HOMEWORK 2

MATH 8330 GIT

Problem 1. Consider the SL₂ action on $X = (\mathbb{P}^1)^n$ with a linearized invertible sheaf $L = \mathcal{O}_X(d_1, \ldots, d_n), d_i \in \mathbb{N}$. Define $w_i := \frac{2d_i}{\sum d_j}$, so that $\sum w_i = 2$. Prove that a point $(P_1, \ldots, P_n) \in X^{ss}(L)$ (resp. $X^s(L)$) \iff whenever some points P_i , $i \in I, I \subset \{1, \ldots, n\}$, coincide, one has $\sum_{i \in I} w_i \leq 1$ (resp. <1).

Problem 2. Consider the SL₃ action on the set $X = \mathbb{P}^N$, $N = \binom{3+2}{2} - 1 = 9$, parameterizing cubic curves $C \subset \mathbb{P}^2$, with a linearized invertible sheaf $L = \mathcal{O}_X(1)$. Prove that C is semistable $\iff C$ has only ordinary double points.

Problem 3. Give an example showing that Hilbert-Mumford's criterion of (semi)stability for $G \curvearrowright X$ does *not* hold in general if X is not assumed to be projective. (In other words, produce a counterexample with a non-projective X.)

Problem 4. Provide a complete VGIT (variation of GIT) analysis for the quotients $(\mathbb{P}^1)^3//\mathbb{G}_m$. The line bundle is $L = \mathcal{O}(1, 1, 1)$. The \mathbb{G}_m -action is defined as

 $t.(x_0:x_1) = (x_0:tx_1), \quad t.(y_0:y_1) = (y_0:ty_1), \quad t.(z_0:z_1) = (z_0:tz_1)$

The linearization is a lift of this action to the action on the coordinates $w_{ijk} = x_i y_j z_k$ on $(\mathbb{P}^1)^3$ embedded into \mathbb{P}^7 with the 8 homogeneous coordinates w_{ijk} . The above equations give an action on the point $(w_{ijk}) \in \mathbb{P}^7$. The linearization is a lift of this action to the point $(w_{ijk}) \in \mathbb{A}^8$.

Determine the following:

- (1) The choices for \mathbb{Q} -linearizations of L (i.e. linearizations of some $L^d, d \in \mathbb{N}$).
- (2) Chamber decomposition.
- (3) For each chamber, the quotient.
- (4) For neighboring chambers, the induced morphisms between the quotients.
- (5) For each chamber, the sets of unstable and strictly semistable points.

Problem 5. Let $X \subset \mathbb{P}^N$ be a singular projective curve. Suppose that X has n irreducible components X_i and that deg $\mathcal{O}_X(1)|_{X_i} = \lambda_i \in \mathbb{N}$. Let F be a coherent sheaf on X. Then on an open subset $U_i \subset X_i$ of each irreducible component it is a locally free sheaf of rank r_i .

The Seshadri slope of an invertible sheaf F is defined to be

$$\mu(F) = \frac{\chi(F)}{\sum \lambda_i r_i}, \text{ where } r_i = \operatorname{rk} F|_{U_i}.$$

By replacing $\mathcal{O}_X(1)$ by a rational multiple, one can assume that $\lambda_i > 0$, $\sum \lambda_i = 1$.

(1) Let F be a pure-dimensional coherent sheaf on X. Prove that F is Hilbertstable (resp. semistable) \iff for any subsheaf $E \subset F$ one has $\mu(E) < \mu(F)$ (resp. \leq). (Note in particular, that this definition depends on the polarization (λ_i) , and there is a Variation of GIT here.)

Date: Nov 4; due Thu Nov 18.

(2) Prove, however, that if $\chi(F) = 0$ then the (semi)stability condition does *not* depend on a polarization (λ_i) .

You can use the following simple observation. If $\pi : \widetilde{X} \to X$ is a normalization then \widetilde{X} is a smooth curve, so Riemann-Roch is applicable:

 $\chi(E) = \deg(E) + \operatorname{rank}(E)(1-g),$

and the difference of Hilbert polynomials

$$\chi(X, F(m)) - \chi(\widetilde{X}, (\pi^*F)(m))$$

is a constant.