):

e vg = T2 which has weight 1,
e v] = Y1.99 = [y1, 2] = 3 which has weight -1.

For the other V(1):

e vy = y3 with weight 1,
e v] = —yo with weight -1.

For V(0):
* Uy = hg.

We see that we get the entire basis of sl3(F) this way with no redundancy, yielding the desired
direct product decomposition.

Problem 50.1.2 (Humphreys 7.5)

Suppose char F = p > 0, L = s[(2,F). Prove that the representation V(m) of L constructed

as in Exercise 3 or 4 is irreducible so long as the highest weight m is strictly less than p, but

reducible when m = p.
Note: this corresponds to the formulas in lemma
7.2 parts (a) through (c), or by letting L ~ F?
in the usual way and extending L ~ Flz,y] by
derivations, so l.(fg) = (I.f)g+ f(l.g) and taking
the subspace of homogeneous degree m polynomials
<xm,mm_1y, - ,ym> to get an irreducible module
of highest weight m.

Solution:
The representation V(m) in Lemma 7.2 is defined by the following three equations, where
vy € Vi, is a highest weight vector and vy, == y*vg Jk!:

1. h-v; = (m—2i)v;
2. y = (i + 1)vi1
3. = ( —1+ 1)1}1',1.
Supposing m < p, the vectors {vg,v1,---, v} still span an irreducible L-module since it

contains no nontrivial L-submodules, just as in the characteristic zero case.

However, if m = p, then note that y.v,—1 = (m — 1 + 1)v,, = Ov,, = 0 and consider the set
{vo, -+ ,Um—1}. This spans an m-dimensional subspace of V', and the equations above show
it is invariant under the L-action, so it yields an m-dimensional submodule of V' (m). Since
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dimg V(m) = m + 1, this is a nontrivial proper submodule, so V(m) is reducible.

Problem 50.1.3 (Humphreys 7.6)

Decompose the tensor product of the two L-modules V(3),V(7) into the sum of irreducible
submodules: V(4)®V (6)&V (8)®V (10). Try to develop a general formula for the decomposition
of V(m) @ V(n).

Solution:
By a theorem from class, we know the weight space decomposition of any sly(C)-module V'
takes the following form:

V:V_m@v_m.;_Q@"'@Vm—Q@Vma

where m is a highest weight vector, and each weight space V), is 1-dimensional and occurs with
multiplicity one. In particular, since V(m) is a highest-weight module of highest weight m,
we can write
V(3) = VaaViaViel
Vi=VaeVsaVaeVaeWhhelzelsel,

and tensoring these together yields modules with weights between —3—7 = —10 and 3+ 7 = 10:
V) @V(T) =Voiod Vee® & Vog® @ Voy® o V.,
@ Vp®"
oV & Vi® @ V6® & 15 ® Vio.

This can be more easily parsed by considering formal characters:

ePtre el 46 =
e T+e P te e el et 40+ €
ch(V(3)) - ch(V (7))

ch(V(3))
ch(V(7))
ch(V(3) ® V(7))

(6_10+€10)—|—2(6_8+68)+3(6_6+66)
+d(e™ +et) 4+ e?) +4

:(6_104—@10)—}—2(@_84—@8)+3(e_6—|—66)
+4ch(V(4)),

noting that ch(V(4)) = e™* 4+ e72 + €2 + ¢* and collecting terms.
To see that V(3) ® V(7) decomposes as V(4) @ V(6) @ V(8) @ V(10) one can check for equality
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of characters to see that the various weight spaces and multiplicities match up:

ch(V(4) & V(6) & V(8) & V(10)) = ch(V(4)) + ch(V(6)) + ch(V(8)) + ch(V(10)

:(e*4+~-'+e4)+(e*6+...+66)
—|-<6_8+"'+€8)—|—<€_10—|—---+€10)

— 2¢h(V(4)) + (7% + %)
+ch(V(4) + (e ®+ef) + (e ® +¢°)
+eh(V(4) + (e + ) 4 (7" + ) + (71 + )

+ (e
+ (e
=4ch(V(4)) +3(e™% + %)

+2(e 8 4+ e8) + (e710 4 !9,

which is equal to ch(V(3) ® V(7)) from above.
More generally, for two such modules V, W we can write

VeorW=P P Vi or W,
AEDY p1+pa=X

where we’ve used the following observation about the weight of b acting on a tensor product
of weight spaces: supposing v € V},; and w € W,,,

h.(v ®w) = (hv) @ w+ v & (hw)
p1v) @ w4 v ® (paw)
p1v) @ w + (pev) @ w

M1+ M2)(U ® w)a

A~ I~ I/~

and so v @ w € Vi 4p,-
Taking V(my), V(msa) with m; > mg then yields a general formula:

mi+m2 mo+m1
V(m) ®@p V(mg) = P P vaeVo= @ V(n).
n=—mi—mz2 a+b=n n=mi—ms
i 50.2 Section 8 ~

Problem 50.2.1 (Humphreys 8.9)
Prove that every three dimensional semisimple Lie algebra has the same root system as s((2, F),
hence is isomorphic to s[(2, F).
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Solution:
There is a formula for the dimension of L in terms of the rank of ® and its cardinality, which
is more carefully explained in the solution below for problem 8.10:

dim g = rank ® + #.

Thus if dim L = 3 then the only possibility is that rank® = 1 and §® = 2, using that
rank ® < & and that fP is always even since each a € ® can be paired with —a € ®. In
particular, the root system ® of L must have rank 1, and there is a unique root system of rank
1 (up to equivalence) which corresponds to A; and sly(F).

By the remark in Humphreys at the end of 8.5, there is a 1-to-1 correspondence between pairs
(L, H) with L a semisimple Lie algebra and H a maximal toral subalgebra and pairs (®,E)
with ® a root system and E D & its associated Euclidean space. Using this classification, we
conclude that L = sly(F).

Problem 50.2.2 (Humphreys 8.10)
Prove that no four, five or seven dimensional semisimple Lie algebras exist.

Solution:
We can first write

g=n @hen’, nt = @ga, no= @g_a.
acdt acdt
Writing N :=nt®&n~ = @, cq o, we note that dimg go = 1 for all &« € ®. Thus dimg N = §®
and

dimg g = dimg b + ]j(I).

We can also use the fact that dimg h = rank ¢ := dimg R®, the dimension of the Euclidean
space spanned by ®, and so we have a general formula

dimp g = rank ¢ + §,

which we’ll write as d = r + f.
We can observe that f > 2r since if B := {«1, -+, .} is a basis for ®, no —q; is in B but
{xai, - ,+a,} C ® by the axiomatics of a root system. Thus

dimpg=r+f>r+2r=23r
We can now examine the cases for whichd =r+ f =4,5,7:

e 7 = 1: as shown in class, there is a unique root system A; of rank 1 up to equivalence
and satisfies f = 2 and thus d = 3, which is not a case we need to consider.

e 7 = 2: this yields d > 3r = 6, so this entirely rules out d = 4,5 as possibilities for a
semisimple Lie algebra. Using that every a € ® is one of a pair +a,—a € &, we in
fact have that f is always even — in other words, ® = ®T[[®~ with &+ = &, so
f=4P=2-40T. Thusd =r+ f =2+ f is even in this case, ruling out d = 7 when
r=2.

e 1 > 3: in this case we have d > 3r = 9, ruling out d = 7 once and for all.
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— 51.1 Section 9

Proposition 51.1.1 (Humphreys 9.2).
Prove that ®V is a root system in E, whose Weyl group is naturally isomorphic to W; show

also that (o, 3Y) = (B, a), and draw a picture of ® in the cases A1, Ay, Bo, Go.

Solution:
We recall and introduce some notation:

lafl* = (a, @)

(8, ) =

Claim:
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Proof (?).
This is a computation:

v Vv :2(0‘\/’5\/)
@ B == v
_ 2(a¥,8Y)

(8Y,8Y)

2 (225, 25

lloell”” 1181l
(73 )

T8I T8I
_ 218148
22|la]?|1811%(B, 8)
_ 2)81%(a,8)
22(a, ) |I8I 118
_ 2, B)
(@)

- </87 a)‘

Claim: @V is a root system.
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Proof (?).
The axioms can be checked individually:

e R1: there is a bijection of sets
o= Y
a—a’,

thus &V = & < co. To see that R®Y = E, for v € E, use the fact that R® = E

to write v = )" c4 Caq, then

v = E CaQl

acd

2
ZZC el
> 92

acd

2

el

2(1

so v € R®V. Finally, 0 ¢ ®" since (Ofa)a # 0 since « € ¢ = a # 0, and
2/(a, @) is never zero.

e R2: It suffices to show that if \a¥ = 3Y € ®Y then A\ = £1 and B8Y = a". So
suppose A\a" = Y, then

2 2 2
)\7204: 26 — ﬁ:)\|w”2a::)\’ ,
el 181l [|ev]]

and since ® satisfies B2, we have ' = +1 and 8 = a. But then

2 2
1812 _ Nl _

2 2
lev] [lev]

1=\

Finally, if « = 3 then oV = 8V since ®, ®" are in bijection.
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Proof (of R3 and R4).
Continuing:

e R3: Tt suffices to show that if oV, Y € ® then s,v(8Y) =" for some 7" € ®V.
This follows from a computation:

sav(8Y) =B = (8", a*)a’

:BV - (Oé, B>av
203 2«
- (a8
8P~ P
_ 2 _2(a,ﬁ) 20
1BIE (B:B) |l
_ 2B _ 2(e, ) 2
1812 1817 lal?

2 [, 2ah)
= 1817 (ﬁ ol? )
2 _Q(B,a)a
~ (8,8) (ﬁ la® )

2
= m%(ﬂ)

2

= alB)oa8) )

= (Ua(ﬁ))va

where we’ve used that o, is an isometry with respect to the symmetric bilinear
form (—, —).

e RA4: This follows directly from the formula proved in the claim at the beginning:
<av7 5v> = (8, a) € Z,

since o, 8 € ® and ® satisfies R4.

Claim: There is an isomorphism of groups W(®) = W(®V).

51.1 Section 9 161



Problem Set 5

Proof (?).
There is a map of Weyl groups

D W(D) SW(DY)
Sa F7 SaVv,

which is clearly a bijection of sets with inverse s,v +— s,. Since it is also a group
morphism, this yields an isomorphism of groups.
|

Remark 51.1.2: The following are pictures of ®" in the stated special cases:

o A;p: Writing ®(A1) = {a =e; — €2, —a = ez — €1} € R?, we have (o, ) = v/2 and thus
D(A)Y = {\/ﬁa, —\/504}:

—a = (+V2,V?2) 151
—a=(1,-1) N
05
5 -2 -15 1 05 0 05 1 15 2

05

1] a=(1,-1)

a = (V2,-V2)

-151
]

o Ay: Writing ®(Az) = {e; —ea,e1 —e3,e2 — 1,69 — e3,e3 —e1,e3 — e} C R3, noting
that every root has length v/2, the dual results in a scaled version of As:
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o’ oo+l

(o +7)
—w (—a)” o o
—2 ® —%1_4 1 2
(=68)"
-1
L] e _ﬁ
—(a+8)

o By: Let ®(By) = {e1,—e1,e2, —ea,e1 + ea,€1 — €2, —€1 + €2, —e1 — ex} with a = e the
short root at § = —ej + eo the long root, taking the dual fixes the short roots +e; and
+e9, and normalizes the lengths of the long roots +e; + e to 1:
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e Go: ®(Gs9) is shown here in gray, with ®(G3)Y in green:
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-2

Proposition 51.1.3 (Humphreys 9.3).
In Table 1, show that the order of o,05 in W is (respectively) 2,3,4,6 when 6 = 7/2,7/3 (or
27/3 ), m/4 (or 3w/4 ), w/6 (or 57 /6 ).

Note that 0,08 = rotation through 20.

Solution:
Given the hint, this is immediate: if s,s3 = Rag is a rigid rotation through an angle of 20,
then it’s clear that

Rir=R}.=Ri.=RS.=id,

(NE]
w3
NE
o3

since these are all rotations through an angle of 2.

To prove the hint, note that in any basis, a reflection has determinant —1 since it fixes an
n — 1-dimensional subspace (the hyperplane H, of reflection) and negates its 1-dimensional
complement (generated by the normal to H,). On the other hand, det(sqs5) = (—1)? = 1 and
is an isometry that only fixes the intersection H, = Hg = {0}, so it must be a rotation.

To see that this is a rotation through an angle of exactly 20, consider applying sg o s4 to
a point P. Letting H,, Hg by the corresponding hyperplanes. We then have the following
geometric situation:
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We then have 61 + 6o = 6, noting that the angle between o and [ is equal to the angle
between the hyperplanes H,, Hg. The total angle measure between P and sg(so(P)) is then
201 + 205 = 20.

Proposition 51.1.4 (Humphreys 9.4).
Prove that the respective Weyl groups of Ay x Ay, As, B, G5 are dihedral of order 4, 6,8, 12.
If ® is any root system of rank 2 , prove that its Weyl group must be one of these.

Solution:
In light of the fact that

Dy, = <s,r ‘ =52 =1,srs ! = r_1>

where r is a rotation and s is a reflection, for the remainder of this problem, let s := s, and
r = 8453 after choosing roots o and g.

o A; X Ay: we have ®(Ag) = +eq, teg, and setting o = e1, 3 = eg yields § = 7/2. We
have

W(Asz) = {id, 50, 58, Sass}
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where 52 = s% =1, s48p is rotation through 20 = 7 radians, and (s4s5)? = id. Setting

T = 54,5 = 8483 yields r? = s> = id and srs = s, which are the defining relations for
Dy.

e Ay: there is an inscribed triangle in the regular hexagon formed by the convex
hull of the roots (see the dotted triangle below), and the reflections s, about
the hyperplanes H, restrict to precisely the symmetries of this triangle, yielding Dg:

Alternatively, choose a simple system A = {a=e;,0=—e1 —e2}, then
W(As) = (Sa,S453) is enough to generate the Weyl group. Since we have
s =8, = s> =1andr = su,s35 = r3 = 1 (since § = 7/3), these satisfy
the relations of Dg.

e By: there is similarly a square on which the hyper-
plane reflections act on, highlighted with dotted lines here:
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Since the s, act faithfully as the symmetries of a square, we have W(B3) = Dsg.
Alternatively, take @ = e; and 8 = —e; + ez and set s = 54,7 = 5,53. Then
W(Bs) = (s,7) and since s?> = r* = e (since here § = 7/4) and they satisfy the proper
commutation relation, this yields precisely the relations for Ds,,n = 4.

e Go: In this case, the convex hull of the short roots form a hexagon,
on which the hyperplane reflections precisely restrict to symmetries:
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This yields W(G2) = Dia. Alternatively, take o = e; and 8 the long root in quadrant
IL, set s = 54,7 = 5453, then s = 76 = 1 since § = 7/6 and again the commutation
relations for Ds,,n = 6 are satisfied.

Finally, for any root system ® of rank 2, we will have £(®) = (s := 54,7 = sq455). Because
0 is restricted to one of the angles in Table 1 in Humphreys §9.4, i.e. the angles discussed in
problem 9.3 above, the order of s is always 2 and the order of r is one of 4,6,8,12. Since

srs~! = srs = r~! in all cases, this always yields a dihedral group.

" 51.2 Section 10 ~

Proposition 51.2.1 (Humphreys 10.1).
Let ®V be the dual system of ® AV = {av ‘ a € A}. Prove that A is a base of ®V.

Compare Weyl chambers of ® and ®V.
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Solution:
Suppose that A is a base of ®. We can use the fact that bases are in bijective correspondence
with Weyl chambers via the correspondence

A WCA):={vek | (v,0)>0% €A},

sending A to all of the vectors making an acute angle with all simple vectors § € A, or
equivalently the intersection of the positive half-spaces formed by the hyperplanes Hy for
o€ A.

The claim is that WC(AY) = WC(A), i.e. the Weyl chamber is preserved under taking duals.
This follows the fact that if v € WC(A), then (v,d) > 0 for all § € A. Letting 6V € AV, we
have

v 2 _2(11,5)
(v,07) > (v’(é,5)5> 6,0) >0

using that every term in the last step is non-negative. Since this works for every 6V € AV,
this yields v € WC(AY), and a similar argument shows the reverse containment. So AV
corresponds to a fundamental Weyl chamber and thus a base.

Proposition 51.2.2(Humphreys 10.9).
Prove that there is a unique element o in W sending ®*to &~ (relative to A ). Prove that any
reduced expression for o must involve all o, (v € A). Discuss ¢(o).

Solution:

The existence and uniqueness of such an element follows directly from the fact that W acts
simply transitively on the set of bases, and since A and —A are both bases, there is some
wo € W such that wo(A) = —A and consequently wo(®1) = ®~. Since ¢(a) = n(a) < 4O
for any root  and n(wg) = @+ by definition, wy must be the longest element in W, i.e. £(wy)
is maximal.

Any reduced expression for wy must involve all s, — if not, and say s, doesn’t occur in any
reduced expression for wp, then wgy does not change the sign of « since every sg for 8 # a € A
changes the sign of 8 and acts by permutations on ®*\ {3}. However, in this case, w(, := wsq
satisfies n(w()) = n(wg)+1 since w(, necessarily changes the sign of a, contradicting maximality
of wy.

Finally, we have £(wg) = n(wp) = §®7.

" 51.3 Section 11 ~

Proposition 51.3.1 (Humphreys 11.3).
Use the algorithm of (11.1) to write down all roots for Ga.
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Do the same for Cs:

2 -1 0
-1 2 -1
0 -2 2

Solution:

Note that it suffices to find all positive roots, since ® = ®T[[®~ once a simple system A
is chosen. Since §®(Gy) = 12, it thus suffices to find 6 positive roots. For Gg, the Dynkin
diagram indicates one long and one short root, so let a be short and 8 be long. In this system
we have

(a, a) = (B, B) =2
<Oé, /8> =-1
<6’ a> =-3

e The f root string through «: since ht(a) = 1 and f — a € ®, we have r = 0. Since
qg=—(a, B) = —(—1) =1, we obtain the string o, a + 5.

o The « root string through g: since ht(5) =1 and oo — ¢ ® we have r = 0 again. Here
qg=—(a, B) =—(—3) =3, we obtain 3,5 + o, f + 2, 8 + 3«

e We know that the a root strings through any of the above roots will yield nothing new.
e The f root strings through o + 3, 8 4+ 2a turn out to yield no new roots.

o The ( root string through 5+ 3a: since (8 + 3a) — = 3a & @, using that only +a € P,
we have r = 0. We also have

r—q=(B+3a, f)=(B, B)+3{a, f) =2+3(-1) = -1,
we have ¢ = 1 and obtain S + 3, 26 + 3a.
Combining these yields 6 positive roots:

1 (Ga) = {a,a+ B, B, B+ 2a, B+ 3a,28 + 3a}.

For Cj3, there are 2 - 32 = 18 total roots and thus 9 positive roots to find. Let «, 3,7 be the
three ordered simple roots, then the Cartan matrix specifies

(o, a) = (B, B) =(v, 7) =2
(8, a) =(a, B) = —1

(a, ) = (7, @) =0
(B, v)=-1
(v, B) =—2.

e The « root string through 8: r =0, g = —(a, ) =1~ a,a+ f.
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o The f root string through v: r =0, ¢ = —(vy, f) =2~ ~v,v+ 8,7 + 25.

o The « root string through a: here r = ¢ = 0 since (7, a) = 0.

e The a root string through o + 8: r =0since a+ -y ¢ P, andr — 1 ={(a+ 3, 7) =
-1 = g=1~wa+p+7.

e The f root string through o+ 5 + 7: here r = 1 since (o + 5+ ) — 2y € @, and
r—g={(a+8+7v fl=—-14242=-1 = g=2~a+28+v,a+38+1.

This yields 9 positive roots:

¢+(C3):{04,57’7,04+,B,’Y+B,’Y+2B,Oé+ﬁ+’y,0é+2,8—|—’y7a—|—3a—}-’y}_

52 ‘ Problem Set 6

" 52.1 Section 17 ~

Proposition 52.1.1(17.1).

Proposition 52.1.2(17.3).

" 52.2 Section 18 ~

Problem 52.2.1 (18.1)

Problem 52.2.2 (18.4)

" 52.3 Section 20 ~
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Problem 52.3.1 (20.3)
Do one type that is not A,,.

~

Problem 52.3.2 (20.5)

Problem 52.3.3 (20.8)

ToDos

List of Todos

Check, might have gotten this backward. . . . . . . ... ... ... oL
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