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1 Thursday, August 18

1 Thursday, August 18

Remark 1.0.1: Some examples of moduli spaces:

E 1.1 Picard varieties e

Example 1.1.1(The Picard group and Picard variety): Consider X = E an elliptic curve,
which can be defined as:

• A 1-dimensional abelian variety,
• A Weierstrass equation y2 = x3 + ax+ b,
• A nonsingular genus 1 algebraic curve with a fixed origin, so C/Γ for Γ ∼= Z2 a lattice.

Recall that the group is

Pic(X) := {Invertible OX -sheaves} / ∼∼= {Line bundles over X} / ∼ .

There is a homomorphism Pic(X) deg−−→ Z → 0 with Pic0(X) := ker deg. A priori Pic0(X) is a
group, but in fact has the structure of a variety – there exists a Jacobian variety Jac(X) such that
Pic0(X) ∼= Jac(C)(k), the k-points of the Jacobian. Thus Jac(X) is a moduli space of invertible
sheaves of degree zero.

Fact 1.1.2
For X = E an elliptic curve, Jac(E) ∼= E.

Fact 1.1.3
There are distinct varieties with the same k-points: take for example the cuspidal curve X =
V (y2 − x3) and A1 – there is a map

A1 → X

t 7→
[
t2, t3

]
.

with inverse t = y/x:
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1 Thursday, August 18

V (t3 − t2)

A10

Note that these have the same k-points over any field k. Thus we need to consider not just objects,
but families of objects.

E 1.2 Elliptic curves e

Example 1.2.1(?): The moduli space of elliptic curves

M1 =
{

Elliptic curves over k
}

/∼=
.

As an algebraic variety, M1 ∼= A1
j (the j-line) coming from taking the j-invariant

j(X) = j(a, b) =?
2a

4a3 + 27b2 .

Then if X → S is a family of genus 1 algebraic curves, there exists a unique map S → A1
j where

s ∈ S maps to j(Xs). How would you prove this? See Hartshorne’s treatment using the Weierstrass
℘-function. Alternatively, factor to get y = x(x − 1)(x − λ) for λ ̸∈ {0, 1} and quotient by S3
acting by permuting {0, 1, λ}. One can then form M1 = A1

λ/S3 and construct j(λ) invariant
under this action. Note that when X = SpecR is affine and G is finite, there is an isomorphism
SpecR/G ∼= SpecRG to the GIT quotient. If X is not affine but G is finite, one can still patch
together quotients locally.

E 1.3 Vector bundles e

Example 1.3.1(?): Moduli of sheaves or vector bundles (locally free OX -modules of rank n) on
a fixed base variety X, e.g. a curve. One might fix invariants like a rank r, degree d, etc in order

1.2 Elliptic curves 5



1 Thursday, August 18

to impose a finiteness/boundedness condition on the moduli space. For X = P1, a vector bundle
F → X decomposes as F = ⊕r

i=1O(di) where degF = ∑
di by Grothendieck’s theorem. Since some

di can be negative, the moduli come in a countably infinite set. To impose boundedness one can
additionally add stability conditions such as semistability, which here ensures only finitely many
degrees appear and the existence of a moduli spaceMr,d(X). To do this, twist by a large integer and
take global sections to get H0(X;F (n)) for n≫ 0. Understanding ⊕n≥0H

0(X;F (n)) as a module
over R = ⊕

n≥0O(n) allows one to reconstruct F . Thus one can construct Mr,d(X) =?/PGLN

corresponding to choosing a basis for H0. Here we remove some “unstable” locus before taking the
quotient – note that points correspond to orbits, except that some orbits become identified.

This is an “easy” moduli problem, since vector bundles
are somehow linear. See Ramanujan, ?, Mumford,
40+ years ago.

E
1.4 Nonlinear examples: moduli of

curves/varieties e

Example 1.4.1(?): Let M2 be the moduli of curves C with g(C) = 2. All such curves are
hyperelliptic, so similar to the g = 1 theory. In the g = 1 case, curves can be realized as ramified
covers of P1:

1.4 Nonlinear examples: moduli of curves/varieties 6



1 Thursday, August 18

4 ramification points

0

1

λ ∞

P1

X

In the g = 2 case, they can similarly be realized as 2-to-1 maps ramified at 6 points:

1.4 Nonlinear examples: moduli of curves/varieties 7
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2-to-1

0 1 ∞
λ1 λ2 λ3

P1

C2

One can realize A3 ⊇ U :=
{

[λ1, λ2, λ3]
∣∣∣ λi ̸= 0, 1,∞, λi ̸= λj

}
and M2 = U/S6.

For g = 3, one has g = (1/2)(d− 1)(d− 2) by the adjunction formula, so g = 3 corresponds to d = 4
and one obtains

• Hyperelliptic: degree 4 curves in P2 (the generic case), or

• Non-hyperelliptic: 2-to-1 covers of P1 ramified at 8 points.

There is no analog of the Weierstrass equation for degree 4 polynomials, so write f4(x1, x2, x3) =∑
amx

m where xm := xm1
1 xm2

2 xm3
3 . How many such polynomials are there? Count points in the

triangle:

1.4 Nonlinear examples: moduli of curves/varieties 8



1 Thursday, August 18

This yields 5 + 4 + 3 + 2 + 1 = 15 such monomials, and one can write

A15 \ {0} /k× = P14 ⊇ U = P14 \∆

where ∆ is the discriminant locus. This is an affine variety, since ∆ is a high degree hypersurface.
Then form U/PGL3, noting that dim PGL3 = 32 − 1 = 8, so dim P14 \∆ = 14− 8 = 6.

Remark 1.4.2: Ways of forming moduli spaces:

• GIT,
• Hodge theory over C,
• Stacks (e.g. Artin’s method).

These rarely produce compact/complete spaces, so we’ll discuss compactification. Why compactify?
Computing things, projectivizing, intersection theory. See Bailey-Borel and toroidal compactifica-
tions.

Remark 1.4.3: A note on Hodge theory: for an elliptic curve, one can write E = C/ ⟨1, τ⟩ with

1.4 Nonlinear examples: moduli of curves/varieties 9
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ℑ(τ) > 0 (so τ ∈ H), one can form M1 =H⧸SL2(Z). This is Hodge theory: τ is a period, and we
quotient a bounded symmetric domain by an arithmetic group. Similarly, for PPAVs one can write
Ag =Hg⧸Sp2g(Z), and for K3 surfaces one has F2d = D2g/Γ2g where ωX ∈ D. One can determine
things like Jacobians using Torelli theorems.

Remark 1.4.4: Todo: how much do you know, and what are you trying to get out of the course?

2 Tuesday, August 23

See Mukai’s book

E 2.1 An aside on branched covers of curves e

Remark 2.1.1: A question from me: is every curve a branched cover of P1 over some number of
points? Consider maps f : X → P1 where f(X) ̸⊂ Pn−1 is not contained in a hyperplane. This biject
with basepoint free linear systems – let F be an invertible sheaf, then a linear system is any linear
subspace V ⊆ H0(X;F). Writing V = ⟨fi⟩ni=0, the bijection is sending p 7→ [f0(p) : · · · : fn(p)] ∈ Pn.
Since F is invertible, locally F|U ∼= OU – this map is well-defined precisely when not all the fi(p)
are zero, which is precisely the basepoint-free condition. A map f : X → P1 thus corresponds to
two sections which don’t simultaneously vanish. If X is projective, it admits a very ample line
bundle L where the base locus of H0(L) is empty. One can now project away from any point outside
of the curve to get a regular map factoring the projective embedding:

X Pn

Pn−1

Link to Diagram

The projection:

Tuesday, August 23 10
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p

C

Pn

Pn−1

One can continue to project until reaching P1.

Definition 2.1.2 (Gonality)
The gonality of a curve X is the minimal degree of a map X → P1, where degree is the size
of a generic fiber. Here a cover may have a ramification locus upstairs and a branch locus
downstairs, which are small in the sense that they are algebraic subsets.

Remark 2.1.3: Recall X is hyperelliptic if it admits a 2-to-1 map X → P1, so has gonality 2.
Gonality 1 curves are isomorphic to P1, and gonality 3 are trigonal.

E 2.2 Course plan e

Remark 2.2.1: Plan for the course:

1. GIT (1/2 to 2/3 of the course). Goals:

• Construct moduli of vector bundles on a curve, surface, etc.

2.2 Course plan 11



2 Tuesday, August 23

• ConstructMg (Riemann’s moduli space, not complete, projective, affine, but quasiprojective),
Mg (Deligne-Mumford’s moduli of stable curves), M0,n, and Mg,n(V ) (Kontsevich’s moduli
of stable maps, to rigorously define Gromov-Witten invariants).1

• Sources:

– Mukai’s book, An Introduction to Invariants and Moduli (this will be our primary source).
He covers stable vector bundles on curves.

– Mumford’s book on GIT and his paper about stability for algebraic curves, although this
is perhaps unnecessarily difficult! We’ll need this for Mg.

2. Hodge theoretic approaches. Goals:

• Construct Ag the moduli of abelian varieties. See Birkenhake and Lange.
• Construct F2d the moduli of K3 surfaces. See Huybrechts.

E 2.3 Intro e

Remark 2.3.1: Let X be a genus g smooth projective curve. Over C, projective implies compact,
and non-projective is a Riemann surface with finitely many punctures. More generally, over k = k
smooth means that dim TX,x = dimX at every point x ∈ X. Note that Xsing ⊆ X is an algebraic
and thus closed subset, so curves have finitely many singularities (nodes, cusps, etc). There is only
one topological type of curve, but there are distinct algebraic and conformal structures (which turn
out to be equivalent notions for curves).

One can show Mg(C) is an orbifold of dimension 3g − 3, i.e. locally a quotient M/G of a manifold
by a finite group. SimilarlyMg is a quasiprojective algebraic variety of dimension 3g− 3 with only
quotient singularities. Mumford was the first to ask questions about its geometry, e.g. is it rational?

Definition 2.3.2 (Rational and unirational varieties)
A variety X ∈ AlgVar/k is rational if X ∼

99K Pn, so there is a common open subset X ⊇ U ⊂
Pn.a Equivalently, there is an isomorphism of rational functions

k(X) ∼= k(Pn) ∼= k(An),

where the latter is comprised of quotients of polynomials. One can take n = dimX, since if
N > n one can factor a dominant map PN → X through a hyperplane PN−1 → X which is
still dominant.
X is unirational if there is a dominant morphism f : Pn ∼

99K X, so a map defined on an
open subset whose image is dense. Equivalently, X admits a parameterization by coordinates
x1, · · · , xn, so there is a rational parameterization.b
In this case, there is a degree d finite extension k(x1, · · · , xn) over the pullback of k(X).

aNote that open sets in the Zariski topology are large.
bNote that if X is rational, this parameterization is unique.

1dim Mg = 3g − 3 for g ≥ 2.

2.3 Intro 12
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Question 2.3.3 (A motivating question in birational geometry, the Lüroth problem)
Is the converse true? I.e. if there is a finite extension k(x1, · · · , xn) over k(X), is it true that
k(X) = k(y1, · · · , yn)? So does unirational imply rational?

Remark 2.3.4: Lüroth proved this in dimension 1, and as a consequence of the classification of
surfaces, the Italian school showed this in dimension 2. See the Castelnuovo criterion, which
shows X is rational iff X is regular, i.e. q := h1(X;OX) = 0 and p2 := h0(X; 2KX) = 0.

△! Warning 2.3.5
This is false in dimension 3. 3-4 counterexamples were given in the 70s/80s, first due to Iskovskih-
Manin, a second due to Clemens-Griffith, and later due to Mumford.

Exercise 2.3.6 (?)
Show that if k ⊊ K ⊂ k(X), then K is monogenic (generated by a single element).

Proposition 2.3.7(?).
Mg is rational for g = 2.

Proof (Sketch).
Note that 3(g − 1) = 3, and a genus 2 curve is a branched cover X → P1 ramified at 6 points
{0, 1,∞, λ1, λ2, λ3}. This yields a dominant map A3 →M2 which is finite-to-1 and defined up
to the action of S6. This is not defined if points collide, which corresponds to collapsing cycles
in X, and is degree 6!. Here we can write X = V (y2 = x(x−1)(x−λ1)(x−λ2)(x−λ3)) ⊆ A2

/C.
If any λi = λj for i ̸= j, one obtains a singularity locally modeled on the node y2 = x2, which
is the following over R:

2.3 Intro 13
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Over C, this is two hyperplanes intersecting in a single point. We can thus write

M2 = A3 \
{
λi = λj

∣∣∣ i ̸= j
}
/S6,

which is rational and unirational.
■

Proposition 2.3.8(?).
M3 is rational and unirational.

Proof (Sketch).
We need to show that a genus 3 curve can be parameterized by 6 parameters. Noting that a
genus 3 curve is planar of degree 4, which suffices – planar curves are given by polynomials
f4(x1, x2, x3) = ∑

anx
n, and these are the parameters.

■

Remark 2.3.9: One of the classical Italian algebraic geometers (either Severi or Castelnuovo)
“proved” the false statement that Mg is unirational for all g. In fact this is only true for g ≤ 9.
The idea is good though: any curve X ↪→ Pn can be projected to a curve in X → P2 with only
finitely many nodes. The coordinates for the nodes can serve as parameters. Having a curve pass
through given points is a linear condition, as is saying it is singular at a point (by computing partial

2.3 Intro 14
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derivatives). Being a node is not a linear condition – instead, it is a quadratic algebraic condition
coming from the vanishing of a 2 × 2 determinant. It’s also not clear that imposing singularity
conditions locally are all independent, since singularities at some points can force singularities at
others. Mumford proved thatMg is not unirational for g ≥ 24, and is in fact general type, which is
far from unirational.

Remark 2.3.10: Next time: more general introduction, stable curves, a bit about Hodge theory,
then starting Mukai’s book.

3 Thursday, August 25

Remark 3.0.1: Goal: showing Mg exists as a quasiprojective complex variety, and can in fact
be defined over any field k or even over Z. Here quasiprojective over Z means X ⊆ Pn

/Z is a
closed subset given as X = V (fi) for homogeneous integral polynomials fi. Note that Mg(k) =
{smooth projective curves of genus g} = X(k) \ Z(k) ⊆ Pn

/k/∼ where Z = V (fi, gi) – this says Mg

satisfies exactly the equations fi and no more. Anytime objects have isomorphisms, one only gets
a coarse moduli space instead of a fine moduli space, which we’ll later describe. Families X → S
yield to maps S →Mg over Spec k, and this will be a bijection when Mg is a fine moduli space
and X is the pullback of a universal family E →Mg. Since we only have a coarse moduli space, a
family yields a map to Mg, but these are not in bijection.

Remark 3.0.2: We’ll want projective varieties in order to do intersection theory. The most
fundamental compactification: the Deligne-Mumford compactificationMg ofMg, i.e. the moduli of
stable curves of genus g. This is a projective moduli space containing Mg as an open dense subset,
and is obtained by adding degenerate curves “at infinity”.

Example 3.0.3(?): Consider x0x2 = tnx2
1 in P2

x0,x1,x2 and take the 1-parameter degeneration
t→ 0. This is smooth for t ̸= 0, since this is a full rank conic. In affine coordinates this is xy = tn,
which degenerates to the simple node (double point) xy = 0. Part of this degeneration data can be
recovered from a tropical curve, which is a metric graph whose points are singularities and lengths
correspond to the n in tn:

Thursday, August 25 15
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Definition 3.0.4 (Stable curves)
A stable curve of genus g is a connected reduced (possibly reducible) projective curve C such
that

• (Mild singularities) C has at worst nodes, locally of the form xy = 0.
• (Numerical) The dualizing sheaf ωX is ample.

Note that g = h0(ωX) = h1(OX).

Remark 3.0.5: Writing a multi-component curve as X = ⋃
Xi, the numerical condition requires

that for every Xi
∼= P1, one has |Xi ∩ (X \Xi)| ≥ 3, and for all Xi of the following form (or Xi

∼= E
an elliptic curve), |Xi ∩ (X \Xi)| ≥ 1:

Thursday, August 25 16
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P1

This is equivalent to ♯AutX < ∞. For g ≥ 2 and Cg smooth of genus g, one has ♯AutCg < ∞,
and for g = 1 enforces dim AutCg = 1. For g = 0, note Aut P1 = PGL2 which has dimension 3, so
fixing at least 3 points cuts this down to a finite automorphism group.

Remark 3.0.6: The dualizing sheaf ωX is invertible if X has only nodes. The adjunction formula
yields a twist ωX |Xi

= ωXi(X \ Xi) Then ωX is ample iff deg ωX |Xi
> 0. One can compute

degωXi(X \Xi) = 2gi − 2 + |Xi ∩ (X \Xi)|, hence the lower bound on the number of intersection
points.

Proposition 3.0.7(?).
Without the numerical condition, the limit is not unique.
To see this, take a trivial family over P1, so a surface, and blow up a point on the central fiber.
This yields a multi-component curve, which we allow, and we can continue blowing up such
points:

Thursday, August 25 17
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0

P1

P1

Remark 3.0.8: If ωXt is ample for all t, then ωX /S is relatively ample, which implies X/S is the
canonical model. One can contract (−1) curves to get a minimal model, and (−2) curves to get
canonical models. See degenerations of elliptic curves to wheels of copies of P1:
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P1

E

E2 = −2

See Kodaira’s elliptic fibers – classified by extended Dynkin diagrams Ãn, D̃n, Ẽn, and special types
Ã∗

i for i = 0, 1, 2:

Thursday, August 25 19
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Definition 3.0.9 (Stable maps)
For V a projective variety, a stable curve is a map f : C → V satisfying

• (Mild singularities) C has at worst nodes.
• (Numerical condition) ωC is very ample, or equivalently has positive degree on components

which map to points.

So for example, we can ignore vertical curves:

Thursday, August 25 20
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pt

C

V

One can define a moduli space of stable curves passing through n marked points, Mg,n(V ):

C V

p1

p2

p3

p4

f

Remark 3.0.10: Defined to formulate Gromov-Witten invariants. Motivated by physics, but
originally non-algebraic and used almost complex structures. The second condition yields unique
limits since it will yield a relative canonical model, which exist and are unique. This moduli space
can be generalized to higher dimensions, see KSBA compactifications.
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Remark 3.0.11: Constructing Mg and Mg:

• Step 1: Parameterize embedded curves Cg ↪→ PN by the picking a basis of the linear system
|2KX |, where N = 2(2g − 2)− (g − 1)− 1 = 3g − 4 and degCg = 2(2g − 2). Use either the
Chow variety Chd,N , parameterizing cycles/subvarieties of PN with degree d, or the Hilbert
scheme Hilbh parameterizing closed subschemes X ↪→ PN with a fixed Hilbert polynomial h.
The latter may not yield reduced curves, but closed subschemes are easier than varieties since
they are just defined by equations.

• Step 2: Divide by PGLN+1, using GIT (next week) to produce a space X/G whose points
(ideally) correspond to G-orbits.

4 Tuesday, August 30

Remark 4.0.1: Goal: understanding quotients of varieties by general group actions, a basic notion
for moduli. The easiest case: finite groups G↷ X ∈ AffAlgVar/k for k = k.

Remark 4.0.2: Think of X ⊆ An
/k for some N , with coordinates [a1, · · · , an], so X = V (f1, · · · , fn).

Note OAn = k[x1, · · · , xn], and regular functions on X are restricted polynomials, so we get a
sequence

R = k[X]← k[x1, · · · , xn]← I =
√
⟨f1, · · · , fn⟩,

so R ∈ kAlgfg without nilpotents – in fact varieties biject with such algebras. If G ↷ R any ring,
one can take invariants

RG :=
{
r ∈ R

∣∣∣ g∗(r) = r ∀g ∈ G
}

which is a subring and a k-subalgebra of R. Here g∗ is defined in terms of pullbacks of functions:

X X

k

g

φg∗(φ)

Link to Diagram

Lemma 4.0.3(?).
If ♯G

∣∣∤ ch(k) then RG ∈ kAlgfg.a

aFor infinite groups, we’ll again ask if RG is finitely generated – this will be true when G is a reductive linear
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algebraic group.

Remark 4.0.4: There is a k-linear averaging map

S : R→ RG

r 7→ 1
♯G

∑
g∈G

g∗(r),

noting that S is not a ring morphism.

Let a ∈ R and consider pa(x) := ∏
g∈G(x− g∗(a)), a polynomial of degree n = ♯G whose coefficients

are in the subring RG and are symmetric polynomials in the g∗(a). Since pa(a) = 0 = an + · · ·, an is
a linear combination of 1, a, · · · , an−1] with coefficients in RG and these symmetric polynomials. So
if {a1, · · · , am} generate R as a k-algebra, the images of monomials S(ak1

1 · · · akm
m ) with 0 ≤ ki ≤ n

generate RG. If b ∈ RG, one one hand b = S(b), and on the other hand b = ∑
cka

kI
I so S(b) =∑

ckS(akI
I ). Thus the ck are in the subring generated by elementary symmetric polynomials in the

g∗(ai).

There is another basis for elementary symmetric polynomials given by Newton sums. Recall

• σ1 = ∑
xi

• σ2 = ∑
xixj

• σn = ∏
xi

The Newton sums are

• N1 = ∑
xi

• N2 = ∑
x2

i

• Nn = ∑
xn

i ,

and one can inductively show that one can be written in terms of the other.

The advantage is that the averaging operator commutes with sums, so the ck like in the subring
generated by Newton sums of the S(aki

i )

Theorem 4.0.5(?).
Assume G is finite and acts on X ∈ AffAlgVar/k. There is a bijection

{G-orbits on X}⇌
{

Points of an affine variety Y with k[Y ] = k[X]G
}
.

Writing X = mSpecR (since we’re working with varieties over a field), one can write Y =
mSpec(RG). There is a quotient map π : X → Y which is universal with respect to maps
G-equivariant maps ψ : X → Z with Z affine.a This gives a geometric and a categorical
quotient.

aIn fact “affine” can be removed here and Z can be replaced by an arbitrary variety.
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Proof (?).
Since RG ↪→ R we obtain a morphism X

π−→ Y of varieties and a pullback k[Y ] π∗
−→ k[X]. Given

φ ∈ k[Y ], the pullback π∗(φ) is constant on G-orbits. Given two orbits O1, O2, one can find an
invariant function which is zero on O1 and one on O2. Any finite subset on a variety is closed.
Delete a point from O2 to get a proper containment of sets O1 ∪ (O2 \ {p}) ⊂ O1 ∪O2 which
are both closed in X. This corresponds to a proper containment of ideals, so pick a function
vanishing on the former but not the latter and average. Thus the regular invariant functions
separate orbits, and the images of the Oi in Y are distinct, making X → Y a geometric
quotient.
For the universal property, any X → Z defines a ring morphism S → R, and G-equivariance
factors this as S → RG ↪→ R, thus factoring X → Y → Z.

■

Remark 4.0.6: The right classes of groups to take: geometrically reductive and linearly reductive.2

Over C these coincide, and are e.g. GLn(C) (trivial center, nontrivial π1), the classical semisimples

• Type A, SLn(C) (nontrivial center, trivial π1),
• Types B and D, SOn(C),
• Type C Sp2n(C),

along with (C×)n, and their products and extensions, and the exceptional groups E6, E7, E8, F4, G2.
Here linearly reductive means any finite-dimensional representation decomposes into a sum of
irreducible representations.

The most useful for moduli: GLn,PGLn, SLn. Note that PGL and SL are almost the same, up to
a finite group.

For ch(k) = p, the only linearly reductive group on this list is Gn
m, while “geometrically reductive”

includes all of these groups. Over Z, the split versions GLn(Z), Spn(Z), etc still work.

Remark 4.0.7: Nonsplit groups are e.g. those not isomorphic to GLn(k) but become isomorphic
over k. Examples: compare Gm over R and S1 = k[x, y]/

〈
x2 + y2 − 1

〉
; these only become

isomorphic over C.

Remark 4.0.8: Let Sn ↷ k[x1, · · · , xn] by permuting variables, then

k[x1, · · · , xn]Sn = k[σ1, · · · , σn] = k[N1, · · · , Nn],

generated by elementary symmetric functions or Newton polynomials.

Theorem 4.0.9(Todd-Shepherd).
Suppose G ↷ C[x1, · · · , xn] with G finite and generated by pseudo-reflections. Then the

2The main difference: linearly reductive is a condition after removing a hyperplane, and geometrically reductive
involves replacing a hyperplane with a higher degree hypersurface.
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invariants are again a polynomial ring:

C[x1, · · · , xn]G ∼= C[z1, · · · , zn].

Remark 4.0.10: More generally, a root lattice Λ (e.g. for a Coxeter group) gives rise to a Weyl
group W (Λ), and one can consider W -invariant functions. For example, W (An) = Sn+1. For a
torus, invariant functions are characters. For a Lie algebra g, one can show that the W -invariants of
symmetric functions on the torus, S(h)W , forms a polynomial algebra. The generators are referred
to as the fundamental weights.

Coming up next: groups of multiplicative type, infinite groups, and generalizing the above theorem
by removing some problematic subsets.

5 Thursday, September 02

E 5.1 Decomposition using characters e

Remark 5.1.1: Last time: for G ↷ R ⊇ RG for G ∈ FinGrp, the Todd-Shepherd(-Chevalley)
theorem states that if G ↷ An and G is generated by pseudoreflections then k[x1, · · · , xn]G is
again a polynomial ring. Consider now G ↷ R for G finite abelian and ch k = 0. This yields a
grading R = ⊕

χ∈Ĝ
Rχ where Ĝ = Hom(G,C×) = Hom(G,Q/Z) and RχRχ′ ⊆ Rχ+χ′ Note that

if G ∼=
⊕

Z/niZ then Ĝ ∼=
⊕
µni , which is non-canonically isomorphic to ⊕Z/niZ. Recall that

reflections have eigenvalues {1, 1, · · · , 1, α ̸= 1}.

Example 5.1.2(?): Let C2 ↷ A2
/C by (x, y) 7→ (−x,−y). What are the invariants k[x, y]C2?

Check that p(x, y) = ∑
aijx

iyj 7→
∑(−1)i+jaijx

iyj , which equals p(x, y) when all of the i, j are
even. Write k[x, y] = ⊕

i+j≡20 x
iyj ⊕

⊕
i+j≡21 x

iyj := R0 ⊕R1 and note Ĝ ∼= µ2 ∼= C2 and ?. Also
note that for r ∈ Rχ we have g.r = χ(g)r We can write

k[x, y]C2 = R0 = k[x2, xy, y2] = k[u, v, w]/
〈
uw = v2

〉
,

which is a singular cone V (uw − v2) ⊆ A3:
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A2/C2
∼= V (uw − v2)

Shepherd’s theorem does not apply here since the action is given by
[
−1 0
0 −1

]
, which is not a

reflection.

Example 5.1.3(?): Take C2 ↷ A2 by (x, y) 7→ (x,−y), then k[x, y]C2 = k[x, y2].

Remark 5.1.4: Note that in general, An/G = mSpec k[x1, · · · , xn]G has quotient singularities.
Three types of varieties we work with in AG:

• Affine ⇌ rings,
• Projective ⇌ graded rings,
• General: covered by affines, not necessarily projective.

Upshot: we can think of projective varieties not as covered by affines, but rather as a “spectrum”
of a single graded ring. Given a subset Z = V (f1, · · · , fm) ⊆ Pn

/k cut out by homogeneous
polynomials of degree di in the homogeneous degree 1 coordinates x0, · · · , xn, one can take the
affine cone C(Z) ⊆ An+1. A linear action of G ↷ Pn

/k descends to G ↷ Z, where linear means
that g.[x0 : · · · : xn] = Mg[x0 : · · · : xn]. Not every action is of this form: take G = C× ↷ P1 by
λ[x0 : x1] = [x0 : λx1]. This is linear; to make a nonlinear action glued the fixed points {0} and
{∞} to get a rational nodal curve:
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P1

0 ∞
Note that Pic(C) = Z

⊕
C×.

Remark 5.1.5: For a linear action by a finite groupG, writing Z = mProjR withR = k[x1, · · · , xn]/
√
⟨fi⟩

then Z/G = mProjRG. Such actions can be lifted from Z to OPn(1)|Z = OZ(1).

E 5.2 Group Varieties e

Definition 5.2.1 (Group variety)
A variety G ∈ Var/k is a group variety if it admits morphisms

• Multiplication µ ∈ AlgVar(G×
k
G,G),

• Units: e ∈ AlgVar(Spec k,G),
• Inverses: i ∈ AlgVar(G→ G).

These are required to satisfy some axioms.
Encoding associativity:

G×3
G×2

G×2
G

(µ12,id3)

µ(id1,µ23)

µ

Link to Diagram
Encoding 1a = a:

Spec k ×G G×G

G

(e,id2)

µ
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Link to Diagram
Encoding aa−1 = 1:

G G×2

Spec k G

structure map µ

e

a7→(a,a−1)

Link to Diagram

Remark 5.2.2: Suppose that G = SpecR is affine, then there are dual notions:

• Comultiplication: µ∗ : R→ R⊗k R.
• Counits: e∗ : R→ k.
• Coinverses: i∗ : R→ R.

Example 5.2.3(?): The additive group Ga = Spec k[x], whose underlying variety is A1. In
coordinates, the group law is written additively as

• µ(x, y) = x+ y
• e = 0
• i(x) = −x

Write z = x+ y, then on the ring side we have

• Comultiplication:

µ∗ : k[z]→ k[x]⊗k k[y] ∼= k[x+ y]
z 7→ x⊗ 1 + 1⊗ y 7→ x+ y.

• Counit: e∗ : k[x]→ k where x 7→ 0

• Coinverse: i∗ : k[x]→ k[x] where x 7→ −x.

Example 5.2.4(?): The multiplicative group Gm = Spec k[x, x−1] whose underlying variety is
A2 \ {0}

The group law is:

• µ(x, y) = xy
• e = 1
• i(x) = x−1
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For rings:

• Comultiplication:

µ∗ : k[z] 7→ k[x, x−1]⊗k k[y, y−1] ∼= k[x±1, y±1]
z 7→ x⊗ y 7→ xy.

• Counit: e∗ : k[x±1]→ k where x 7→ 1.

• Coinverse: i∗ : k[x±1]→ k[x±1] where x 7→ x−1.

Example 5.2.5(?): Roots of units µn = Spec k[x]/ ⟨xn − 1⟩. Note that there is a closed embedding
µn ↪→ Gm since there is a surjection Spec k[x, x−1] ↠ k[x]/ ⟨xn − 1⟩. Note that in ch k = p, this
yields a scheme that is not a variety since it is not reduced: one has µp = Spec k[x]/ ⟨xp − 1⟩ =
Spec k[x]/ ⟨(x− 1)p⟩ which contains nilpotents. This is the first example of a group scheme which
is not a group variety.

The group operations agree with that on Gm, e.g. comultiplication is

µ∗ : k[z]/ ⟨zn − 1⟩ → k[x]/ ⟨xn − 1⟩ ⊗k k[y]/ ⟨yn − 1⟩ ∼= k[x, y]/ ⟨xn − 1, yn − 1⟩ .

One can similarly define αp = ker Frob ↪→ Gm = Spec k[x]/ ⟨xp⟩.

Remark 5.2.6: Upcoming: more group varieties and schemes, especially GLn,SLn, and their
actions/coactions.

6 Tuesday, September 06

E 6.1 Group varieties e

Remark 6.1.1: Last time: group varieties. Most of today will work over C, k ̸= k, or Z. There is
a correspondence:

Affine varieties Rings and k-algebras
Group varieties/schemes Hopf coalgebras
µ : G×G→ G µ∗ : R→ R⊗k R
e : pt→ G e∗ : R→ k
i : G→ G i∗ : R→ R

Recall:
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• For M,N ∈ RMod, there is a tensor product M ⊗R N ,
• A morphism f ∈ CRing(R,S) yields a functor f∗ : SMod → (R,S)-biMod given by the base

change/scalar extension (−)⊗R S
• If S1, S2 ∈ RAlg then S1⊗RS2 ∈ RMod is in fact a ring, using the product (u1⊗v1)·(u2⊗v2) :=
u1u2 ⊗ v1v2.

• For any N ∈ RMod, the functor (−)⊗R N is right exact, so

A ↪→ B ↠C

⇝

A⊗R N → B ⊗R N ↠C ⊗R N.

Corollary 6.1.2(?).
If M is finitely generated, there is a generator/relation exact sequence R⊕m → R⊕n

↠ C.
Tensoring with any N ∈ RMod yields

N⊕m → N⊕n
↠ C ⊗R N.

In particular, this works for base change RMod→ SMod – the new module is generated as a
module by the same generators but new scalars.

Example 6.1.3(?): Consider C⊗R C, which has a ring structure. Write C = R[x]/
〈
x2 + 1

〉
, then

the base change is

C[x]/
〈
x2 + 1

〉
= C[x]/ ⟨x− i⟩ ⊕C[x]/ ⟨x+ i⟩ ∼= C⊕C,

which is a ring with zero divisors and idempotents since (1, 0)2 = (12, 02) = (1, 0).

Slogan 6.1.4
For tensor products: same generators, same relations, extend scalars.

Remark 6.1.5: Recall:

• Gm = Spec k[x±1] ≈ C×.
• Gn

m = Spec k[x±1
1 , · · · , x±1

n ] ≈ (C×)n.
• Ga = Spec k[x] ≈ (C,+).
• µn ⊆ Gm = Spec k[x]/ ⟨xn − 1⟩ ≈

{
ξ ∈ C

∣∣∣ ξn = 1
}

.
• In characteristic p, µp = Spec k[x]/ ⟨xp − 1⟩ = Spec k[x]/ ⟨x− 1⟩p.

Example 6.1.6(?): Of using the tensor product slogan: identifying the map

k[z]
⟨zn − 1⟩ →

k[x]
⟨xn − 1⟩ ⊗k

k[y]
⟨yn − 1⟩

∼=
k[x, y]

⟨xn − 1, yn − 1⟩ ,

realizing this as z 7→ x⊗ y 7→ xy, checking that zn = 1 =⇒ (xy)n = 1.
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Remark 6.1.7: If G is an arbitrary finite group it can be made into an affine algebraic group
variety over k. Give the underlying set of G = ∐

g∈G {pt} the discrete topology to get an algebraic
variety. To get the algebraic group structure, note that any map of finite sets is algebraic. Define a
ring R := ⊕

g∈G k, and a comultiplication as follows: note that

R⊗k R ∼=
⊕

(a,b)∈G×G

kea,b

where the ea,b just tracks which summand we’re in. So define

R→ R⊗k R

eg 7→
∑

ab=g

ea,b.

Remark 6.1.8: Note that we could have let pt = Spec k. E.g. Cp ̸= µp but are Cartier dual.
However, the ring k[x]/ ⟨x− 1⟩p is much easier to understand than the R ⊗k R from above, even
for very small groups like C2.

Example 6.1.9(?): Recall GLn ⊆ An2 is the open subspace which is the complement of V (det),
so a principal open subset. The ring is k[xij , 1/ det] for 1 ≤ i, j ≤ k, which is obtained by localizing
at the determinant. Thus we can embed it as a closed subset in An2+1 using V (y det(xij) = 1),
i.e. introducing a new free variable for 1/ det and ensuring it’s nonzero.

Definition 6.1.10 (Affine algebraic groups)
An affine algebraic group is a closed subgroup G of GLn, and the coordinate ring RG is a
quotient of RGLn .

Example 6.1.11(?): For SLn, the ring is k[xij ]/ ⟨det−1⟩, and define PGLn as SLn/µn or GLn /Gm.
Although it’s not obvious, these are affine – for PGLn, the ring is the µn invariants of the coordinate
ring of SLn, so one gets the ring of polynomials in RSLn whose powers are multiples of n.

E 6.2 Algebraic group actions e

Definition 6.2.1 (Algebraic group action)
An action of an algebraic group G on a variety (or scheme) X is a map G×

k
X

a−→ X

satisfying the usual axioms encoded in commuting diagrams:

• (gh).x = g.(h.x):

G×G×X G×X

G×X X

(idG,a)

a(µ,idX)

a
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Link to Diagram

• 1.x = x for all x:

{1} ×X G×X

X X

a

Link to Diagram
Note that one can now reverse these diagrams to get the coaction on rings a∗ : A→ R⊗k A.

Example 6.2.2(?): Let µn ↷ A2 by ξ.(x, y) := (ξx, ξky), then the coaction is

k[x, y]→ k[x, y, ξ]
⟨ξn − 1⟩ = k[ξ]

ξn − 1[x, y]

x 7→ ξx

y 7→ ξky.

Exercise 6.2.3 (?)
Check that this satisfies the axioms for a coaction.

Definition 6.2.4 (Linear coactions)
Let G ∈ GrpVar/k, X ∈ Vect/k, then a linear coaction is a homomorphism V

a∗
−→ R ⊗k V

satisfying the duals of the axioms above.

Example 6.2.5(?): If V = kx⊕ ky then V → R⊗k V = Rx⊕Ry.

Remark 6.2.6: There is a coaction on A = Sym∗ V = k ⊕ V ⊕ Sym2 V ⊕ · · ·, where V =
⟨x, y⟩ , Sym2 V =

〈
x2, xy, y2〉. This is the same as an action G ↷ AN for some N acting on

an affine space.

7 Thursday, September 08

E 7.1 Diagonalizable groups e

Remark 7.1.1: Last time: coactions on vector spaces a∗ : V → R⊗k V where R = k[G] is the ring
of regular functions on an algebraic group G. Thinking of V ∨ ∼= kn ∼= An

/k = Spec Sym∗ V as the
ring of regular functions, we get a map Sym∗(V )→ R⊗k Sym∗(V ).
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Definition 7.1.2 (Invariant vectors for coactions)
A vector v ∈ V is invariant if a∗(v) = 1⊗ v.

Lemma 7.1.3(?).
Every algebraic coaction is locally finite, i.e. every v ∈ V is contained in a finite-dimensional
invariant vector subspace.

Proof (?).
Check that v 7→∑

ai ⊗ vi where v ∈ ⟨vi⟩ and use a.(b.v) = (ab).v.
■

Definition 7.1.4 (Diagonalizable groups)
Let A be a finitely-generated abelian group and let G := Â be its Cartier dual. Then RG =
k[A] :=

{∑
cae

a
∣∣∣ ca ∈ k, eaeb = ea+b

}
is a commutative ring and in fact a finitely-generated

algebra. For k a general ring, this yields a scheme, and in fact it has the structure of a group
scheme:

e∗ : RG → RG ⊗k RG

ec 7→
∑

a+b=c

ea ⊗ eb :=
∑

a+b=c

e(a,b)

u∗ : RG → k

ea 7→ 1

i∗ : RG → Rg

ea 7→ e−a

.

Note that A ∼= Zr ⊕Z/niZ, so all diagonalizable groups are of the form Â = Gr
m

⊕
µni .

Example 7.1.5(?):
• A = Z yields Â = Gm = Spec k[Z].
• A = Cn yields Â = µn = Spec k[Cn] which has nilpotents.
• A = Zr yields Â = Spec k[Zr], and choosing a basis for Zr yields an isomorphism with

Spec k[x±1
1 , · · · , x±1

r ].

Proposition 7.1.6(Diagonalizable groups induce gradings).
An algebraic coaction Â↷ V yields a grading V = ⊕

a∈A Va. Thus a Gm action is a Z-grading,
and a µn action is a Cn-grading. This works for k any ring.
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Proof (?).
Check that V a∗

−→ V ⊗ k[A] by v 7→∑
a∈A e

ava. This is a finite sum, so there are only finitely
many nonzero va appearing in this sum. We need to show

• v = ∑
va,

• va 7→ (va ∈ Va, 0 ∈ Vb̸=a),
• va ̸=

∑
b ̸=a vb.

For the first, compose V e∗
−→ V ⊗ R u∗

−→ V by v 7→
∑
eava 7→

∑
va and this must equal v by

the axioms. For the second, first using g(hv) to get v 7→∑
eava 7→ (va)be

a ⊗ eb, and (gh)v to
get v 7→∑

eava 7→
∑

b+c=a vaeb ⊗ ec. These must be equal, so the coefficients must be equal.
■

Exercise 7.1.7 (?)
Check this – show that the last equality is equivalent to being a direct sum.

E 7.2 Invariants e

Definition 7.2.1 (Linearly reductive groups)
Let G ∈ AlgGrpVar/k and suppose G ↷ V is a G-representation, i.e. a coaction V → R ⊗ V .
Define the invariant subspace V G :=

{
v ∈ V

∣∣∣ a∗(v) = 1⊗ v
}
⊆ V ; G is linearly reductive

iff for any V ↠W of G-representations induces V G ↠WG.
One can equivalently require V,W to be arbitrary
or just finite-dimensional.

Lemma 7.2.2(?).
If G is a finite group variety and ch k

∣∣∤ ♯G, then G is linearly reductive.

Proof (?).
Use the Reynolds operator V R−→→V G which sections the inclusion V G ↪→ V , so R ◦ i = idV G ,
where R(v) = (♯G)−1∑

g∈G g(v).
■

Lemma 7.2.3(?).
Any diagonalizable group is linearly reductive.

Proof (?).
Writing V = ⊕

a∈A Va, then V G = V0 and projecting onto the a = 0 summand yields a
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surjection.
■

Remark 7.2.4: Over ch F = p, the only linearly reductive groups are either finite or diagonalizable.

Theorem 7.2.5(?).
Over C, the linearly reductive groups are precisely

• Gr
m

• Semisimple groups of types A(SLn), B,C,D(SOn,Spn), E6,7,8, F4, G2.
• T ×G/H for G semisimple and H a finite central subgroup.

This includes GLn = SLn ×C×/H and PGLn = SLn/µn.

Remark 7.2.6: Later: invariants of finitely generated for linearly reductive are again finitely
generated. Note that invariants can be finitely-generated even when the group is not.

8 Tuesday, September 13

Theorem 8.0.1(1).
Suppose G is a linearly reductive group and G ↷ R a finitely generated ring (or k-algebra).
Then the subring of invariants RG is finitely generated.

Remark 8.0.2: See proof in Mukai, due to Hilbert.

Theorem 8.0.3(2).
Suppose G ↷ S := k[x0, · · · , xn] linearly and preserves the grading. Then SG is finitely
generated.

Proof (of theorem 1).
Since G preserves polynomials of degree d, the ring SG is graded and decomposes as SG =⊕

e≥0 S
G∩Se. Let SG

+ be the elements of positive degree and write SG = k⊕SG
+ . Writing J =〈

SG
+

〉
⊴ S for the ideal it generates, since S is Noetherian then we can write J = ⟨f1, · · · , fN ⟩.

These can be chosen to be homogeneous by choosing any homogeneous polynomial, stopping if
that generates the ring, and otherwise continuing by picking fi in the complement to construct
an ascending chain of ideals.

Claim:

SG ∈ kAlg.

Take fi such that deg(fi) > 0. There is a surjective morphism S⊕N
↠ J of S-modules.
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Since JG ⊆ SG, this yields a surjection (SG)⊕N
↠ JG of G-modules. If f ∈ JG then write

f = ∑N
i=1 hifi with hi ∈ SG and deg hi < deg fi. Finish by induction.

This yields a surjection S = k[x0, · · · , xn]↠ R; we want a surjection SG ↠ RG.

Lemma 8.0.4(?).
Let R := k[ai], then ∃V ∈ Vectfd

/k where V ⊆ R is G-invariant and contains all of the ai.

Proof (of lemma).
The action is locally finite, so each ai lies in a finite-dimensional subspace Vi with action
Vi → Vi ⊗ k[G]. Set V := ∑

i Vi.
Writing X = mSpecR for R = k[X], a surjection k[x0, · · · , xn] ↠ R corresponds to an
inclusion X → Adim V where G↷ Adim V linearly. This corresponds to G acting linearly
on k[x0, · · · , xn] and R.

■

?
■

Remark 8.0.5: Linearly reductive groups:

• G finite, characteristic not dividing ♯G,
• Gr

m,
• Over C: semisimple (types A-G), e.g. SLn,PGLn for type A,
• Over C: reductive, e.g. GLn.

Definition 8.0.6 (Geometrically reductive groups)
A group G is geometrically reductive iff for all G↷ V linearly and for all w ∈ V invariant
vectors, there exists a G-invariant homogeneous polynomial h such that h(w) ̸= 0 and deg h > 0.

Remark 8.0.7: Linear reductive corresponds to deg h = 1. Evaluating at w gives a surjection
V ∨ ↠ k = kG. This yields a surjection (V ∨)G → k = kG since not every such function vanishes.
Finite generation of invariants is still true, although the proof takes much more work. See

• Mumford’s GIT for linearly reductive groups,
• Seshadri for geometrically reductive groups.

Note that over ch k = p, the groups SLn,PGLn are geometrically reductive. In characteristic zero,
a nontrivial fact is that linearly reductive is equivalent to geometrically reductive.

Example 8.0.8(?): Ga is not linearly reductive. Produce a Ga-equivariant V ↠ W such that
V G ̸↠ WG. Take C2 → C by the horizontal projection (x, y) 7→ y, and the actions given by
horizontal shifts λ(x, y) = (x+ λy, y) and λ(y) = y trivial for λ ∈ C.

Example 8.0.9(?): This can’t happen if the action is multiplicative. Let Gm ↷ V = ⊕
λ∈Z Vλ
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and wλ ∈ Vλ. Set λ.wλ := λχwλ, so e.g. V = ⊕
n∈Z Vn and λ.wn = λnwn.

Theorem 8.0.10(?).
Although Ga is not linearly reductive, if Ga ↷ R then RGa is still finitely generated.

Remark 8.0.11: The proof uses a trick of reducing to an SL2 action where RGa ∼= RSL2 .

Remark 8.0.12: Invariants RG for various G:

• Ga: finitely-generated
• Gn

a : for n ≥ 10, not finitely-generated. A geometric counterexample comes from asking if
there are finitely many curves C ∈ Bld P2 with C2 < 0 and considering R = k[x0, x1, x2]. For
d ≤ 8 there are finitely many, for d ≥ 9 infinitely many.

• G2
a: might still be open.

Nagata generalizes this to Pn.

9 Thursday, September 15

Theorem 9.0.1(Wirchauser 1926?, Seshadri 1962 (char. 0), Tyc 1998 (char. 0)).
Let G := Ga ↷ k[x1, · · · , xn] = Sym∗ V for V := ⟨x1, · · · , xn⟩k, then k[x1, · · · , xn]G is finitely-
generated (despite G not being linearly reductive).

Remark 9.0.2: Useful fact: in characteristic zero, Lie groups are closely connected to Lie algebras.
For G ≤ GLn(C) a closed subgroup, its Lie algebra is g := TeG, which has underlying vector
space Cdim G and bracket satisfying [AB] = −[BA] and the Jacobi identity. Understanding this
tangent space: think of matrices I + εA where εA is small, and do operations discarding O(ε2)
terms. Equivalently, work over C[ε]/

〈
ε2〉.

Lie group Lie algebra
GLn(C) Matn×n(C)
SLn(C) sln(C) =

{
M
∣∣∣ tr(M) = 0

}
SOn(C) =

{
M
∣∣∣ MM t = I

}
son(C) =

{
M
∣∣∣ M +M t = 0

}

To work out what g should be for SLn(C), linearize the det = 1 condition:

det 1 + εA := det
[
1 + εa11 εaij

· · · 1 + εann

]
= 1 + ε

∑
aii = 1 + ε tr(A).

For SOn, work out (I + εM)(I + εM)t = I.
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Remark 9.0.3: There is a way to go back: g
exp−−→ G. This is almost a bijection, but can fail: e.g. in

semisimple cases, SLn(C),PGLn(C) = SLn(C)
µn

7→ sln(C) both have the same Lie algebra. Note that
µn ⊆ Z(SLn(C)) is central, and more generally if G′ = G/H for H ⊆ Z(G), TIG ∼= TIG

′.

The other issue: consider G = (C×)n, then g = Cn with [AB] = 0.

Lemma 9.0.4(?).
In characteristic zero, if G↷ R := Sym∗ V , then g ↷ R and RG = Rg.

Remark 9.0.5: Recalling sln = {tr(A) = 0} and son =
{
A+At = 0

}
, one can define eA :=∑

n≥0A
n/n!; then e.g. tr(A) = 0 =⇒ det(eA) = 1. Note that one needs characteristic zero here to

make sense of terms like 1/n!

Lemma 9.0.6(?).
Ga ↷ V is equivalent to an infinitesimal action, or equivalently a nilpotent map f : V → V .
E.g. for λ ∈ Ga, define λ.v := exp(λf).

Remark 9.0.7: Recall sl2(C) = C ⟨e, f, h⟩, and an action sl2 ↷ V is equivalent to a choice of 3
operators e, f, h ∈ Endk(V ). Writing V = ⊕

m∈Z≥0
Vm as a sum of weight spaces for h, where for

vi ∈ Vm one has relations

• evi = (m− i+ 1)vi−1
• fvi = (i+ 1)vi+1
• hvi = (m− 2i)vi

One can write the irreducible representations as Um := {pm(x, y)}, polynomials of degree m where
the Um can appear in the Vm with multiplicity. Letting f : V → V be nilpotent, so fN = 0,
over C one gets a JCF where an m × m block has ones on the superdiagonal, yielding a chain
v−1 = 0, v′

1 → v′
2 → · · · → v′

m−1 → vm = 0. Rescaling vi := v′
i/(m − i)! yields the above relations

and proves the theorem.

Proposition 9.0.8(Nagata 1958, Mukai 2010).
Nagata produced an action GN

a ↷ V such that SG is not finitely-generated, where S =
Sym∗ V ∼= C[x1, · · · , xn] and N = 16.
Mukai did this for N = 3. The N = 2 case is open.

Remark 9.0.9: We’ll sketch a proof of Mukai’s result. Define

Cn ↷ k[x1, · · · , xn, y1, · · · , yn]
[t1 · · · , tn] 7→ xi 7→ xi, yi 7→ yi + tixi.

Let G := Cr ≤ Cn be some vector subspace, so G ∼= Gr
a. It turns out that SG is the total Cox ring
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of X := Blp1,··· ,pn Pr−1, which is generally defined as

Cox(X) :=
⊕

L∈Pic(X)
H0(X;L).

Taking r = 3 yields X := Blp1,··· ,pn P2. Note that Pic(X) = Zn+1, since any D ∈ Pic(X) can be
written as D = a0[H] +∑

aiEi where [H] ∈ Pic(P2) is the hyperplane (line) class and Ei are the
exceptional curves.

Definition 9.0.10 (?)
The support of Cox(X) is

supp Cox(X) =
{
L ∈ Pic(X)

∣∣∣ H0(X;L) ̸= 0
}

= Eff(X) ⊆ Zn+1,

which forms a monoid/semigroup.

Lemma 9.0.11(?).
If Cox(X) is finitely-generated over C then Eff(X) is a finitely-generated semigroup.

Remark 9.0.12: Thus the strategy is to find points, blow up, and show Eff(X) is not finitely-
generated. Note that E2

i = −1 are effective (−1)-curves.

Lemma 9.0.13(?).
A curve is exceptional on X iff E is an irreducible curve with E2 < 0. Any exceptional curve
is a primitive generator of Eff(X).
This follows since E ̸= A+B for two effective curves – if so, write 0 > E2 = A2 +B2 + 2AB.
Force AB to be positive by moving A or B, forcing A2 or B2 to be negative

Remark 9.0.14: Producing the example: blow up 9 points on an elliptic curve. Take two cubics
C1, C2 in P2, intersecting at 9 points, and blow them up. This yields a pencil of curves, and in
fact an elliptic fibration with C1, C2 in the fibers. The exceptional curves yield sections Ei. The
Mordell-Weil group yields sections, and the differences between points yields elements of infinite
order:
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E1

E2

0Difference

10 Tuesday, September 20

Remark 10.0.1: Continuing real geometric invariant theory. Setup: let G ↷ X be a linearly
reductive group (not necessarily finite) acting on an affine variety X = mSpecR, e.g. R = C[x].
We have a subring RG ↪→ R, so mSpecR→ mSpecRG and we define X//G := mSpecRG to be the
affine quotient.

Example 10.0.2(?): Let X = A1 so R = C[x] and G = Gm
∼= C× with action λ.x := λdx for

d ∈ Z\{0}, a weight d action. Note that λ∑ cix
i = ∑

ciλ
dixi which differ for any i > 0, so RG = C.

Thus A1 → A1//G ∼= mSpec C ∼= pt. The two orbits are 0,A1 \ {0}, which both map to the same
point. Note that the closure of the second orbit A1 \ {0} is the other orbit {0}.

Example 10.0.3(?): Let Gm ↷ A2 by λ.(x, y) = (λd1x, λd2y) for two nonzero weight d1, d2. The
result depends on the relative signs:

• d1 = d2 = 1 yields an orbit Orb0 = {0} and an orbit OrbL for every line L in A2. Note that
the closure of every OrbL includes Orb0, and A2//Gm

∼= pt since the only monomials fixed
are constant.

• d1 = 1, d2 = −1: the invariants are now C[xy] ∼= A1 with coordinate z := xy, and the quotient
map is (x, y) π−→ z ∈ A2//Gm. There are orbits for every x ̸= 0 of the form Orbc = V (xy − c),
along with V (x) for any point with x-coordinate zero, V (y) for y zero, and {0}. Note that
π−1(c) is a hyperbola for c ̸= 0 and π−1(0) = V (x) ∪ V (y) ∪ 0 is three orbits, only {0} is a
closed orbit, and the closures of the other two intersect at zero.
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Theorem 10.0.4(?).
Let G be linearly reductive and X affine. Then

1. X ↠ X//G is surjective.
2. Points of X//G are equivalence class of G-orbits in X where Orb1 ∼= Orb2 ⇐⇒ clXOrb1∩

clXOrb2 ̸= ∅ (i.e. orbits are equivalent when their closures intersect).
3. For every c ∈ X//G, π−1(c) contains a unique closed orbit.
4. If Z ⊆ X is closed then π(Z) is closed, so π is a closed map.a

aThis is also sometimes called an immersion, i.e. any set whose preimage is closed must itself be closed.

Lemma 10.0.5(?).
Let Orb1,Orb2 ⊆ X be G-orbits whose closures do not intersect. Then π(Orb1) ̸= π(Orb2).

Remark 10.0.6: Note that if Y ⊆ X//G is a hypersurface V (f) with f ∈ RG, it pulls back to
a G-invariant hypersurface V (π−1(f)) ⊆ X. Any point in X//G is an intersection ∩V (fi), which
pulls back to an intersection of hypersurfaces. Thus assuming Orb1,Orb2 are disjoint, it suffices to
find a G-invariant function the separates the points π(Orb1) and π(Orb2). Also note that if orbits
intersect, they are in the same fiber and thus map to the same point – the claim is that this is the
only way this can happen.

Proof (?).
The closed sets clOrbi ⊆ X correspond to ideals ai ∈ mSpecR, and Z(a1 + a2) = V (a1) ∩
V (a2) = clOrb1 ∩ clOrb2 = ∅ by assumption. By the Nullstellensatz, a1 + a2 = ⟨1⟩ = R, so
there is a surjective map a1 ⊕ a2 ↠ R. Since G is linearly reductive, aG

1 ⊕ aG
2 ↠ RG, so one

can find G-invariant functions fi with f1 + f2 = 1. This yields f1|clOrb1
≡ 0 and f1|clOrb2

≡ 1
since they sum to 1.

■

Remark 10.0.7: To see that this implies (3), consider a fiber:
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Missed the verbal argument here.

Remark 10.0.8: To see (1), note that RG = C ⟨f1, · · · , fn⟩ is finitely-generated as a ring by
G-invariant functions fi since G is linearly reductive, yields X → X//G ↪→ An. Take affine
coordinates for p = (a1, · · · , an) ∈ X//G. There is a surjection C[x1, · · · , xn] → RG by xi 7→ fi,
and similarly a surjection given by xi 7→ fi − ai. Note that C[x1, · · · , xn] → R is not surjective,
since giving it the trivial G-action yields a non-surjective map C[x1, · · · , xn]G → RG. So the
image is contained in some maximal ideal m ∈ mSpecR, and the claim is that m 7→ mp :=
⟨f1 − a1, · · · , fn − an⟩ ∈ mSpecRG corresponding to p.

Tuesday, September 20 42



11 Thursday, September 22

In other words, take ⟨fi − ai⟩ ∈ RG, and the claim is that ⟨fi − ai⟩ ≠ R, or equivalently V (fi−ai) ̸=
∅. This ideal is everything exactly when R⊕n → R surjects by (ti) 7→

∑
ti(fi − ai), but linearly

reactivity would give (RG)⊕n
↠ RG.

Remark 10.0.9: Proving that π is a closed map: let a ⊆ R,Z ⊆ X closed, and π(Z) ⊆ X//G.
Note that X → Y yields a ring map R ←[φ S and a corresponds to

〈
φ−1(a)

〉
. For a subring, this

is intersection. Define a map (ti) 7→
∑
tigi where R⊕n

↠ a = ⟨g1, · · · , gn⟩. Then (RG)⊕n
↠ aG.

Consider X → X//G by Z π−→ clπ(Z).

To be continued, use property 1 but for a subset.

Example 10.0.10(?): How this fails for groups that are not linearly reductive: let G := Ga ↷ C
by the shearing action a.(x, y) = (x, y + ax). Note that C[x, y]G = C[x]. For x ̸= 0, the orbits are
vertical lines, and for x = 0 a vertical set of discrete points. Note that V (xy = c) is closed but its
image misses the origin under the projection to A1.

11 Thursday, September 22

Remark 11.0.1: Things we quotient by: affine varieties are essentially rings. Recall that projective
varieties have affine cones: regard homogeneous equations as usual equations. For quasiprojective
varieties, take the projective closure to get a projective variety. However, there are also arbitrary
varieties, which are perhaps not as useful. GIT mostly deals with affine or projective varieties, but
note that Mumford’s book sets up the general case.

Remark 11.0.2: Setup: X ∈ AffVar/k corresponding to R ∈ kAlg, and G↷ X a linearly reductive
group corresponding to a coaction G↷ R. Take affine quotients X//G := SpecRG which receives a
map X

π−→ X//G.

Theorem 11.0.3(?).
In this setup,

1. π is surjective.
2. The points of X//G biject with closure-equivalence classes of G-orbits on X.
3. In every equivalence class there is a unique closed orbit.
4. π sends G-invariant closed sets to G-invariant closed sets.

Example 11.0.4(?): For C× ↷ A2 by λ.(x, y) := (λx, λ−1y), one gets the following:
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Remark 11.0.5: Let X ⊆ An be closed subset defining an affine variety with ideal I(X) and
let Z ⊆ X be closed with a := I(Z) Then k[x1, · · · , xn] ↠ R ↠ R/a and a is G-invariant, so
RG ↠ (R/a)G by linear reductivity. Since a ↪→ R, there is a map aG → RG and aG = a ∩RG. So
Z//G ⊆ X//G, and the claim is clπ(Z) = Z//G. Thus π(Z) is closed.

Corollary 11.0.6(?).
π is an immersion: if S ⊆ Y and π−1(S) is open implies S is open.

Proof (?).
Consider X ↠ X//G = S

∐
Sc, then π−1(S∐Sc) = π−1(S)∐π−1(Sc). If π−1(S) is open then

π−1(Sc) is closed, so Sc is closed and S is open.
■

Definition 11.0.7 (Stable)
A point x ∈ X is stable if

1. The orbit G.x is closed.
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2. The stabilizer Stabx is finite.

Define Xs to be the set of stable points. There is a further open subset Xss ⊇ Xs of
semistable points, and X \Xss are unstable points.

Remark 11.0.8: Note that one can show RG is integrally closed, so SpecRG is normal and singular
in codimension 1. In general, GIT quotients will be singular – but note that taking the stack quotient
will yield a smooth stack if X is smooth.

Lemma 11.0.9(?).
If G.x is in a closure-equivalence class with more than 1 orbit then x is not stable.

Proof (?).
Say G.x is closed, then dimG.x < dimG since it is strictly less than dimG.y for some other
orbit G.y. Then dim Stabx > 0, and in particular is not finite.

■

Example 11.0.10(?): Let C× ↷ A1 by the trivial action λ.x = x. This is a free action, all orbits
are single points and thus closed and all stabilizers are C×. However, this is not stable by the above
definition.

Lemma 11.0.11(?).
Let Z :=

{
x ∈ X

∣∣∣ dim Stabx > 0
}
⊆ X and π : X → X//G, then

1. Z is a closed subset.
2. Xs = X \ (π−1π(Z)), thus Xs is open.

Note that Xs may be empty and Z may be the entire space. Moreover, since Stabx is a
0-dimensional algebraic variety, it has finitely many points – e.g. SLn(Z) ⊆ SLn(C) is not
closed, or Z ⊆ C, and thus not an algebraic subgroup.

Proof (?).
For (1), use

φG×X → X ×X
(g, x) 7→ (gx, x)

and consider φ−1(∆), which corresponds to stabilizers. Then there is a map φ−1(∆) → X
whose fiber over x is Stabx. Since affine/projective/quasiprojective varieties are separated
(since ∆ it can just be defined by equations by embedding into a large AN ). This is surjective
since (1, x) 7→ x. Now use the general fact that if Y ↠ X then the set of x ∈ X where the
fiber dimension jumps is closed.
For (2), note that (1) implies Xs is open.

■
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Corollary 11.0.12(?).
X = Xs ⇐⇒ Stabx is finite for all x ∈ X.

Remark 11.0.13: Preview of the projective case: let G↷ X ⊆ Pn with coordinates [x0 : · · · : xn].
Look at the affine cone CX ⊆ An+1 with coordinates [x0, · · · , xn], so if p ∈ CX then λp ∈ CX for
any λ ∈ k. Note that CX doesn’t immediately have a G-action, so we need to lift the previous
action to some G ↷ CX called the linearization (a lift to the corresponding line bundle). This
may not be unique if G has characters. Unstable points will be those with orbits whose closure
contains zero, which will correspond to nonexistent points in the quotient, so we’ll have to throw
these out. Mumford gives numerical criteria to compute them.

12 Tuesday, September 27

Remark 12.0.1: Types of varieties:

• Affine.
• Projective: embeds into Pn.
• Quasiprojective: U := X \ Z ↪→ X

closed
↪→ Pn where Z ⊆ X is closed.

• Arbitrary.

Being closed in the Zariski topology implies closed in the classical topology, and these are compact
in the classical topology. Recall that proper maps are separable and universally closed – think of
proper as essentially projective.

Remark 12.0.2: For k = k, there is a bijection between AffVar/k and R ∈ kAlgfg with no nilpotents,
so there is a surjection φ : k[x1, · · · , xn] ↠ R with I := kerφ and I =

√
I. The map sends X

to k[X] := k[x1, · · · , xn]/I the ring of regular functions on X. If k = k then mSpecR consists of
elements m = ⟨x1 − a1, · · · , xn − an⟩ ∈ mSpec k[x1, · · · , xn], corresponding to points [a1, · · · , an] ∈
An

/k. Similarly AffSch bijects with commutative associative unital rings.

Projective varieties correspond to Z≥0-graded rings R over k = k, so R = ⊕d≥0Rd is finitely-
generated without nilpotents. The map sends R to its projective spectrum mProjR. For arbitrary
Z≥0-graded commutative associative unital rings, one similarly defines ProjR. If R = k[R1] is
generated by degree 1 elements, then there is an embedding mProjR ↪→ Pn, but an arbitrary
projective variety doesn’t necessarily come with such an embedding.

Remark 12.0.3: For this, take the Veronese subring R(e) := ⊕
d≥0Rde for e > 0. This corresponds

to the Veronese embedding Pn ↪→ PN for some large N , which is defined by

Ve : Pn → PN

[x0 : · · · : xn] 7→
[
xe

0 : xe−1
0 x1, · · ·

]
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where you send a point to all monomials in the coordinates of degree e. Here N + 1 =
(n+e

e

)
is the

number of such monomials. Note that e.g. xe−1
0 x1
xe

0
= x1

x0
, so one can recover the former ratios from

the latter. The condition of R = k[R1] is needed to guarantee Ve is an embedding.

Lemma 12.0.4(?).

mProjR = mProjR(e).

Lemma 12.0.5(?).
There exists an e0 ≫ 1 such that R(e) is generated in degree 1 for e > e0.

Remark 12.0.6: Let X ⊆ Pn, we want to extract a graded ring. Start with Pn corresponding
to k[x1, · · · , xn] ∋ pd(x0, · · · , xn), forms of degree d. Then {pd = 0} ⊆ Pn is well-defined, and this
defines the Zariski topology on Pn Moreover any pd/qd is a well-defined regular function on the
open subset {qd ̸= 0} ⊆ Pn.

There are several ways to produce the ring R:

• Consider CX ⊆ An+1 with k[x1, · · · , xn]↠ R := k[x1, · · · , xn]/I(CX).
• Consider R′ := ⊕

d≥0H
0(X;OX(d)) whose sections are locally given by ratios of forms pk+d/qk.

If X is projectively normal, then R = R′.
• Consider R′′ = R(X,L) = ⊕

d≥0H
0(X,Ld), then taking Proj yields (X = ProjR(X,L),O(1)).

This is not a bijection; several R(X,L) can yield the same variety (e.g. by leaving out various
degrees).

Remark 12.0.7: Constructing the correspondence ProjR ⇌ R = ⊕
d≥0Rd.3 One can safely

assume the rings are finitely-generated, the general construction goes exactly the same way. Define
ProjR to be the set of prime homogeneous ideals p ⊆ R which are not contained in a certain
ideal: considering k[x1, · · · , xn], note that ⟨x0, · · · , xn⟩ does not define a point of Pn, so define
R+ := ⊕

d≥1Rd to be the irrelevant ideal. One can define fundamental closed subsets: for Pn

these are of the form {fd = 0}, so generalize to fd ∈ Rd and define Z(fd) :=
{

[p]
∣∣∣ f([p]) = 0 ∈ R/p

}
.

Note that f ≡ 0 mod p in R iff f ∈ p. Define fundamental closed sets as intersections ⋂α Z(fα) and
fundamental open sets as D(fd) = {fd ̸= 0}.

Example 12.0.8(?): If R ∈ kAlgfg is generated in degree 1, I ↪→ k[x1, · · · , xn]↠ R and X ⊆ Pn

corresponds to Z(I) := ⋂
f∈I Z(f).

Remark 12.0.9: Sections of O are locally of the form fk/gk, and for O(d) of the form fd+k/gk. It
remains to define local sections of the following on ProjR:

• O: fk/gk

3This construction is in EGA II.
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• O(1): fk+1/gk

• O(d): fd+k/fk ∈ R [g−1]deg=d, where f
gn ∼ f ′

gm ⇐⇒ gN (fgm − f ′gn) = 0 for some N .

Example 12.0.10(?): Consider µ2 ↷ k[x, y] by (x, y) 7→ (x,−y). Then k[x, y]µ2 = k[x, y2], which
is a graded subring of k[x, y] which is not generated in degree 1. Note that Proj k[x, y]µ2 = P1(1, 2)
is a weighted projective space, which turns out to be isomorphic to P1. Moreover 0 = [0 : 1] and
∞ = [1 : 0] have nontrivial stabilizers, while the action is free elsewhere, and remembering the
stabilizers yields a quotient stack.

Example 12.0.11(?): Consider the moduli of elliptic curves (E, 0) over C. Realize (E, 0) ↪→ P2

as a cubic curve by its Weierstrass equation:

• In A2: y2 = x3 +Ax+B
• In P2: zy2 = x3 +Az2x+Bz3.

Regrade the first equation to total homogeneous degree 6 by setting deg y = 3, deg x = 2, degA =
4,degB = 6 and rescale

(x, y,A,B) 7→ (λ2x, λ3y, λ4A, λ6B).

This makes it unique up to rescaling, so the moduli of such equations is P(4, 6) corresponding to
A and B, which is the j-line P1

j . Every point has a stabilizer of size at least 2 since 2 divides
both 4 and 6, which comes from the involution z 7→ −z. This corresponds to two lattices with
automorphism groups C4 and C6:

The former is C/ ⟨1, i⟩ which has the extra automorphism z 7→ iz, which has CM. The latter is
C/ ⟨1, ζ3⟩ which has z 7→ ζ3z.
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13 Thursday, September 29

E 13.1 Projective Quotients e

Example 13.1.1(?): Let G = Gm ↷ An by λ.[x0, · · · , xn] = [λx0, · · · , λxn]. What are the stable
points?

z
λz

A2Orb(z)

Note that the orbits are either {0} or lines L\{0}. The former has stabilizer Gm and the latter orbits
are open, so there are no stable points. The affine quotient is mSpec k[x1, · · · , xn]G ∼= mSpec k, a
point. However, the projective quotient will be An+1//projGm

∼= Pn = An+1\{0}
Gm

, not a point.

Remark 13.1.2: Write

R = k[x1, · · · , xn] =
⊕

d

Rd = k ⊕ ⟨x0, · · · , xn⟩k [1]⊕
〈
x2

0, x0x1, · · ·
〉

[2]⊕ · · · .

We’ll say Rd are semi-invariants of degree d, where λ.f = λdf . More generally, for a character
χ : G→ Gm given by λ 7→ χ(λ), for λ ∈ G we can act by λ.f = χ(λ)f .
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Definition 13.1.3 (?)
Given a character χ : G → Gm with G ↷ R a ring, define the k-vector space of semi-
invariants

RG
χ =

{
f
∣∣∣ λ.f = χ(λ)f

}
⊆ R.

Say this action is of ray type with respect to χ iff for all d < 0, the semi-invariants RG
dχ vanish

and R0 = k. We can then define the projective quotient in the direction of a character as

X//χG := mProj⊕d∈ZR
G
dχ.

Remark 13.1.4: Note that RG = Rtriv, and λ.(fg) = (χ1 + χ2)(λ)fg.

Example 13.1.5(?): Let G = Gm and take χ = idGm , then ⊕d∈ZR
G
dχ = R and An+1//χGm = Pn.

Remark 13.1.6: Constructing Proj: write ⊕d∈ZR
G
dχ = k[f1, · · · , fn] with fi homogeneous of

degree d in RG
dχ. Note that ∏ fmi

i /
∏
fni

i of total degree zero yield regular functions on D(∏ fni
i ) =

V (∏ fni
i )c.

Example 13.1.7(?): Let X = Matn×n(C) ∼= An ∈ AffVar/C, and let G := GLn(C) ↷ X
by g.A = g−1Ag. Recall G = mSpec C[aij , b]/ ⟨bdet(aij)− 1⟩, so the action is algebraic since
g−1 = gadj/ det(g). Considering that characters χ : GLn → Gm must be multiplicative, it turns out
that every character is a power of det : GLn → Gm. What is Matn×n(C)//det GLn(C)? Identify
R = C[cij ] as the coordinate ring of X, and recall

charpoly(gAg−1, x) = charpoly(A, x) = det(A− xI) = (−1)n(xn − Trace(A)xn−1 + · · · ± det(A)).

Note that the affine quotient is mSpec C[Trace(A), · · · ,det(A)].

Exercise 13.1.8 (?)
Take G = GL2(C) ↷ Vd = k[x, y]d ∼= Cd−1 where[

a b
c d

]
.

[
x
y

]
:=
[
ax+ by
cx+ dy

]
.

The ring is R = Sym∗ Vd. Let χ : G→ Gm and det : GL2 → C×.
Find polynomials such that A.p(x, y) = det(A)Np(x, y) for some power N .

Remark 13.1.9: This is Mukai’s POV, an alternative POV is described in Mumford’s GIT. Start
with G↷ Y = mProjR and L ∈ Pic(Y ) ample.

1. Linearize the action. E.g. for G ↷ Pn = mProj k[x0, · · · , xn], there is not necessarily an
action on An+1, and a linearization is a lift to G ↷ k[x0, · · · , xn]. Taking L \ {0} yields
X \ {0}, and X \ {0} → Y is a Gm-torsor, and gluing the zero section yields an A1-bundle.
So lifting G ↷ R(Y,L) is the same as lifting to the affine cone G ↷ X. Then define the
projective quotient ProjR(X,L)G := Y //G.
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Remark 13.1.10: Basic examples:

• Mumford: SLn,PGLn ↷ Y a projective variety with affine cone X = CY . Take RG to get a
graded ring, take Proj.

• Mukai: GLn ↷ X which is already affine. Take semi-invariants RG
χ to get a graded ring and

take Proj.

Note

• SLn ↪→ GLn
det−−→→Gm

• µn ↪→ SLn ↠ PGLn, and
• RPGLn

det = RSLn .

Remark 13.1.11: Consider PGLn ↷ Pn, corresponding to SLn+1
µn

= GLn+1
Gm

↷ An+1\{0}
Gm

. The
linearization is an action PGLn+1 ↷ An+ 1 = {[x0, · · · , xn]}, which does not exist. However, there
are natural actions GLn+1 ↷ An+1 and thus SLn+1 ↷ An+1 by restriction. Thus OPn(1) is not
linearisable for the PGLn+1 action, but is for SLn. One solution: work with SLn, which has trivial
π1, while PGLn has nontrivial solution. Mumford’s solution: the power OPn(n+ 1) is linearisable
for PGLn+1, since µn+1 acts trivially. This amounts to replacing L by Ln+1 and R(X,L) by the
subring R(X,Ln+1) whose powers are divisible by n+ 1, but their Projs are equal. The difference
here is that SLn has no characters and GLn has only one character. Mukai’s approach is easier
when there are many characters, e.g. when G is a torus with characters Hom(T,Gm) ∼= Zn := M .

14 Tuesday, October 04

Remark 14.0.1: Setup:

• X a projective variety, either X ⊆ Pn or (X,L) is a pair with L an ample line bundle
(e.g. L = O(1) when a subset of Pn). Note that L is ample iff LN is very ample for some N ,
so L ∼= OX(1).

• G↷ X a linearly reductive group action. If G is connected, then one can freely replace L by
LN .

We want to convert this to an action G ↷ R(X,L) := ⊕
d≥0H

0(X,Ld), the ring of homogeneous
forms on X. If X ⊆ Pn then R(X,L) = k[x1, · · · , xn]/I(X) – at least modulo several beginning
terms. There is a SES which can be twisted by d:

I(X) ↪→ OPn ↠ OX(d)⇝ I(X)(d) ↪→ OPn(d)↠ OX(d).

This yields a map

H0(Pn;OPn(d)) =
〈
xd

0, · · ·
〉

fd−→ H0(X;OX(d))→ H1(Pn; I(X)⊗OX(d)).
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By Serre vanishing, for d > d0 ≫ 0 the H1 term vanishes, so fd is surjective in this range.

Conversely, ProjR(X,L) = X with O(1) = L, so we can freely pass between X and R(X,L). Given
G ↷ R(X,L) we can take invariants to get the graded ring R(X,L)G and take its Proj to obtain
the GIT quotient Y = X//G := ProjR(X,L)G. Passing from G ↷ X to G ↷ R(X,L) is called
linearization, i.e. lifting an action on X to an action on (sections of) L. Recall that L is the sheaf
of regular sections of a line bundle L π−→ X:

L

π
X

A1

Lemma 14.0.2(?).
Note that two different linearizations of G↷ X differ by a character χ ∈ HomAlgGrp(G,Gm).
Let a1, a2 : G↷ X and consider the two actions on fibers:
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l

g.l

g.l

X

L

Then a1 ◦ a2 : G↷ OX , i.e. G↷ H0(X;O×
X) = Gm. This induces G↷ (A1, 0) fixing zero, so

G 7→ Aut(A1, 0) = Gm, yielding a character of G.

Example 14.0.3(?): Let G = C× = Gm and X = P3 with homogeneous coordinates x0, · · · , x3.
Then the cone CX has affine coordinates x0, · · · , x3,

R(X,L) = k[x0, · · · , x3] = k ⊕ ⟨x0, · · · , x3⟩ ⊕ · · · ,

and L = O(1). If G↷ X then Gm = G↷ CX = A4 = Spec k[x0, · · · , xn]. This corresponds to a
Z-grading, inducing weights wi := weight(xi) ∈ Z. For λ ∈ C× the action is λ.xi = λwixi.

Note that for G ↷ Pn, the regular functions are locally pd(x)/qd(x), ratios of polynomials of
the same degree. Write P3 = A3

∐
· · ·A3, these are G-invariant subspaces since e.g. {x0 = 0}

is an invariant closed set. So it suffices to specify an action on each subspace. This induces
weight(xi/x0) = ui := wi − w0, and more generally weight(xi/xj) = wi − wj . A linearization is
determining the wi such that λ.xi = λwixi. Any two such linearizations differ by addition of an
integer, i.e. w′

i = wi + b. One can check that HomAlgGrp(Gm,Gm) ∼= Z where λ 7→ λb for each b ∈ Z.
So the linearizations are a Z-torsor.

What are the quotients?

Take the toric polytope for P3: the standard simplex in R3 (a tetrahedron).
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x2

x3

x1

x0

Note that

k[x0, · · · , x3] = k ⊕ ⟨x0, · · · , x3⟩ ⊕
〈
x2

0, x0x
1, · · ·

〉
⊕ · · · ∼= k1 ⊕ k(3+1

1 ) ⊕ k(3+2
2 ) ⊕ · · · .

More generally one has

H0(P3;O(d)) = ⊕m∈M∩dP Cxm,

so e.g. for d = 2 one has
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x2
2

x2
3

x2
1

x2
0

x0x2 x2x3

To visualize the graded ring k[x0, · · · , x3]:
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0 1 2
Z

P

2P

Generally, one should assign an integer to each lattice point of dP satisfying weight(xixj) = wi +wj .
Since Gm ↷ R corresponds to a Z-grading by weight, yielding R = ⊕w∈ZRw, the invariants are
RG = R0, the 0th graded piece. So one can consider the fiber over zero in the weight map:
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As one changes linearization, one shifts this picture and the corresponding slice, and if the slice is
empty, R0 = C, and ProjR0 will be empty.

One can write R = ⊕
m∈M∩dP Cxm and R0 = ⊕

m∈M∩dQ Cxm where Q = π−1(0) is the slice above
weight zero.

This corresponds to the cone on a 4-gon in the dilated cone picture for the graded ring. Note that if
the polytope 1P (here the simplex) in the h = 1 slice does not have integral lattice points, it won’t
provide a set of generators. We have R0 = S[Q] where Q ⊆ R3 and the vertices of Q are in Q3. This
is a semigroup algebra, so we take its proj to get X//G = ProjS[Q]. We can replace Q with any
multiple kQ to get X//G = ProjS[kQ], the Veronese subring. Note that S[kQ]deg=d = S[Q]deg=kd,
and if you work with ratios of total degree zero these coincide, and corresponds to replacing O(1)
with O(k).

Remark 14.0.4: Any rational polytope Q yields a projective toric variety YQ with (C×)2 ↷ YQ

which is normal, acts with finitely many orbits, and T := (C×)2 ↪→ YQ as an open orbit. This YQ

is a compactification of the torus T by adding T -orbits, and face of Q correspond to orbits:
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pt

pt

pt

pt

T

C×

C×C×

C×

One can ask how the polytope changes under various rational linearizations L 7→ Lk, corresponding
to different GIT quotients. Here one gets 4-gons, two 3-gons, and the empty set, corresponding to
3 chambers (and empty chambers) with two walls describing the combinatorial types of the fibers.

Remark 14.0.5: For C× ↷ P4 one can vary to obtain the following 3D cross-sections:
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Flip/flop

P1

P1

15 Thursday, October 06

E 15.1 Projective GIT Quotients e

Remark 15.1.1: Mumford’s approach for e.g. G = SLn: G ↷ R = R(X,L) + ⊕
d≥0H

0(X;Ld)
where e.g. L = O(1) for X ⊆ Pn. This yields RG a graded ring and X//G = ProjRG. Setting Y =
CX = SpecR, we can consider Y //G = SpecRG. We have Y ⊇ Y s =

{
g ∈ G

∣∣∣ G.y is closed, Gy is finite
}

,
the open subset of stable points. For each equivalence class of orbits under the orbit-closure equiv-
alence, there is a unique closed orbit.
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x

X

Y
λy

y
G.y

0

Definition 15.1.2 (Stable)

• Xs: x ∈ X is stable iff for all [y] = x the point y ∈ Y is stable:
• Xss: x is semistable iff 0 ̸∈ cl(G.y) for all y with [y] = x. Note stable implies semistable.
• x is unstable iff 0 ∈ cl(G.y).

Theorem 15.1.3(?).

• Points of X//G biject with closure-equivalence classes of G-orbits on Xss, each containing
a unique closed orbit.

• There is a geometric quotient Xs/G ⊆ X//G whose points biject with G-obits on X.
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Xss X//G

Xs Xs/G

open

Link to Diagram

Remark 15.1.4: One can show that unstable points are a closed condition, so Y s is open in Y ss.

Remark 15.1.5: Mukai’s approach: for G = GLn define Y //G = X//G.

Example 15.1.6(?): Consider Vd,n the space of degree d hypersurfaces in Cn, which is isomorphic
to CN where N =

(d+n
n

)
. We can also consider PVd,n = {pd(x0, · · · , xn) = 0 homogeneous} the

space of hypersurfaces of degree d in Pn, up to the action of PGLn+1 = Aut(Pn). We have
PVd,n//PGLn+1 = PVd,n//SLn+1 = Vd,n//GLn+1, and SLn+1 ↷ A(Vd,n) = S(Vd,n), so we want
to describe the ring S(V )SLn+1 since its proj is PVd,n//PGLn. Recall S(V ) = ⊕

k≥0 Symk(V ).
Describing this ring is equivalent to describing the variety and yields a solution to moduli problems
involving hypersurfaces.

Remark 15.1.7: Consider sextic curves in P2, given by polynomials p6(x0, x1, x2). Note that
smooth curves are stable since their orbits are closed.

Theorem 15.1.8(Shah, Ann. Math, Moduli space of K3 surfaces of degree 2).
He lists the unique closed semistable orbits. One is a cube of a quadratic, one is three quadrics
tangent at two points, one is a double line with a smooth quartic:

Remark 15.1.9: The case of interest: a moduli space Mg parameterizing smooth curves. One
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choose a linear system φ|2KC | : C ↪→ Pn, then one shows that the smooth curves {C ↪→ Pn} ⊆
Hilb,CH are stable, but one also picks up singular stable curves and quotienting yields a compacti-
fication Mg.

See Sylvester, a first good American mathematician!
He proved some important theorems in invariant the-
ory.

Example 15.1.10(?): The easiest case: {f(x, y) = 0} ⊆ P1 with coordinates x, y. There is an

action of SL2 given by
[
a b
c d

][
x
y

]
=
[
ax+ by
cx+ dy

]
. Write Vd,1 =

〈
xd, xd−1y, · · ·

〉
and SL2 acts by

variable substitution. The algebra is R = S(Vd,1), and we want to find RG = S(Vd,1)SL2 . This is a
moduli problem for configurations of distinct points (with multiplicity) on P1, up to reparameterizing
by PGL2. It turns out f is

• Semistable if each point’s multiplicity is ≤ d/2.
• Stable if < d/2.

Note that for d odd, Xs = Xss.

• For d = 1 we have RG = C. Here SL2 ↷ ⟨x, y⟩ and S(⟨x, y⟩) = C[x, y]. Note that
C[x, y] = C⊕⟨x, y⟩⊕

〈
x2, xy, y2〉⊕· · ·, each corresponding to an irreducible SL2 representation.

Since SL2 is completely reducible, the higher graded pieces have no invariants.
• For d = 2, 3 we similarly get RG = C using Mobius transformations.
• For d = 4, one can fix 0, 1,∞ and there is a free parameter λ. One can take a double

cover y2 = x(x − 1)(x − λ), i.e. an elliptic curve. The projective is 1-dimensional, since
the j-invariant is a moduli space, so the affine version is dimension 2 and turns out to be
RG = C[g2, g3], |g2| = 4, |g3| = 6. So ProjRG = P(4, 6).

16 Tuesday, October 11

Remark 16.0.1: Setup: X ⊆ Pn with G↷ X,Pn, G linearly reductive, which is linearized so that
G↷ An+1 acting on projective coordinates is a linear action. Thus each g ∈ G induces ρg which is
linear in the coordinates x0, x1, · · · , xn. We have

X

Xss Xss//G GIT quotient, projective

Xs Xs/G geometric quotient

⊆,open

⊆,open
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Link to Diagram

Define Xu = X \Xs to be the unstable points; our main problem is to describe Xu, Xs, Xss.

Theorem 16.0.2(Mumford-Hilbert criterion).
For x ∈ X, x ∈ Xss ⇐⇒ the following holds: Let λ : Gm → G be nonconstant, and note
the action Gm ↷ An+1 corresponds to a grading and thus some system of linear coordinates
x0, · · · , xn with weights ω0, · · · , ωn ∈ Z where t.xi = twixi. Then for all such λ, there should
exist a coordinate xi with xi(p) ̸= 0 and wi ≤ 0.
Similarly, x ∈ Xs ⇐⇒ ∃λ, xi with xi(p) ̸= 0 and wi < 0 is strictly negative.

Remark 16.0.3: Note that replacing λ with −λ, one can replace the above conditions with wi ≥ 0
and wi > 0 respectively. Most papers on GIT start with this theorem, and finding the unstable
locus is a computation.

Corollary 16.0.4(?).
x ∈ Xu ⇐⇒ there exists a 1-parameter subgroup λ : Gm → G such that wi > 0 for all i with
xi(p) ̸= 0.

Example 16.0.5(?): Consider binary degree d forms, corresponding to degree d cycles/subschemes
in P1. Each point corresponds to a homogeneous polynomial fd(x, y) of degree d. Recall that
Vd =

〈
xd, xd−1y, · · · , yd

〉
, the irrep of SL2 where SL2 ↷ ⟨x, y⟩ by matrix multiplication:

[
a b
c d

][
x
y

]
:=
[
ax+ by
cx+ dy

]
.

We have a 1-parameter subgroup corresponding to diag(t, t−1) ↷ [x, y] = [tx, t−1y] which gives x
weight 1 and y weight 2. Call this λstd.

Claim: All 1-parameter subgroups of SL2 are powers (λstd)n for some n, up to a linear change of
coordinates for x, y.

Proof (?).
The general theory: if G is semisimple (e.g. G = SLn) then G ⊇ T a maximal torus, and
any two such are conjugate. For SLn these tori are diagonal matrices M with detM = 1.
Moreover all 1-parameter subgroup is contained in a maximal torus. Powers can be ignored
here, since they correspond to multiplying weights by a positive integer. By the theorem, a
point is unstable iff the monomials that appear in the binary form are all of negative degree
for some choice of coordinates x, y. For d = 3, we have
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So f is unstable iff f(x, y) = axy2 + by3 = y2(ax + by), i.e. in some coordinates y2 ∣∣ f , so f
has a double root.

■

Proposition 16.0.6(?).
A binary form of degree d is

• Unstable iff there exists a root of multiplicity m > d/2.
• Semistable iff there exists a root of multiplicity m ≤ d/2.
• Stable iff there exists a root of multiplicity m < d/2.

Remark 16.0.7: Note that for odd d, stable = semistable, and for even d they are different.

Remark 16.0.8: For d = 4, consider the double cover z2 = f(x, y):
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Stable
z2 = x4, tacnode

Unstable

UnstableNode, semistable
z2 = x3, cusp

So

• Smooth curves are stable, corresponding to (1, 1, 1, 1) or z2 = (x− a)(x− b)(x− c)(x− d)
• Nodal curves are semistable, corresponding to (1, 1, 2) (z2 = (x− a)(x− b)(x− c)2) or (2, 2)

(z2 = (x− a)2(x− b)2).
• Tacnodes are unstable, corresponding to (4), so z2 = (x− a)4,
• Cusps are unstable, corresponding to (1, 3), so z2 = (x− a)(x− b)3

Thus the j-line A1 corresponds to smooth/stable curves, and compactifies to P1 = P(2, 3) by
adding nodal curves.

Remark 16.0.9: For SL3 ↷ X for X the space of cubic curves in P2, we have several possibilities
for curves f3(x, y) = 0:
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(Double line)(Triple line)

s
ss

ss

ss
xyz = 0

We have f3 ∈ P(3+2
2 )−1 = P9, with 10 coordinates:

x3, y3, z3, x2y, x2z, y2x, y2z, z2x, z2y, xyz.

Each curve f = 0 to a closed subscheme of P2 whose ideal is ⟨f⟩. There is an action of SL3 ↷ [x, y, z]
on coordinates, and a maximal torus T = diag(t1, t2, t−1

1 t−1
2 ). Choosing this torus in a diagonal

form is equivalent to choosing a coordinate system. One can then look at Gm ↪→ T and consider
its action to define weights. We get the following triangle of monomials:
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Take this and project to get weights:

This gives w(x) = (1, 0), w(y) = (0, 1), w(z) = (−1,−1) Those with the right weights are x2z, xz2, z3, yz2,
all containing a factor of z. So any polynomial of the form f(x, y, z) = (axz + bxz2 + cz2 + dyz) is
unstable.
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Thus the following are unstable:

The game: take a line through the center point xyz, rotate, take monomials on the positive side,
and check for instability, since we need w(xyz) = 0. It turns out that smooth cubics are stable,
simple nodes are semistable, and anything worse than xyz = 0 is unstable.

17 Thursday, October 20

Remark 17.0.1: Hilbert-Mumford criterion: G ↷ X ⊆ Pn projective, which is linearized to
G ↷ An+1 acting on coordinates x′

0, · · · , x′
n. For a point p ∈ X corresponding to p̃ ∈ An+1, is it

stable, semistable, etc? Note

• p ∈ Xs ⇐⇒ ∀λ ∈ Grp(Gm, G) and coordinate systems x0, · · · , xn with λ(t).xi = twixi, there
exists some wi > 0 and some wj < 0, where xi(p) ̸= 0 (the ith coordinate is nonzero).

• p ∈ Xss ⇐⇒ ∀λ as above, there exist wi ≤ 0, wj ≤ 0.
• p ∈ Xunst ⇐⇒ ∃λ as above where wi > 0 for all i.
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Equivalently,

• p ∈ Xst ⇐⇒ the orbit λ(Gm).p̃ ⊆ An+1 is closed for all λ and the stabilizer Stabp̃Gm is
finite.

• p ∈ Xss ⇐⇒ the orbit closure λ(Gm).p̃ ̸∋ 0 for all λ. The picture:

• p ∈ Xunst ⇐⇒ there exists a λ such that the orbit λ(Gm).p̃ ∋ 0.

If p̃ = [x0, · · · , xn] ⊆ An+1, then t.xi = twixi. So case (3) above corresponds to limt→0 t.p̃ = 0,
so the origin is in the closure of Gm.p ⊆ G.p. In case (2), Gm.p̃ ⊆ An+1 \ {0}, and to compute
the closure on consider limt→0,∞ [tw1x1, · · · , twnxn] ̸∈ An+1. Note that by the valuative criterion,
any map from a smooth curve to a proper variety can be extended to its compactification, so
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C× → An+1 ⊆ Pn+1 extends to Pn → Pn+1 uniquely, which is where this limit is computed. If
some wi = 0, split into cases:

• wi = 0 for all i: then Stabp̃Gm = Gm.
• Some wi ̸= 0: then Stabp̃Gm is finite.

So limt→0
[
· · · , t0xi, · · ·

]
= [· · · , xi, · · ·] ̸= 0.

Proof (?).
The condition on 1-parameter subgroups is necessary. For sufficiency, the claim is that it’s
enough to look at 1-parameter subgroups, so consider G.p̃. Embed G.p ⊆ An+1 ⊆ Pn+1 to
embed G.p̃ ⊆ Pn+1. Letting 0 ∈ G.p̃, one can find a C curve lying entirely in the orbit whose
closure contains 0, for example by slicing G.p̃ by hyperplanes to reduce dimension by 1 (using
the principal ideal theorem) and picking resulting irreducible components arbitrarily. So one
gets the following:

0

Gm.p̃
X

C

For G = SLn+1(K) ⊇ SLn+1(R) with K = C(()x0, · · · , xn) ⊇ (R,m) where K = ff(R), R =
C[x0, · · · , xn]∏xi

. Note SLn+1(R)→ SLn+1(R/m) = SLn+1(C), and taking the LDR decom-
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position of a matrix M finishes the proof. See Mumford/Mukai.
■

Remark 17.0.2: Discuss this next Thursday in class.

Remark 17.0.3: Some applications:

• Stability of hypersurfaces Xd ⊆ Pn: write fd(x) = ∑
amx

m with Xd ⊆ Pn. Note that
SLn+1 ↷ PN . This corresponds to a choice of points in the lattice polytope for degree d
monomials, the weight polytope:

xd
1

xd
0

Xd

Then (PN )s/SLn+1 contains nonsingular hypersurfaces, and is contained in (PN )ss//SLn+1 which
is a projective variety which adds new semistable but not stable surfaces at the boundary.
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Exercise 17.0.4 (?)
Last time we looked at n = 1, d arbitrary and (n, d) = (2, 3). For next time, consider
(n, d) = (2, 4), (3, 3).

Remark 17.0.5: Note that if Xd, X
′
d ⊆ Pn with Xd

∼= X ′
d, then there exists a g ∈ PGLn with

g.Xd = X ′
d for n ≥ 4: since PicXd = Z[H] by Lefschetz, the linear system φ|H| : Xd ↪→ Pn defines

an embedding, and H0(Xd;O(H)), H0(X ′
d;O(H)) differ only by choosing a basis of sections.

Remark 17.0.6: Every p ∈ Pn with p = [a0 : · · · : an] has a dual Hp ∈ (Pn)∨ where Hp = V (ℓ) for
ℓ the line ∑ aixi. For any d points pi, taking the product fd := ∏

ℓi yields. . . .something.

The Chow variety Ch(d, x,Pn) parameterizes cycles X := ∑
nixi with xi ⊆ Pn each of dimension

k where degX = ∑
ni degXi = d. Let Xk ⊆ Pn ⊇ Pn−k−1, a generic such hyperplane won’t

intersect Xk. They are parameterized by G∖(n − k − 1, n) = Gr(n − k, n + 1) which contains
a hypersurface (X) =

{
Pn−k−1

∣∣∣ Pn−k−1 ∩X ̸= ∅
}

. Since this is a codimension 1 condition, it’s
given by an equation {FX = 0}. This is the Chow form of X, which replaces the many equations
of X with a single equation.

Remark 17.0.7: What this looks like for hypersurfaces Xd ⊆ Pn ⊇ P 0, which is a point. There
are parameterized by G∖(0,Pn) = Gr(1, n+ 1) = Pn. The equation of the Chow form recovers the
equation of X. This recovers the point-hyperplane correspondence from before for Pn.

Remark 17.0.8: Note that PicG = 1 for any Grassmannian G, and the surface {Fx = 0} lives in
SymnH0(G;OG(1)).

18 Tuesday, November 01

E 18.1 Applications of GIT to Moduli e

Remark 18.1.1: Some major applications of GIT:

• Moduli of sheaves: Pic and Jac as varieties/schemes, moduli of (semi)stable vector bundles
(Narasimhan, Seshadri, Mumford), and more generally moduli of semistable coherent sheaves
(Maruyama, Simpson). See Gieseker for moduli of vector bundles over surfaces. In this
situation, GIT works very well – this is a “linear” problem.

• Moduli of varieties: stable curves (Mumford), some surfaces (Gieseker). GIT works less well
here, since this is “nonlinear”.

We’ll proceed to look at the first case, moduli of sheaves. Note that for quasicoherent sheaves, one
instead needs to pass to pro-objects in coherent sheaves.
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Remark 18.1.2: Let X ∈ Proj Var/k where k is is not necessarily algebraically closed. We can
define the abstract group Pic(X) of invertible (i.e. locally free of rank 1) sheaves on X modulo
isomorphism. There is also a Picard scheme Pic(X) = Jac(X) which is the fine moduli space of
invertible sheaves of fixed degree or fixed Hilbert polynomial, which has the structure of a scheme
over k – if ch k = 0 then it is an algebraic variety, but may have nilpotents in positive characteristic.
For appropriate choices, this can be made into a group scheme/variety.

Example 18.1.3(?): Let C be a smooth projective genus g curve over k = C. The degree map
provides a SES

Pic0(C) = ker deg = Jac(C) ↪→ PicC ↠ Z.

One can realize Pic0(C) ∼= Cg/Zg, giving it the structure of a projective algebraic variety and a
complex manifold. Note that a random choice of lattice L ∼= Zg will yield a Kähler variety, but
potentially not an algebraic variety unless L satisfies strict numerical conditions (which it does for
Pic0).

Remark 18.1.4: Families of invertible sheaves will correspond to moduli functors

M : (Schft
Spec C)op → Set

S 7→
{

Invertible sheaves F on X ×
Spec C

S

}
/ ∼= .

Such an F should be thought of as a family of invertible sheaves on X parameterized by S, i.e. for
every s ∈ S there is a sheaf Fs := F |Xs

where Xs is the fiber over s:
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For each f : S → T we obtain M(T )→M(S), and pullbacks X × S f−→ X × T induces F 7→ f∗F .

We also require that each F ∈ M(S) is equipped with a rigidification: a fixed trivialization
F |p×S

∼= OS :

This kills automorphisms and gives a fine moduli space. Without this, one could twist by anything
coming from the base, so one could alternatively define

M ′(S) = {F on X × S }
F → F ⊗ π∗L

, L ∈ Pic(S)

This coincides with the previous notion when L has a section.

Definition 18.1.5 (Hilbert polynomial)
For F ∈ Coh(X), define the Hilbert polynomial

pF (n) := χ(X,F(n)) =
∑
i≥0

hi(X;F(n)),

noting that by Serre vanishing, for n≫ 0, hi>0(X;F(n)) = 0.

Example 18.1.6(?): If L is a line bundle on a curve C, by RR we have

χ(L(n)) = degL(n) + 1− g = nd+ deg(L) + 1− g
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where d ≥ degOX(1) (which is very ample). Thus deg(L) defines the Hilbert polynomial pL(n)
uniquely, and we often write Picd

X/C. More generally, if F is a rank r locally free sheaf on a curve
C, one obtains

χ(F(n)) = nd+ degF + r(1− g).

Todo: is this nd or n+ d?

Lemma 18.1.7(Easy).
For S connected, each pFs(n) are the same.

Theorem 18.1.8(Representability of the Picard functor).
For any field k, not necessarily algebraically closed, of any characteristic, and for all projective
varieties X over k, the rigidified functor PicX/k,h(n) is represented by a scheme PicX/k,h(n), i.e.

PicX/k,h(n)(S) ∼−→ Hom
Sch

(S,PicX/k,h(n)).

Moreover there exists a universal invertible sheaf U over PicX/k,h(n) and the sheaves F on
X ×

k
S are all pullbacks:

F U

S

X

X

X

S

X × S

PicX/k,h(n)

F PicX/k,h(n)

Remark 18.1.9: Note that Pic0
X/k is a group variety and the other components are torsors over it.

Since [OX ] ∈ PicX/k, one can compute dim T[OX ] PicX/k = h1(OX), which is dim PicX/k if PicX/k

is reduced – this is automatic in characteristic zero, and necessary since k[ε]/ε2 has dimension 0
but tangent space dimension 1.
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Remark 18.1.10: Adapting this moduli problem to vector bundles: take the functor sending S to
sheaves F on X ×

Spec C
S which are flat over S, noting that there is no way to rigidify in this case.

Without any additional conditions, this leads to something horribly infinite. Consider X = P1

and take F = O(k) ⊕ O(−k), so degF = 0 and rankF = 2, where k ∈ Z. This is an unbounded
family, parameterized by an infinite discrete set Z≥0, so we need to restrict to nice vector bundles
to exclude this case.

Definition 18.1.11 ((Semi)stability for vector bundles, easy case)
If C is a curve, if F is a vector bundle (a locally free sheaf of rank r) then F stable (resp.
semistable) if for any vector sub-bundle E ≤ F there is an inequality

degE
rankE <

degF
rankF , resp. degE

rankE ≤
degF
rankF , .

These quantities are called slopes, and this is sometimes referred to as slope stability.

Theorem 18.1.12(?).
There is a moduli space {semistable sheaves} /S-equivalence ⊇ {stable sheaves} / ∼=.

Definition 18.1.13 ((Semi)stability for vector bundles, general case)
Let X is a projective variety equipped with OX(1) and F is a pure coherent sheaf, i.e. suppF
is pure-dimensional (equidimensional) and there does not exist a subsheaf 0 ̸= G ≤ F with
dim suppG < dim suppF .a Then stability (resp. semistability) is the condition that for every
subsheaf E ≤ F ,

pE(n)
rankE <

pF (n)
rankF , resp. pE(n)

rankE ≤
pF (n)
rankF , ,

i.e. the normalized Hilbert polynomials (dividing by the leading coefficients) satisfying this
inequality.
Note that this definition still works for X a scheme, potentially non-reduced with many
components. This is sometimes referred to as Seshadri stability.

aThis is not an issue for line bundles, since there are no nonzero subsheaves with different supports since every
subsheaf is supported on the entire variety. This is also automatic if X is irreducible, otherwise a subsheaf
could be supported on different components which could have different dimensions.

Remark 18.1.14: One interesting case: X a curve but not irreducible. The moduli of invertible
sheaves is already nontrivial, since subsheaves may only be defined on some irreducible components
and thus not be invertible. Here OX(1) may have different degrees on different components; as
long as they are positive, OX(1) is ample, and different polarizations yield different Jacobians and
balancing these leads to interesting combinatorics.
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Remark 19.0.1: Today: semistable sheaves on a projective variety X ⊆ PN , where OX(1) is the
pullback of OPN (1). Let F ∈ Coh(X), e.g. a vector bundle (locally free of rank r) or a line bundle
(vector bundle with r = 1). Note X is covered by affine varieties SpecRi corresponding to rings Ri,
and on affine varieties,

• quasicoherent sheaves F|Spec Ri
correspond to modules M ∈ RiMod,

• coherent sheaves F|Spec Ri
correspond to modules M ∈ RiModfg which are finitely generated.

For vector bundles, M ∼= Rr. By Serre vanishing,

H>0(X;F(n)) = 0 n≫ 0, dimk H
0(X;F(n)) <∞ ∀n,

and Grothendieck vanishing yields H>dim X(X;F) = 0 for any F ∈ QCoh(X). By Hirzebruch-
Riemann-Roch, the Hilbert series

hF (n) := χ(F(n)) :=
∑

(−1)ihi(F(n)) = h0(F(n)), n≫ 0

is a polynomial in n. This is proved by writing Y := X ∩ H to get F(−1) ↪→ F ↠ F|Y and
hF (n) − hF (n − 1) = hY (n). Thus it suffices to know hY is a polynomial, since the LHS is the
discrete derivative of hF , and dimY < dimX.

Remark 19.0.2: We define the reduced Hilbert polynomial as hF (n) := hF (n)/hn where hn

is the leading coefficient of hF (n).

Example 19.0.3(?): Let dimX = 1 be a smooth curve of genus g and F ∈ Coh(X) be locally free
of rank r Then Riemann-Roch yields

χ(F) = deg(F) + r(1− g) = deg(F) + χ(OX
⊕r ),

using that h0(OX) = 1, h1(OX) = g =⇒ χ(OX) = g − 1. Twist by n to obtain

χ(F(n)) = deg(F) + nr deg(F) + r(1− g) = hF (n),

which yields

hF (n) = n+ degF
rankF

1
deg(OX(1)) + r(1− g)

r degOX(1)
:= n+ µ(F)c1 + c2

where µ(F) is the slope and the ci are constants that do not depend on F .

Definition 19.0.4 (Hilbert stable)
A sheaf F ∈ Coh(X) is Hilbert stable (resp. semistable) iff for any nonzero subsheaf E ≤ F
satisfies
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a. dim supp E = dim suppF , noting the LHS equals deghE and the RHS equals deghF where
suppF :=

{
x ∈ X

∣∣∣ Fx ̸= 0
}

(which is always closed).
b. hE ≤ hF , resp. hE ≤ hF , where f < g iff f(n) < g(n) for n ≫ 0 iff f < g in the

lexicographic order.

Remark 19.0.5: Note that condition (a) is automatic for locally free sheaves, since Fx = OX
⊕r

for every x and thus suppF = X. An example where this won’t hold: let i : p ↪→ X for X a
curve and take the skyscraper sheaf i∗Op. More generally, for a closed embedding i : Z ↪→ X
one gets supp(i∗OZ) ⊆ Z ⊆ X. If X is a smooth curve, then any F ∈ Coh(X) decomposes as
F = Ftors ⊕Ffree where Ftors is a torsion sheaf which is a sum of skyscrapers supported at points
and Ffree is locally free. The Hilbert polynomial will be constant on Ftors.

Remark 19.0.6: Hilbert stability for smooth curves X: (a) holds iff F is torsionfree. If this holds,
then since 0 ̸= E ⊆ F with F torsionfree, E is locally free. Then condition (b) is equivalently to
µ(E) < µ(F), respectively µ(E) ≤ µ(F). Thus Hilbert stability for curves is slope stability.

Example 19.0.7(g = 0): For X = P1, Grothendieck splitting yields F = ⊕r
i=1O(ni) and F is

stable iff r = 1. Then µ(F) = deg F
rank F =

∑r

i=1 ni

r , and this is semistable iff n1 = · · · = nr. E.g.
F = O ⊕O(1) has slope 1/2 but contains O(1) of slope 1.

Example 19.0.8(g = 1): Let X be a smooth elliptic curve. By a theorem of Atiyah, there is a
unique indecomposable semistable sheaf F of degree zero. When r = 1, one can take F = OX .
For r = 2, OX ⊕OX has slope zero but has subsheaf OX of slope zero, so this is only semistable.
Instead, it is a sheaf fitting into an extension OX ↪→ F ↠ OX , which is semistable since it contains
OX . Such extensions A → F → B are classified by H1(X;B ⊗ A−1), which here is H1(X;OX)
which is dimension 1. Note that degF = degOX + degOX = 0 + 0 = 0.

Remark 19.0.9: For g ≥ 2, there is a moduli space of stable and semistable vector bundles of
fixed rank r and degree d This recovers Jac for r = 1, and thus is a noncommutative generalization
of Pic. If d = r(g − 1) then one can define a theta divisor, and around 20 years ago there was an
analog of the Riemann-Roch formula which computed its sections.

Theorem 19.0.10(The main theorem).
These moduli spaces exist, and the proof if by GIT by reducing it to an action of SLn on a
projective variety and applying the Hilbert-Mumford numerical criterion.

Remark 19.0.11: Two basic notions to discuss: S-equivalence on semistable sheaves, and the
Harder-Narasimhan filtration.

Definition 19.0.12 (The Harder-Narasimhan filtration)
The Harder-Narasimhan filtration: if F is stable, do nothing, otherwise pick a maximal
destabilizing subsheaf F1 ⊆ F0 := F (i.e. a subsheaf of largest slope or reduced Hilbert
polynomial). Continue this to obtain a decreasing filtration 0 = Fk ⊆ · · · ⊆ F1 ⊆ F0 = F .
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Define the associated graded sheaf grF := ⊕
Fi/Fi+1.

Remark 19.0.13: The result: the associated graded pieces Fi/Fi+1 are semistable with increasing
slopes. E.g. take 0 ⊆ O(1) ⊆ O ⊕O(1) where µ(O(1)) = 1 and µ(O) = 0. If F is semistable, the
subsheaves will all have the same slope and the pieces Fi/Fi+1 are indecomposable.

Definition 19.0.14 (S-equivalence)
Say F ∼S F ′ iff grF ∼= grF ′.

Example 19.0.15(?): If X is an elliptic curve with F ′ := OX ⊕ OX , take OX ↪→ Fα ↠ OX

corresponding to α ∈ H1(OX) = C. There is a filtration 0 ⊆ OX ⊆ F with graded pieces OX ,OX .

Example 19.0.16(?): This theory becomes complicated for singular or reducible varieties. Let X
be two intersecting copies of P1, so X = X1 ∪X2 with Xi = Pi:

X1 X2

P1 P1

X

p

Then d = degOX(1) = degOX1(1) + degOX2(1) = d1 + d2. Define a multidegree d = (d1, d2) and
multirank r = (r1, r2). Condition (a) requires ̸ ∃E ⊆ F with supp E = pt (0-dimensional support).
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We have

0→ OX2(−p) = ker f ↪→ OX
f−→→OX1 → 0,

where the kernel consists of functions on X which restrict to zero on X1, and hence vanish at p.
These subsheaves are not torsionfree, despite OX being torsionfree.

One can compute

• pF = n(r1d1 + r2d2) + degF + const
• µ(F) = deg F∑

ridi
,

which is no longer just degree over rank, and is called the Seshadri slope and generalizes slopes
to curves with multiple irreducible components. This is interesting even in the case r(F) = (1, 1),
since semistability is now nontrivial (whereas previously we used that line bundles have no sub-
bundles). For simple singularities like nodes, there are numerical conditions on multidegrees to
guarantee (semi)stability. Note that there are infinitely many degree zero sheaves, since degF =
deg F|X1

+ deg F|X2
which can be taken to be n and −n – however, there are only finitely many

(semi)stable multidegrees.

Remark 19.0.17: Coming up: setting up the GIT problem matches up the notions of (semi)stability,
and S-equivalence becomes orbit-closure equivalence.

20 Tuesday, November 15

E 20.1 Moduli of semistable sheaves e

Remark 20.1.1: See this very interesting paper posted today! https://arxiv.org/pdf/2211.
07061.pdf

Remark 20.1.2: Next goal: constructing moduli spaces of stable sheaves and how to reduce it
to GIT, after Seshadri, Narasimhan, Mumford (on curves), Gieseker (surfaces), Maruyama (higher
dimensional varieties), Simpson (completed for higher-dimensional varieties). We’ll follow the
treatment in Simpson’s 1994 paper, “Moduli of representations of fundamental groups. . . ”.

Setup: let X ⊆ PN be a projective variety with OX(1) and E ∈ Coh(X) and Hilbert polynomial
p(E , n) = χ(E(n)). One can easily prove by induction that p is in fact a polynomial, and it turns
out to have terms of the form p(E , n) = rnd

d! + a nd−1

(d−1)! + · · ·. We define

• d(E) := dim supp(E) – for E ∈ Pic(X), this is dimX, but in general could be smaller. It turns
out d(E) = d := deg p(E , n).

• A “generalized rank” of E by r(E) = r, the leading coefficient in p(E , n) above.
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• µ(E) := a/r the slope.
• p(E , n) := 1

rp(E , n) = nd

d! + a
r

nd−1

(d−1)! + · · ·, noting that the first nontrivial coefficient is the slope
a/r.

Definition 20.1.3 (Pure dimensional)
We say E is pure dimensional iff it has no subsheaves of strictly smaller support, i.e. for all
nonzero F ≤ E , one has d(F) = d(E). On affine schemes, this is Serre condition 1, and this says
there are no embedded components (corresponding to primes; take the primary decomposition).

Example 20.1.4(Pure dimension): For a curve with many irreducible components, there are
no sheaves supported only a single point. If X = X1 ∪X2, OX has the subsheaf OX1 · IX\X1 . For a
nodal curve, this yields OX1(−p), regular functions on X1 that vanish at p:

X1

X2

X3

p

X

Definition 20.1.5 (p-(semi)stable or Hilbert (semi)stable)
We say E is p-(semi)stable or Hilbert (semi)stable iff

1. E is pure dimensional, so any subsheaf has the same dimension,
2. For any nonzero subsheaf F ≤ E , there is an inequality of reduced Hilbert polynomials
p(F , n) ≤ p(E , n), resp. p(F , n) < p(E , n), where f ≤ g ⇐⇒ f(N) ≤ g(N) for all
N ≥ N0 ≫ 0, or equivalently f ≤ g in the lexicographic order.
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Theorem 20.1.6(?).
For any Hilbert polynomial P (n), there exists a moduli space M(OX , p) of semistable sheaves
on X with p(E , n) = P (n), which has a (semi)stable locus. This gives a bijection on points:

M(OX , P )⇌ {semistable E ∈ Sh(X), p(E , n) = P (n)} /∼ under gr -equivalence
M(OX , P )st ⇌ {stable E ∈ Sh(X), p(E , n) = P (n)} .

E 20.2 Construction of M(OX , P ) e

Remark 20.2.1: This will essentially be a quotient by SL(V ) for some V . Let E ∈ Coh(X), then
Serre yields that for all n≫ n0,

1. H>0(E(n)) = 0, dimH0(E(n)) <∞, and
2. The twist E(n) is generated by global sections.

Thus there is a surjection

0→ K := ker f → H0(E(n))⊗OX
f−→→E(n)→ 0.

Note that a global section s ∈ Γ (F) is equivalent to a morphism

OX → F
1 7→ s.

Untwisting this surjection yields

0→ K(−n)→ H0(E(n))⊗OX(−n) f̃−→→E → 0.

Definition 20.2.2 (Hilbert/Quot scheme (due to Grothendieck))
Let V ∈ kModfd and W ∈ Sh(X) (e.g. W = OX), and define Hilb(V ⊗W, P ) to be the moduli
space of quotients V ⊗W → E → 0 with p(E , n) = P (n), i.e. the scheme of quotient sheaves of
V ⊗W. More generally, one can define Hilb(G, P ) = Quot(G, P ) to be the scheme of quotients
G → E → 0 with p(E , n) = P (n).

Theorem 20.2.3(?).
Quot(G, P ) exists as a scheme and admits a universal family, yielding a fine moduli space.
Moreover, one can embed it into some Grassmannian, yielding Quot(G, P ) ↪→ Grr,n.

Remark 20.2.4: Note that if V is a vector space, every dimension r subspace yields a codimension r
quotient, so Grr,N also parameterizes quotients, and we choose quotients as they are better behaved
from a commutative algebraic POV.
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Proof (?).
Let G be fixed and consider quotients G → E → 0 as E varies. Take the sheaf kernel to obtain

0→ K → G → E → 0,

and twist by OX(n) for n≫ 0 to obtain

0→ H0(K(n))→ H0(G(n))→ H0(E(n))→ 0

using Serre vanishing. This is a SES of vector spaces 0→ V → kN → U → 0 for some N , and
thus we get a point in the Grassmannian. We know dimU = p(E , n) (maybe the degree..?),
and as we vary the quotients, p(E , n) does not vary. Note that one needs to show that the
number of such quotients to be bounded so that n can be chosen uniformly for all E , which
we’ll not prove here.
Conversely, suppose H0(G(n))↠ U → 0, we can produce a sheaf? Take the kernel of vector
spaces to get a SES

0→ K → H0(G(n))→ U → 0,

where sections of K generate a subsheaf of G(n), say K(n) := K · G(n) ≤ G(n). Untwisting
yields 0 → K f

↪−→ G → coker f → 0. Again, once P is fixed, n can be chosen uniformly. This
yields the embedding Quot(G, P ) ↪→ Grr,N as a closed subscheme, since it turns out that each
quotient U is defined by polynomial equations and thus algebraic conditions.

■

Remark 20.2.5: Note that this is a closed subscheme, which is easier to handle than a closed
subvariety: e.g. any equations define an ideal I and V (I) is a closed subscheme, say of An, whereas
it is only subvariety iff I =

√
I. This is equivalent to asking if V (I) is reduced.

Remark 20.2.6: Note that V := H0(E(n)) is fixed in the proof, and fixing this is equivalent to
choosing a basis of H0(E(n)), so Quot(G, P ) encodes a choice of basis. To forget this choice, we
need to quotient by change of basis, and we’ll have M(OX , P ) := Quot(V ⊗OX(−n), P )//SL(V ).

Note that the Grassmannian has a Plucker embedding into PN for some large N . We have
SL(V ) ↷ Quot(G, P ), so we can apply the Hilbert-Mumford numerical criterion to the induced
action SL(V ) ↷ PN – doing this precisely yields the (semi)stability criterion p(F , n) ≤ p(E , n). The
hard part will be boundedness – e.g. consider X a curve and F = OX(n)⊕OX(−n), which all have
the same Hilbert polynomial and thus yields an unbounded family. Starting with semistable sheaves
yields a bounded family. Maruyama handled boundedness for low dimensions and Simpson proved
it for the remaining dimensions, so we’ll generally skip the boundedness issues when choosing n.

Remark 20.2.7: Next time: the Plucker embedding, seeing what points look like under the
embedding, and seeing the polynomial criterion drop out of the calculation. Later: moduli of
varieties.
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E
21.1 Constructing moduli of semistable

sheaves
e

Remark 21.1.1: Today: a sketch of a proof of existence of a moduli space of semistable sheaves.
Setup: let X ∈ Proj Var or X ∈ Sch, fix a Hilbert polynomial P (n), and fix E ∈ Coh(X) with
p(E , n) = P (n); we want to construct the moduli space M(X,P (n)). Using that E(n) is globally
generated for n > n0 ≫ 0, there is a surjection H0(X; E(n)) ⊗ OX ↠ E(n) and thus a surjection
H0(X; E(n)) ⊗ OX(−n) ↠ E . Note V := H0(X; E(n)) is a vector space of dimension degP (n)
there is a surjection of sheaves V ⊗W ↠ E making E ∈ Hilb(V ⊗W, P (n)). Grothendieck embeds
this into Gr(V ⊗W,P (n)), and more generally Quot(Y, P (n)) ↪→ Gr(G, a). At this point, Quot
includes the data of a choice of basis of V , so we’ll quotient by an action SL(V ) ↷ V ⇝ SL(V ) ↷
Hilb(V ⊗W, P (n)).

Lemma 21.1.2(A key computational lemma).
SL(V ) ↷ Gr(V ⊗ W → Ua) ↪→ PN , so we need a lift SL(V ) ↷ PN with a linearization
SL(V ) ↷ AN+1. In this situation, we’ll have the Hilbert-Mumford numerical criterion to
check if [V ⊗W ↠ U ] is (semi)stable. The condition will turn out to be

∀H ⊆ V, dimH

dim im(H ⊗W ↪→ V ⊗W ) ≤
dimV

dimU
.

Remark 21.1.3: Let V = H0(E(n)), then V · E = E , i.e. V spans the stalks, and any subspace
H ⊆ V defines a subsheaf F := H · E ≤ E . The criterion yields pF (n) ≤ pE(n). For a single sheaf E ,
n depends on E and this is easy, but boundedness in families is difficult in general. To define the
PN appearing in the lemma, we’ll need to discuss Grassmannians.

E 21.2 Grassmannians e

Remark 21.2.1: For a fixed B, a SES A ↪→ B ↠ C ∈ kMod of dimensions a, b, c respectively, note
Gra,b = Grb,c where the former parameterizes subspaces and the latter quotients. There are several
levels of generality in which Grassmannians can be defined:

• Over k ∈ Field, points of Gr(B) correspond to {A ↪→ B} or equivalently {B ↠ C}
• In families, in which cases quotients are preferred.

Remark 21.2.2: Let B = kn, how does one parameterize subspaces? Any subspace A has a basis
A = ⟨v1, · · · , va⟩. Fixing a basis kn = ⟨e1, · · · , eb⟩, one can form a matrix MB ∈ Mata×b(k) whose
rows are the vi. There is an action GLa ↷MB by conjugation. Recall that Plucker coordinates
are the components of (PI), the determinants of all a × a minors where |I| = a is an index set.

Thursday, November 17 84



21 Thursday, November 17

For I = {1, · · · , b}, there are
(b

a

)
such minors. We can regard (PI) ∈ P (b

a)−1 = P(∧•aB) where
B = ⟨e1, · · · , eb⟩ and ∧•a = ⟨ei1 ∨ · · · eia⟩. Writing vi in the ei basis, their Plucker coordinate is
v1 ∨ · · · ∨ va = ∑

PIeI ∈
∧•aA ∼= k ⊆

∧•aB.

Claim: Each point (PI) ∈ PN defines A ⊆ B uniquely, so Gra,b ↪→ PN .

Proof (?).
Let M be a matrix of rank a, and change basis so that M is of the form M = [I|M ′], where
entries of M ′ encode some of the Plucker coordinates. For example, M ′

0,0 is the determinant
of a certain submatrix:

We can also see that Gra,b = ∪Aa(b−a) where each Aa(b−a) ↪→ AN = {PI ̸= 0}, yielding
Gra,b ↪→ PN ⊇

⋃
N AN . There is in fact a closed embedding ⋃Aa(b−a) ↪→

⋃
AN given by

algebraic equations.
■

Corollary 21.2.3(?).
dim Gra,b = ac = a(b− a) when parameterizing quotients.

Remark 21.2.4: What does the Hilbert-Mumford criterion say in this situation? Let K ↪→
V ⊗W ↠ U , and pick a basis to get PI(K) = PI(U) and vi1 ∨ · · · ∨ vin = ∑

pi1,··· ,iaei1 ∨ · · · ∨ eia .
Letting {fi ⊗ gj} be a basis for V ⊗W , consider how to linearize the action SL(V ) ↷ V ⊗W :
pick a Gm ⊆ SL(V ) ⊆ SL(V ⊗ W so t.fi = trifi with weight(fi) = ri and ∑

ri = 0. Then
weight(fi ⊗ gj) = ri since there is no action on W . Check that

weight ((fi1 ⊗ gj1) ∨ (fi2 ⊗ gj2) ∨ · · · ∨ (fia ⊗ gja)) =
a∑

s=1
ris .
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Now the subspace K → V ⊗W or quotient V ⊗W → U is GIT is stable (resp. semistable) iff for
all λ : Gm → SL(V ), there exists some PI such that

• weight ≤ 0 for semistability,
• weight < 0 for stability,

with PI(K) ̸= 0, by the numerical criterion. This translates to having a nonzero a × a minor for
any choice of basis in V .

Remark 21.2.5: Let V = ⟨f1, · · · , fn⟩, then there are subspaces Hn−1 = ⟨f2, · · · , fn⟩ , H3 =
⟨f3, · · · , fn⟩ , · · · , H1 = ⟨fn⟩. This corresponds to an ordered list of weights r1 ≤ r2 ≤ · · · ≤ rn.

Exercise 21.2.6 (?)
Try this in dimension 2, where V = ⟨f1, f2⟩ with weights −r, r resp. and write V ⊗W =
f1W ⊕ f2W . Check weight (∧•(fi ⊗ gj)) = ∑

ri = r.

22 Tuesday, November 22

Remark 22.0.1: Lemma from Simpson: a point (K ↪→ V ⊗W ↠ U) ∈ Gr(V ⊗ W, b) for the
SL(V )-action is stable (resp. semistable) iff for all H ≤ V ,

dimH ⊗W
dim im(H ⊗W ) ≤

dimV ⊗W
dimU

⇐⇒ dimH ⊗W
dim(H ⊗W ) ∩K ≥

dimV ⊗W
dimK

.

We’ll consider 0→ k → V ⊇ H and pick a 1-parameter subgroup λ : Gm → SL(V )→ SL(V) and
apply the HM criterion.

Remark 22.0.2: Recall that if G ↷ (X,L) is a linearized action with X projective and L ∈
Picamp(X). Then x ∈ X is stable/semistable iff for all λ : Gm → G we have µL(λ, x) ≥ 0 – this is
defined using limt→0 λ(t).x := x0 ∈ X since X is projective and hence proper, and since x is fixed
by Gm we have Gm ↷ Lx and after picking a basis have λ(t).z = trz for z ∈ Lx and we define
µL(λ, x) := −r. Replacing L by some high power, we can assume L = OX(1) is very ample.

If X ↪→ Pn we have L = OPn(1)|X we have G ↷ An+1 linearly on coordinates. Diagonalizing
this action yields λ(t).xi = twixi, and we can order the weights such that w0 ≥ w1 ≥ · · · ≥ wn.
Writing x = [x0, · · · , xn] we can compute x = limt→0 [tw1x1, · · · , twnxn] = twk[· · · , xk, 0, · · · , 0].
So x = [0, 0, · · · , 0, xk−wk

, · · · , xk, 0, · · · , 0] where wk of the coordinates are nonzero. Recall x is
unstable iff λ(Gm).x ∋ [0, · · · , 0] in An+1, since then x would be orbit-closure equivalent to zero
which is not a point in projective space.

Note that the fiber here is L−1
x = Cx = C ⟨x0, x1, · · · , xk, · · · , xn⟩ (i.e. the line corresponding to x).

Here λ(Gm) acts with weight wk and r = −wk and −r = wk = µ(x, λ). Does this match with the
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criterion above? Consider limt→0 λ(t).x ∈ An+1:

lim
t→0

λ(t).x = lim
t→0

(0, 0, · · · , ?, · · · , twkxk, 0, · · · , 0),

and the bad case is wk > 0.

An+1

0

Bad! Ok

Example 22.0.3(?): Let X = P2, then limt→0
[
t2 : t : t−3] = limt→0 t

−3[t5 : t4 : 1
]

= [0 : 0 : 1] ∈
P2, which is how one generally shows Pn is proper (e.g. by applying the valuative criterion and
choosing a uniformizing parameter t).

Remark 22.0.4: If dimV = n with weights w1, · · · , wn, then dimV ⊗W = n dimW with weights
w1, · · · , w1, w2, · · · , w2, · · · , wn, · · · , wn where each weight occurs with multiplicity n. On V pick
coordinates x0, · · · , xn with weights w1, · · · , wn so λ(t)xi = twixi. embed Grk,n ↪→ P(∧•kV) with
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Plucker coordinates pI = xi1 ∨ · · · ∨ xik
. Then λ(t).pI = t

∑
i∈I

wipI has weight wi1 + · · ·+ wik
. We

want limλ(t).K = K. For simplicity assume w1 > w2 > · · · > wn with strict inequalities. In P(V )
if the last coordinate is nonzero, i.e. p = [0 : · · · : 0 : 1], the limit is [0 : 0 · · · : 0 : 1].

23 Tuesday, November 29

Remark 23.0.1: Today: the HM criterion and a key computation for Grk,n.

Definition 23.0.2 (?)
Setup: G↷ X ⊆ Pn, linearized to G↷ An+1. Take a 1PS Gm

λ−→ G diagonalized (potentially
after a change of coordinates) to t.[x0, · · · , xn] = [tr0x0, · · · , trnxn]. Define

µO(1)(λ, p) := max
{
−ri

∣∣∣ i where xi(p) ̸= 0
}
.

Theorem 23.0.3(HM Criterion).
A point p ∈ Pn is (semi)stable if ∀λGm → G nonconstant 1PSs,

µ(λ, p) ≥ 0 resp.µ(λ, p) > 0.

Remark 23.0.4: On the meaning: if µ(λ, p) = −r0, then −r0 ≥ −ri for all i and thus r0 ≤ ri. The
good case: p is stable, then r0 < 0. The bad case: p is unstable, then r0 > 0. So we want at least
one negative coefficient for p to be stable, and we can generally write

µ(λ, p) = min
{
ri

∣∣∣ i where xi(p) ̸= 0
}
.

For unstable points, limt→0(trixi) = 0 in An+1, which does not come from a projective point.
Considering limt→0 t.p in Pn, since Pn is proper the limit exists and must equal

lim [tr0x0 : · · · : trnxn] = lim
[
x0 : tr1−r0x1 : · · · : trn−r0xn

]
= [x0 : · · · : xr : 0 : · · · : 0]

where there are zeros if either xi(p) = 0 or ri − r0 > 0. In An+1, consider the line Cp =
C(x0, · · · , xr, 0, · · · , 0) and Gm acts by multiplication by tr0 . So the weight is r0 = −µ(λ, p),
thus we can define µ(λ, p) in another way: let p = limt→0 t.p in Pn, then p is fixed by Gm. There
is an action on the fiber Gm ↷ O(1)

∣∣∣
p
= Cp with some weight r0, so define µ(λ, p) := −r0.

Remark 23.0.5: Now let G↷ Grk,n = {Kk ⊆ Cn}, where we’re choosing to work with subspaces
instead of quotient spaces. This yields a SES K ↪→ Cn ↠ V . Note that Grk,n ⊆ P(∧k Cn) = PN−1

where N =
(n

k

)
by the Plucker embedding. This yields a linear action G↷ AN . Take λ : Gm → G

a 1PS, then the key computation is finding µ(λ, [K]) for [K] ∈ Grk,n.

First diagonalize Gm ↷ Cn to get t.x = diag(tr1 , · · · , trn)x. Then G ↷ CN through Plucker
coordinates pI for I = {i1, · · · , ik} ⊆ {1, · · · , n}. The weight of t.pI is r(pI) := ∑

i∈I ri = ri1 + · · ·+
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rik
, and so

µ(λ, [K]) = max
{
−r(pI)

∣∣∣ pI(K) ̸= 0
}
.

Assume r0 > r1 > · · · > rn, then

µ(λ, [K]) = −krn −
(

n−1∑
i=1

ri − ri+1

)
dimK ∩ Li+1,···n

where Li+1,··· ,n ≤ Cn is the subspace {xi+1 = · · · = xn = 0}. Take a basis of K ⊆ Cn and represent
it as the rows of a k × n matrix. Reduce this to echelon form, but slightly reversed to emphasize
the last vector:

Taking the limit of t.K in PN−1 yields the following:
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24 Applications of GIT to Moduli of Varieties (Thursday, December 01)

This follows from write trnen + trn−1cn−1en−1 + · · · = trn (en + trn−1−rncn−1en−1 + · · ·). Labeling
the pivots i1, · · · , ik from right to left, we have

µ = −ri1 − · · · − rik

= −
n∑

i=1
(dim(K ∩ Li+1,··· ,n)− dim(K ∩ Li,i+1,··· ,n)) ri

= −rn (dim(K ∩ L∅)− dim(K ∩ Ln)) , Ln := {xn ̸= 0} , L∅ := Cn

− rn−1 (dim(K ∩ Ln)− (dimK ∩ Ln−1,n))
− · · · ,

where we note that e.g. −(dimK ∩Ln)(rn−1 − rn) appears, yielding the ri − ri+1 terms in the sum.

Remark 23.0.6: Simpson considers SL(V ) ↷ Gr(K ↪→ V ⊕W ↠ U), and comes up with a precise
formula that enforces an upper bound on dim(K ∩H ⊗W ). This follows from Mumford’s formula:
write V ⊗W ∼=

⊕dim V
i=1 W , then Gm acts on this with weights ???. Note that if ri = ri+1 then

dim(K ∩ Li+1,··· ,n) doesn’t contribute to µ. The critical case is when r1 = · · · = r1 > r2 = · · · = r2.
Note that the ri form a cone and µ is a linear function on it, and it suffices to check on rays.

Remark 23.0.7: For moduli of K3s, see Viehweg on GIT for (X,L) with X smooth or with
canonical singularities, L ample, KX nef – note that this doesn’t provide a compactification.

24 Applications of GIT to Moduli of Varieties
(Thursday, December 01)

Remark 24.0.1: Last time: moduli of sheaves on a fixed variety, a linear case where GIT works
very well by reducing to a computation on a Grassmannian.
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• Successes:

– Mg (compactification of moduli of genus g curves)
– Moduli of varieties with nef KX , e.g. K3 surfaces, CYs, varieties of general type, all with

(very) mild singularities. However, GIT does not give a compactification here.

• Failures:

– Compactifications for higher-dimensional varieties analogous to Mg. Computations are
infeasible most of the time, and unreasonable when computable.

Recall Mg is the moduli of smooth projective genus g curves, and for g ≥ 2 it is known that
dimMg = 3g−3 which is locally a quotient of a smooth variety and is thus a smooth orbifold/stack.
It is quasiprojective but not projective and not complete. One would like an inclusion Mg ↪→Mg

a projective variety with mild singularities such that points in ∂Mg correspond to curves with
certain singularities. This is constructed by Deligne-Mumford, locally U/G where U is smooth and
G ∈ FinGrp. Moreover ∂Mg = ⋃

iDi/G with Di smooth and SNC, and points in ∂Mg correspond
to DM-stable curves:

Definition 24.0.2 (?)
Let C = ⋃

iCi be a connected reduced projective curve, then C is DM-stable iff

1. (Singularities) C has at worst double crossing points, so analytically-locally of the form
V (xy).

2. (Numerical) Any of the following equivalent conditions:

a. ♯Aut(C) <∞,
b. For any Ci

∼= P1, ♯(Ci ∩ (C \ Ci)) ≥ 3, and for any Ci which is rational nodal (elliptic),
♯(Ci ∩ (C \ Ci)) ≥ 1.

c. The dualizing sheaf ωC is ample.

Remark 24.0.3: Why these three conditions are the same: recall Aut P1 = PGL2 which has
dimension 3. Note that AutE ∼= E × G for G ∈ FinGrp, usually G ∼= C2, and dim AutE = 1.
Consider the nodal curve E, equivalent to P1/0 ∼ ∞, so Aut(C) = C× ⋊ C2 which again has
dimension 1. If g(C) ≥ 2 then ♯Aut(C) < ∞. The 3 in condition b is due to the need to fix 3
points, to drop dim PGL2 from dimension 3 to zero.

If X is Gorenstein then ωX ∈ Pic(X) and can be written ωX = O(KX) where KX is defined to be
the canonical class. This holds if e.g. X has hypersurface singularities. Note that ωX is ample iff
deg ωX |Ci

> 0 for each Ci, and by adjunction one has

deg ωX |Ci
= degωCi + ♯Ci ∩ (C \ Ci) = 2pa(Ci)− 2.

Thus if pa(Ci) ≥ 2 this is always positive; if pa(Ci) = 0 then Ci = P1, otherwise if pa(Ci) = 1 and
we get the curves appearing in condition b.

Remark 24.0.4: Consider a family C → ∆◦ of smooth projective curves. By the semistable
reduction theorem, after a finite base change ∆′ → ∆ any family can be completed to X ′ → ∆′

such that X ′ is smooth and X ′
0 is SNC:
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X ′0X ′t

Note that deg ωX |Xi
< 0 ⇐⇒ Ci = P1 and ♯ (Ci ∩ (C \ Ci)) = 1, or just ♯ (Ci ∩ (C \ Ci)) = 2. If

C · Ci = 0 since C can be replaced with a disjoint fiber F . Writing 0 = C · Ci = C2
i + (C − Ci)Ci,

where get C2
i = −1 in the first case and C2

i = −2 in the second case. In the first case, Ci can
be contracted to yields X → X1 (Castelnuovo’s lemma) with X1 smooth, so we can get rid of −1
curves in stages to get a new surface with (potentially) only −2 curves, which is a minimal model
and is smooth. Contracting all −2 curves yields the canonical model, which may be singular but has
only canonical singularities. Note that X has canonical singularities iff (X,X0) has slc singularities
iff X0 has slc singularities, which is a form of log adjunction for degenerating pairs.

See the BCHM paper.

So it’s clear how to degenerate in one parameter families, but how does one organize these various
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limits into a compactification? The idea is to construct Mg,Mg using GIT to realize them as
H/PGLn where H is a moduli of curves with additional data. The HM criterion gives stable and
semistable points, and one hopes these coincide with the above notions.

Remark 24.0.5: What is H? Two answers: the Chow variety, or the Hilbert scheme. Start with
C a smooth curve of genus g ≥ 2 with degKC = 2g − 2 ≥ 2 so that KC is ample. Then nKC

is very ample for any n ≥ 2, and there is an embedding C
|nKC |
↪−−−→ PN . Such an embedding is

given by a choice of basis of H0(C;O(nKC)) where two bases differ by a PGL -action. Note that
N = n(2g − 2)− (g − 1)− 1 by Riemann-Roch.

The Chow variety CH(d1, d2,PN ) parameterizes cycles of dimension d1 and degree d2 in PN . For
example, CH(1, n(2g − 2),PN ) ↪→ PH0(Gr,O(k)) for some k which sends a cycle to a certain
hypersurface. Since PGL acts on the latter, it acts on the former, and there is a notion of Chow
stability.

Theorem 24.0.6(Mumford).
For n ≥ 4, DM curves are Chow stable

Remark 24.0.7: The Hilbert scheme is preferable since Chow doesn’t have an immediate deforma-
tion theory. We can take a scheme parameterizing closed embeddings Z ↪→ PN with a given Hilbert
polynomial; recalling pX = χ(OZ(X)) and setting pZ(x) = n(2g−2)x+(1−g), consider Hilb(Pn, pZ).
Constructing this scheme: for n ≫ 0, there is a surjection H0(OPN (n)) ↠ H0(OZ(n)) defines a
point gn ∈ Gr as the codomain varies. Mumford proves there exists an N such that (gN , gN+1)
defines Z uniquely, although N is not canonically defined. Thus Hilb embeds into a product of
Grassmannians, and there is a notion of asymptotic Hilbert stability in terms of growth in N , and
one takes the leading term. One shows that for n ≥ 4, HM-stable curves are asymptotically Hilbert
stable in this since. This almost completely fails for surfaces.

Remark 24.0.8: The generalization: algebraic spaces, H/G or more generally H/R for R ⊂ H×H
an equivalence relation. By Artin, these exist, and they are natural to consider for non-polynomial
equations like y =

√
x3 + x+ 1. The construction of moduli spaces as algebraic spaces is easy, one

then tries to prove they are projective. See KSB varieties and KSBA pairs.

25 Problem Set 1

Problem 25.0.1 (1)

Denote by µn ≤ SLn(C) the subgroup generated by M :=
[
ε 0
0 ε−1

]
for εn = 1 a primitive

nth root of unity, and consider its action µn ↷ C[x, y] restricted from the standard action
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SL2(C) ↷ C[x, y]. Explicitly, this can be written geometrically as

µn ↷ A2

M.(x, y) = (εx, ε−1y).

Write a general polynomial in C[x, y] as f(x, y) = ∑
i,j≥0 cijx

iyj , then under the action of µn

we have

M.f(x, y) =
∑

i,j≥0
cij(εx)i(ε−1y)j =

∑
i,j≥0

cijε
i−jxiyj .

The polynomial f will be in the invariant subring C[x, y]µn if and only if M.f = f , and
equating coefficients in the above expression imposes the condition that for a fixed i, j,

• For i− j = 0, so i = j, no extra condition is enforced. Such a middle coefficient occurs
if and only if n is even.

• For i ̸= j with 4 ̸
∣∣ i− j, since εi−j ̸= 1 we must have cij = 0.

Inspecting such polynomials, if n is even one can find

a(x, y) := (xy)
n
2 , b(x, y) = xy,

from which the relation a2 = bn is readily seen to hold. If n is odd, no such invariants exist –
this follows from writing

a(x, y) = an,0x
n + a0,ny

n, b(x, y) = b2,0x
2 + b1,1xy + b0,2y

2

and setting a2 − bn = 0, which yields

0 = 2 a0nan0x
nyn + a2

n0x
2 n + a2

0ny
2 n −

(
b20x

2 + b11xy + b02y
2
)n

= 2 a0nan0x
nyn + a2

n0x
2 n + a2

0ny
2 n −

∑
i+j+k=n

bi
20b

j
11b

k
02 x

2i(xy)jy2k

= 2 a0nan0x
nyn + a2

n0x
2 n + a2

0ny
2 n −

∑
i+j+k=n

(
n

i, j, k

)
bi

20b
j
11b

k
02 x

2i+jy2k+j ,

where we’ve taken a general trinomial expansion. Setting (i, j, k) = (1, 0, n− 1) shows b20 = 0,
and similarly setting (0, 1, n− 1) forces b11 = 0 and (n− 1, 0, 1) forces b02 = 0.

Problem 25.0.2 (2)
The isomorphism with D2n: Let BD4n := ⟨R,S⟩ where

R :=
[
ε 0
0 ε−1

]
, ε2n = 1, S =

[
0 1
−1 0

]
.

To see that BD4n has order exactly 4n, we can start listing elements.

• The subset
{
R,R2, R3, · · · , R2n−1, R2n = I

}
contributes 2n distinct elements, and
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• The subset
{
SR, SR2, SR3, · · · , SR2n−1, SR2n = S

}
contributes 2n more distinct ele-

ments. That these are distinct from each other and the previous set is clear from
computing the products directly:

SRk =
[

0 1
−1 0

][
εk 0
0 ε−k

]
=
[

0 ε−k

−εk 0

]
.

We can also note that S2 = −I = Rn, so the sets
{
S2Rk

∣∣∣ k ≥ 0
}
,
{
S3Rk

∣∣∣ k ≥ 0
}

are
redundant and exhaust all possibilities for elements in this group, since S,R commute up to
multiplication by −1 and Rn = −R occurs in the first subset.
To see that the image of BD4n in SO3(R) is isomorphic to D2n, note that the subgroup BD4n

already lies in SU2, viewed as a subgroup of SL2(C), and so we look for a map SU2 → SO3(R).
For this, we can use the following isomorphism to the unit quaternions Q×:

F1 : SU2 → Q×[
a+ bi −c+ di
c− di a− bi

]
7→ a1 + bi + cj + dk.

Unit quaternions can be mapped to rotation matrices using the following well-known formula:

F2 : Q× → SO3(R)

a1 + bi + cj + dk 7→

 1− 2
(
c2 + d2) 2 (bc− da) 2 (bd+ ca)

2 (bc+ da) 1− 2
(
b2 + d2) 2 (cd− ba)

2 (bd− ca) 2 (cd+ ba) 1− 2
(
b2 + c2)

 .
So we can use Φ := F2 ◦ F1 : SU2 → SO3(R) and investigate the image. A computation shows
that

Φ(S) = F2(−1j) =

−1 0 0
0 1 0
0 0 −1

 =⇒ Φ(S)2 = I,
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and

Φ(R) = Φ
([
an + ibn 0

0 an − ibn

])
, an = cos(2π/n), bn = sin(2π/n)

= F2(an1 + bni)

=

1 0 0
0 1− 2b2

n −2anbn

0 2anbn 1− 2b2
n



=

1 0 0
0 cos(π/n) − sin(π/n)
0 sin(π/n) cos(π/n)



=
[
I 0
0 Rπ/n

]
,

where Rθ ∈ SO2(R) is the rotation by θ matrix and we have applied several double angle
formulas. In this form, we can easily check

Φ(R)n =
[
In 0
0 Rn

π/n

]
= I,

and so the image of Φ(R) is order n. Finally, we note the presentation

D2n =
〈
r, s

∣∣∣ rn = s2 = 1, sr = r−1s
〉
,

and so in order to verify that the image is isomorphic to D2n, it suffices to check that r := Φ(R)
and s := Φ(S) satisfy the same relations, since (by the same argument as in SL2(C)) they
already generate a finite subgroup of SO3(R) of order 2n. That this relation holds in the image
follows from the fact that it holds for the original two matrices and group homomorphisms
preserve relations:

R−1S =
[
ε−1 0
0 ε

]
·
[
0 −1
1 0

]
=
[

0 ε−1

−ε 0

]
=
[
0 −1
1 0

]
·
[
ε 0
0 ε−1

]
= SR.

Finding invariant polynomials: We can first check which polynomials are invariant under
the M -action:

M.f(x, y) = f(x, y) =⇒
∑

cijx
iyj =

∑
cijε

i−jxiyj ,

which implies that cij = 0 unless i = j or 2n
∣∣ i− j. Thus the general polynomials of degrees
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2n, 4, and 2n+ 2 respectively satisfying these conditions are of the form

a(x, y) = a2n,0x
2n + an,nx

nyn + a0,2ny
2n

b(x, y) =
{
b4,0x

4 + b2,2x
2y2 + b0,4y

4, n = 2
b2,2x

2y2, n > 2,

c(x, y) = c2n+1,1x
2n+1y + cn+1,n+1x

n+1yn+1 + c1,2n+1xy
2n+1.

We can then further check which polynomials are invariant under the i-action:

i.f(x, y) = f(x, y) =⇒
∑

cijx
iyj =

∑
cij(−1)jxjyi,

which implies that cij = cji when j is even and cij = −cji when j is odd. Incorporating these
new restrictions, the general such invariant polynomials will be of the following forms:

a(x, y) = α0x
2n + α1x

nyn + α0y
2n

b(x, y) =
{
β0x

4 + β1x
2y2 + β0y

4, n = 2
β1x

2y2, n > 2,

c(x, y) = γ0x
2n+1y + γ1x

n+1yn+1 − γ0xy
2n+1.

Since we have freedom to change coordinates, we can assume these polynomials are monic,
potentially at the cost of getting a slightly different relation than ba2 = 4bn+1. Setting
α0 = β0 = γ0 = 1, we’re left considering polynomials of the form

a(x, y) = x2n + α1x
nyn + y2n

b(x, y) =
{
x4 + β1x

2y2 + y4, n = 2
β1x

2y2, n > 2,

c(x, y) = x2n+1y + γ1x
n+1yn+1 − xy2n+1.

Generalizing example 1.13 in Mukai suggests that invariants of the following forms may work,
corresponding to setting α1 = γ1 = 0 and β1 = 1:

a(x, y) := x2n + y2n

b(x, y) := x2y2

c(x, y) := xy(x2n − y2n).

One can then check directly that the desired relation holds:

b(x, y)a(x, y)2 − 4b(x, y)n+1 = (xy)2(x4n + y4n + 2(xy)2n)− 4(xy)2(xy)2n

= (xy)2(x4n + y4n − 2(xy)2n)
= c(x, y)2.
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Problem 25.0.3 (3)
Let εn = 1 and ε.(x, y) := (εx, εy), and let f(x, y) = ∑

cijx
iyj ∈ C[x, y]. Then f is invariant

iff

ε.f(x, y) = f(x, y) ⇐⇒
∑

cijx
iyj =

∑
cijε

i+jxiyj ⇐⇒ n
∣∣ i+ j,

and so the invariant ring is

C[x, y]µn =
⊕
k≥0

C[x, y]kn,

the nth graded piece of C[x, y] along with the pieces corresponding to all higher multiples kn
of n. This is generated as a graded ring by the degree n monomials

〈
xn, xn−1y, · · · , xyn−1, yn

〉
,

so

C[x, y]µn = C[xn, xn−1y, · · · , xyn−1, yn].

• For n = 3, this recovers C[x, y]µ3 = C[x3, x2y, xy2, y3].
• For n = 4, it is C[x, y]µ4 = C[x4, x3y, x2y2, xy3, y4].

Problem 25.0.4 (4)
Part 1: To fix notation, let R = k[M ] and G = SpecR, and write the given maps as

m∗ : R→ R⊗k R

xm 7→ xm ⊗ xm

i∗ : R→ R

xm 7→ x−m

ε∗ : R→ k

xm 7→ 1.

Equipping G with the structure of a group scheme requires producing the following maps:

m : G→ G×
k
G

i : G→ G

ε : Spec k → G,

which are required to fit into commutative diagrams of k-schemes, where sG : G→ Spec k is
the structure morphisms of G and ∆ : G→ G×

k
G is the diagonal morphism:
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G G×
k
G

G×
k
G G×

k
G×

k
G

Spec k ×
k
G

G G×
k
G G

G×
k

Spec k

G G×
k
G G×

k
G G

m

m

(m,idG)

(1,idG)

(sG,idG)

(sG,idG)(idG,ε)

(ε,idG)

m

∆(idG,i)m

ε

Link to Diagram
Since morphisms of affine schemes correspond bijectively to k-algebra morphisms between
their global sections, if we set m, i, ε to be the morphisms corresponding to m∗, i∗, ε∗ induced
by the Spec functor, it suffices to show the following diagrams of k-algebras commute:
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R R⊗k R

R⊗k R R⊗k R⊗k R

k ⊗k R

R R⊗k R R

R⊗k k

R R⊗k R R⊗k R R

m∗

m∗

(m∗,idR)

(m∗,idR)

k⊗r 7→kr

r⊗k 7→rk(idR,ε∗)

(ε∗,idR)

m∗

r1⊗r2 7→r1r2(idR,i∗)m∗

ε∗

Link to Diagram

• The first diagram commutes:

– The bottom path is xa ⊗ xb ⊗ xc 7→ xa+b ⊗ xc 7→ xa+b+c,
– The top path is xa ⊗ xb ⊗ xc 7→ xa ⊗ xb+c 7→ xa+b+c.

• The second diagram commutes:

– The bottom path is xm 7→ xm ⊗ xm 7→ xm ⊗ 1 7→ xm · 1 = xm,
– The top path is xm 7→ xm ⊗ xm 7→ 1⊗ xm 7→ 1 · xm = xm.

• The third diagram commutes:

– The bottom path is xm 7→ xm ⊗ xm 7→ xm ⊗ x−m 7→ xm+(−m) = x0 = 1,
– The top path is xm 7→ 1.

Part 2: Write M ∼= Zr ⊕
⊕ℓ

i=1 Z/niZ, then

Spec k[M ] ∼= Spec k
[
Zr ⊕

ℓ⊕
i=0

Z/niZ
]

∼= Spec (k[Zr]⊗k k[Z/n1Z]⊗k · · · ⊗k k[Z/nℓZ])

∼= Spec k[Zr]×
k

Spec k[Z/n0Z]×
k
· · · ×

k
Spec k[Z/nℓZ]

∼= Gm ×
k
µn0 ×

k
· · · ×

k
µnℓ

,
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where we’ve used that k[A×B] = k[A]⊗k k[B] and Spec(R⊗k S) = Spec(R)×
k

Spec(S).
Part 3: =⇒ : suppose one is given such a linear coaction, we will show that it induces a
direct sum decomposition of vector spaces.
Definition 3.54 in Mukai describes a coaction of R on V as a morphism a∗ : V → V ⊗k R such
that the following diagrams commute:

V V ⊗k R V ⊗k k Va∗ idV ⊗ε∗ v⊗k 7→vk

idV

Link to Diagram

V V ⊗k R

V ⊗k R V ⊗k R⊗k R

a∗

a∗

idV ⊗m∗

a∗⊗idR

Link to Diagram
As in class, we can note that for any v ∈ V , we have a∗(v) = ∑

m∈M vm ⊗ xm for some
components vm, and by the commutativity of the above diagram, the composition

v 7→
∑

m∈M

vm ⊗ xm 7→
∑

m∈M

vm ⊗ 1 7→
∑

m∈M

vm

is equal to the identity and so v = ∑
m∈M vm. This yields V = ∑

m∈M Vm for some subsets Vm,
which can be defined as all of those w ∈ V such that the term vm⊗xn occurs in the expansion
of the image a∗(w) = ∑

m∈M vm ⊗ xm. These are linear subspaces, because for example if
m1,m2 ∈ Vm, then

a∗(vm1 + vm2) = a∗(vm1) + a∗(vm2) = (vm1 ⊗ xm) + (vm2 ⊗ xm) = (vm1 + vm2)⊗ xm,

and so setting w := vm1 + vm2 shows that their sum is again in Vm. It remains to show that
this sum of subspaces is direct.
It suffices to show that if any vm ∈ Vm can be expressed as vm = ∑

n ̸=m vn with vn ∈ Vn then
vm = 0. This shows that Vm∩Vn = 0 for all m and n, making the sum direct. To this end, note
that a∗(vm) = vm⊗xm is an elementary tensor. If vm = ∑

n̸=m vn, then a∗(v) = ∑
n̸=m vn⊗xn.

Since a∗ is a well-defined map, it must be the case that

vm ⊗ xm =
∑

n ̸=m

vn ⊗ xn.

Equating components of these tensors forces vn = 0 for all n ̸= m, so vm = 0.
⇐= : suppose now that one has a decomposition V = ⊕

m∈M Vm; then the naturally associated
map v 7→

∑
m ∈Mvm ⊗ xm yields the desired coaction.

Part 4: This follows from the same proof as in part 3 – the only new aspect is that the
coaction map a∗ : A→ A⊗ k[M ] is now a map of k-algebras which preserves the grading on
A. If ai ∈ Ai and aj ∈ Aj with A = ⊕

m∈M Am, then aiaj ∈ Ai+j , and

a∗(aiaj) = a∗(ai)a∗(aj) = (ai ⊗ xi)(aj ⊗ xj) = (aiaj)⊗ xi+j .
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Problem 25.0.5 (5)
Throughout this problem, we work over a fixed field k write A2 := Spec k[x, y]. All tensor
products are implicitly over k.

1. First noting that we can write Ga = Spec k[ξ] for an indeterminate a, we can use the
isomorphism R⊗ V := k[x, y]⊗ k[ξ] ∼= k[ξ][x, y] to regard elements in polynomials in the
variables x, y with coefficients in k[ξ]. The coaction

Ga ↷ A2

ξ.(x, y) := (x, ξx+ y)

can then be written as

a∗ : k[x, y]→ k[ξ]⊗ k[x, y] ∼= k[ξ][x, y]
x 7→ x

y 7→ ξx+ y.

2. Write Gm = Spec k[λ, λ−1] and use the isomorphism k[λ, λ−1] ∼= k[z, w]/(zw − 1) to
write

R⊗ V = k[x, y]⊗ k[λ, λ−1] ∼= k[x, y]⊗ k[z, w]
(zw − 1)

∼=
k[z, w]

(zw − 1) [x, y],

so z corresponds to λ and w to λ−1. Then the action

Gm ↷ A2

λ.(x, y) := (λx, λ−1y)

has the following corresponding coaction:

a∗ : k[x, y] 7→ k[z, w]
(zw − 1) [x, y]

x 7→ zx

y 7→ wy.

3. Write µn = Spec k[ξ]/(ξn − 1), then

R⊗ V = k[x, y]⊗ k[ξ]
(ξn − 1)

∼=
k[ξ]

(ξn − 1) [x, y]

and the coaction is

a∗ : k[x, y]→ k[ξ]
(ξn − 1) [x, y]

x 7→ ξx

y 7→ ξ−1y = ξn−1y.
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4. We first write the geometric action as

S3 ↷ A3 = Spec k[x1, x2, x3]

σ.[x1, x2, x3] :=
[
xσ(1), xσ(2), xσ(3)

]
.

We can then write

R⊗k V =

⊕
σ∈S3

k

⊗k k[x1, x2, x3] ∼=
⊕

σ∈S3

k[x1, x2, x3].

Thus the coaction is

k[x1, x2, x3]→
⊕

σ∈S3

k[x1, x2, x3]

xi 7→
⊕

σ∈S3

xσ(i).

For example, writing S3 = {(), (12), (23), (13), (123), (132)}, the map on the first coordi-
nate is the following:

x1 7→ [x1, x2, x1, x3, x2, x3].

26 Problem Set 2

E 26.1 1 e

Problem 26.1.1 (1)
Consider the SL2 action on X =

(
P1)n with a linearized invertible sheaf L =

OX (d1, . . . , dn) , di ∈ N. Define wi := 2di∑
dj

, so that ∑wi = 2. Prove that a point
(P1, . . . , Pn) ∈ Xss(L) (resp. Xs(L)) ⇐⇒ whenever some points Pi, i ∈ I, I ⊂ {1, . . . , n},
coincide, one has ∑i∈I wi ≤ 1 (resp. < 1 ).

Solution:
Write points in this product as

X := (P1)n =
{

p :=
[
x0 · · · xn

y0 · · · yn

]}
,
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corresponding to the n-tuple ([x0 : y0], · · · , [xn : yn]), with SL2 action given by

SL2 ↷ X[
a b
c d

]
· p :=

[
a b
c d

] [
x0 · · · xn

y0 · · · yn

]
=
[
ax0 + by0 · · · axn + byn

cx0 + dy0 · · · cxn + dyn

]
.

We note that the maximal torus acts as

TSL2 ↷ X[
t ·
· t−1

]
· p :=

[
a b
c d

] [
x0 · · · xn

y0 · · · yn

]
=
[
tx0 · · · txn

t−1y0 · · · t−1yn

]
.

We identify X with its image (which we’ll also denote X) under the Veronese embedding
X → PN associated to the ample line bundle L := O(d) where d := [d1, · · · , dn] ⊆ Zn viewed
as an integer vector. Writing D for the convex hull of the di in Zn, note that every lattice
point in Zn ∩D defines a monomial, and every point p ∈ X corresponds to a a collection of
lattice points Pp = {k = [k1, · · · , kn]} ⊆ D ∩ Zn along with a choice of coefficient αk for each
k ∈ Pp.
The following is an example D and Pp when n = 3 and d = [3, 5, 4]:
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The three highlighted lattice points are k1 = [3, 0, 0],k2 = [0, 5, 0],k3 = [0, 0, 4], Pp :=
{k1,k2,k3} corresponds to a polynomial

F (x1, x2, x3) = α1x
3
1x

0
2x

0
3 + α2x

0
1x

5
2x

0
3 + α3x

0
1x

0
2x

4
3.

In our situation, lattice points will correspond to monomials

kIJ = xIyJ := xi1
1 x

i2
2 · · ·x

in
n · y

j1
1 y

j2
2 · · · y

jn
n ,

and so each point in X will correspond to a polynomial

F (x1, · · · , xn, y1, · · · , yn) =
∑

(I,J)⊆D

αIJx
IyJ .

where ∑i∈I i+∑
j∈J j = di.

Todo: this is not quite right. If αj is associated
to the embedding along the dj direction, then the
monomial degrees should just sum up to dj.

Indexing these monomials systematically, we can write

F (x1, · · · , yn) =
∑

αj

n∏
i=1

x
di−kj

i y
kj

i .

When points collide, without loss of generality (using the transitive SL2-action) we can assume
that the collision point in P1 is [0 : 1], so p ∈ X is of the form

p =
[
0 · · · 0 pm+1 · · · pn

1 · · · 1 qm+1 · · · qn

]
,

where we’ve written m for the number of colliding points. We can now compute the weights
of the torus action over such colliding points

λ(t).F (x1, · · · , yn) =
∑

αj

∏
tdi−2kjx

di−kj

i ykj

=
∑

twijαjx
di−kj

i ykj , wij :=
∑

i

di − 2kj .

We now need µ(x, λ) ≥ 0 for semistability, i.e. min(wij) ≥ 0, so min(∑ di − 2kj) ≥ 0. We can
maximally destabilize such a quantity by taking kj = di for each i, j, and so if the collision set
is S, we require

n∑
i=1

di −
∑
i∈S

2di ≥ 0 ⇐⇒
n∑

i=1
di ≥

∑
i∈S

di ⇐⇒
∑

i∈S 2di∑n
i=1 di

≤ 1 ⇐⇒
∑
i∈S

wi ≤ 1.

E 26.2 2 e
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Problem 26.2.1 (2)

Consider the SL3 action on the set X = PN , N =
(

3 + 2
2

)
− 1 = 9, parameterizing cubic

curves C ⊂ P2, with a linearized invertible sheaf L = OX(1). Prove that C is semistable
⇐⇒ C has only ordinary double points.

Solution:
We first note that every choice of cubic curve C ∈ Y3,2 can be represented (after choosing
coordinates) by a polynomial

F (x, y, z) =
∑

i+j+k=3
aijk x

iyjzk =
∑

i+j+k=3
aix

iyjzk i := [i, j, k]

and thus a choice of lattice points CP in the corresponding weight polytope where each point
is labeled with the corresponding coefficient of F :

We record the fact that the point p := [1 : 0 : 0] is singular iff a300 = a201 = a210 = 0:
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Moreover, p is a triple point iff additionally a102 = a111 = a120 = 0:
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Moreover, all of above holds except a102 (the coefficient of xz2) is nonzero, then p is a double
point with only a single tangent, and thus not an ordinary double point. These facts follow
from computing the gradients and Hessians which characterize these types of singularities.
We also note that if λ : Gm → SL3 is a 1-parameter subgroup, then λ(t) is conjugate to

λ̃(t) =

tr1 · ·
· tr2 ·
· · tr3

, 3∑
i=1

ri = 0,

and thus determines a vector r := [r1, r2, r3] ∈ Z3. The action can then be written

λ(t) · F (x, y, z) =
∑

i+j+k=3
ai t

⟨r, i⟩xiyjzk,

and so all weights are of the form wi = ⟨r, i⟩ ∈ Z. We note that C ∈ Y3,2 is unstable iff for
every λ, every weight is negative or every weight is positive, so wi < 0 or wi > 0 for all i ∈ CP .
We’ll focus on the strictly positive case, since the positive case follows similarly.

26.2 2 108



26 Problem Set 2

=⇒ : Suppose C is unstable, we will show that p is either a non-ordinary double point, a
triple point, or worse. Pick λ and its corresponding r such that all weights wi are positive.
Then in particular

min
{
wi := ⟨r, i⟩

∣∣∣ i ∈ CP

}
> 0.

Having strictly positive weights can be phrased geometrically as
{

i
∣∣∣ i ∈ CP , ai ̸= 0

}
being

contained in the positive half-space corresponding to the hyperplane HC := r⊥. Picking a
maximally destabilizing λ, without loss of generality (changing coordinates if necessary) we
can arrange for the lower-left 5 monomials receive non-positive weights:

This forces all of the shaded coefficients except for potentially a102 to be zero. By the earlier
remarks, this forces p = [1 : 0 : 0] to be singular, and if a102 = 0 this is a triple point.
Otherwise, if a102 ̸= 0, this yields a double point which only has a single tangent, and is thus
not ordinary. So if C is not an unstable curve (i.e. it is semistable), it must have an ordinary
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double point at worst.
⇐= : Suppose conversely that C has a triple point or a non-ordinary double point q. Using
the transitivity of the SL3 action, we can move q to p = [1 : 0 : 0] and conclude using the
singularity criterion above that the following coefficients vanish:

We can now make a specific choice of λ that yields the following Hλ and gives the remaining
coefficients strictly positive weights, allowing us to conclude that C is unstable:
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E 26.3 3 e

Problem 26.3.1 (3)
Give an example showing that Hilbert-Mumford’s criterion of (semi)stability for G ↷ X
does not hold in general if X is not assumed to be projective. (In other words, produce a
counterexample with a non-projective X.)

Solution:
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Consider the following action:
Gm ↷ X := A2

t.[x, y] := [tx, ty].
Thus yields a set theoretic orbit space

A2/Gm =
{
Ot

∣∣∣ t ∈ Gm

}
∪ {Ox, Oy, O0}

Ot :=
{
xy = t

∣∣∣ t ∈ Gm

}
Ox :=

{
[t, 0]

∣∣∣ t ∈ Gm

}
= Gm.[1, 0]

Oy :=
{

[0, t]
∣∣∣ t ∈ Gm

}
= Gm.[0, 1]

O0 := {0} ,
i.e. there is an orbit for each hyperbola xy = t, the punctured x-axis, the punctured y-axis,
and the origin:
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We record that the following facts:

• The orbits Ot are all closed with 0-dimensional stabilizers,
• The orbits Ox, Oy are not closed but still have 0-dimensional stabilizers, and
• The orbit O0 is closed but has a 1-dimensional stabilizer Gm.

Thus Xs = A2 \ V (xy) is the plane with the axes deleted, and for example 0 ∈ X \Xs is an
unstable point and [1, 0], [0, 1] ∈ X \Xs are not stable points (and may thus either be unstable
or semistable).
Noting that Ox ∼ Oy ∼ O0 are all orbit-closure equivalent since 0 is in the closure of Ox and
Oy, we can separate these orbits by redefining our total space to be X := A2 \{0}; then Ox, Oy

are closed in X ′ and have 0-dimensional stabilizer and thus points in those orbits become
stable for the restricted action Gm ↷ X ′.
For example, pick p := [1, 0] ∈ Ox ⊆ X ′, then p is stable by construction. However, we can
now check the Hilbert-Mumford numerical criterion and note that every 1-parameter subgroup
λ acting with weights r1, r2 satisfies

λ(t).p = [tr11, tr20] = [tr11, 0],

and in particular always has strictly positive or strictly negative weights, which would otherwise
characterize p as an unstable point, yielding the desired counterexample.

E 26.4 4 e

Problem 26.4.1 (4)
Provide a complete VGIT (variation of GIT) analysis for the quotients

(
P1)3 //Gm. The line

bundle is L = O(1, 1, 1). The Gm-action is defined as

t. (x0 : x1) = (x0 : tx1) , t. (y0 : y1) = (y0 : ty1) , t. (z0 : z1) = (z0 : tz1)

The linearization is a lift of this action to the action on the coordinates wijk = xiyjzk on(
P1)3 embedded into P7 with the 8 homogeneous coordinates wijk. The above equations give

an action on the point (wijk) ∈ P7. The linearization is a lift of this action to the point
(wijk) ∈ A8.
Determine the following:

(1) The choices for Q-linearizations of L (i.e. linearizations of some Ld, d ∈ N ).

(2) Chamber decomposition.

(3) For each chamber, the quotient.

(4) For neighboring chambers, the induced morphisms between the quotients.

(5) For each chamber, the sets of unstable and strictly semistable points.
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Solution:
Todo.

E 26.5 5 e

Problem 26.5.1 (5)
Let X ⊂ PN be a singular projective curve. Suppose that X has n irreducible components Xi

and that degOX(1)|Xi
= λi ∈ N. Let F be a coherent sheaf on X. Then on an open subset

Ui ⊂ Xi of each irreducible component it is a locally free sheaf of rank ri.
The Seshadri slope of an invertible sheaf F is defined to be

µ(F ) = χ(F )∑
λiri

, where ri = rkF |Ui
.

By replacing OX(1) by a rational multiple, one can assume that λi > 0,∑λi = 1.

1. Let F be a pure-dimensional coherent sheaf on X. Prove that F is Hilbertstable (resp.
semistable) ⇐⇒ for any subsheaf E ⊂ F one has µ(E) < µ(F ) (resp. ≤ ). (Note in
particular, that this definition depends on the polarization (λi), and there is a Variation
of GIT here.)

2. Prove, however, that if χ(F ) = 0 then the (semi)stability condition does not depend on
a polarization (λi).

Remark 26.5.1: You can use the following simple observation. If π : X̃ → X is a normalization
then X̃ is a smooth curve, so Riemann-Roch is applicable:

χ(E) = deg(E) + rank(E)(1− g),

and the difference of Hilbert polynomials

χ(X,F (m))− χ
(
X̃, (π∗F ) (m)

)

is a constant.

Solution:
We first recall that a sheaf F ∈ Coh(X) is Hilbert stable if for every subsheaf E ≤ F , we have
an inequality of reduced Hilbert polynomials p̃E(n) < p̃F (n), and semistability is characterized
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by replacing < with ≤. Noting that
pF (n) := χ(X;F (n)) = c0n

dim X = c0n+ c1

since X is a curve and consequently dimX = 1. We have p̃F (n) = n+ c0
c1

and thus p̃E(n) =
n+ d0

d1
for some constants ci depending on F and di depending on E, and so

p̃E(n) < p̃F (n) ⇐⇒ d0
d1

<
c0
c1
.

Thus it suffices to show that d0
d1

= µ(E) and c0
c1

= µ(F ). We’ll proceed by computing pF (n) in
order to identify what c0, c1 are in general.
Noting that X may be singular and thus Riemann-Roch won’t apply directly, take the nor-
malization π : X̃ → X. Let X = ∪iXi be the decomposition of X into irreducible components
and let X̃i be their lifts in the normalization, which are all curves with some genera gi. We
now have

pF (n) := χ(X;F (n))

= χ(X̃, (π∗F )(n)) + c for some constant c

=
∑

1≤i≤n

χ(X̃i, (π∗F )(n)|X̃i
) + c

=
∑

1≤i≤n

(
deg (π∗F )(n)|X̃i

+ (1− gi)
)

+ c.

As an aside, we can compute the degrees inside of the sum as follows:
deg (π∗F )(n)|Xi

= deg F (n)|Xi

= deg F |Xi
⊗

⊕
1≤j≤ri

OXi(n)

= deg F |Xi
+ nriλi.

Continuing the above calculation, we have

pF (n) =
∑

1≤i≤n

(
deg F |Xi

+ nriλi + (1− gi)
)

+ c

= n

 ∑
1≤i≤n

riλi

+

 ∑
1≤i≤n

deg F |Xi
+ (1− gi) + c



= n

 ∑
1≤i≤n

riλi

+

 ∑
1≤i≤n

χ(Xi; F |Xi
) + c



= n

 ∑
1≤i≤n

riλi

+ χ(X;F ).
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Thus c0 = ∑
riλi, c1 = χ(F ), and c1

c0
= χ(F )∑

riλi
= µ(F ).

ToDos

List of Todos
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