# Thursday, September 02 ## Decomposition using characters :::{.remark} Last time: for $G\actson R \contains R^G$ for $G\in\Fin\Grp$, the Todd-Shepherd(-Chevalley) theorem states that if $G\actson \AA^n$ and $G$ is generated by pseudoreflections then $\kxn^G$ is again a polynomial ring. Consider now $G\actson R$ for $G$ finite abelian and $\characteristic k = 0$. This yields a grading $R = \bigoplus _{\chi \in \hat G} R_\chi$ where $\hat G = \Hom(G, \CC\units) = \Hom(G, \QQ/\ZZ)$ and $R_\chi R_{\chi'} \subseteq R_{\chi + \chi'}$ Note that if $G \cong \bigoplus \ZZ/n_i \ZZ$ then $\hat{G} \cong \bigoplus \mu_{n_i}$, which is non-canonically isomorphic to \( \bigoplus \ZZ/n_i\ZZ \). Recall that reflections have eigenvalues $\ts{1, 1,\cdots, 1, \alpha\neq 1}$. ::: :::{.example title="?"} Let $C_2 \actson \AA^2\slice\CC$ by $(x,y)\mapsto (-x, -y)$. What are the invariants $k[x,y]^{C_2}$? Check that $p(x,y) = \sum a_{ij} x^i y^j \mapsto \sum (-1)^{i+j} a_{ij} x^i y^j$, which equals $p(x,y)$ when all of the $i,j$ are even. Write $k[x,y] = \bigoplus _{i+j\equiv_2 0} x^iy^j \oplus \bigoplus _{i+j \equiv_2 1} x^i y^j \da R_0 \oplus R_1$ and note $\hat G \cong \mu_2 \cong C_2$ and $?$. Also note that for $r \in R_\chi$ we have $g.r = \chi(g) r$ We can write \[ k[x,y]^{C_2} = R_0 = k[x^2, xy, y^2] = k[u,v,w]/\gens{uw=v^2} ,\] which is a singular cone $V(uw-v^2) \subseteq \AA^3$: \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2022/Fall/Moduli/sections/figures}{2022-09-01_13-08.pdf_tex} }; \end{tikzpicture} Shepherd's theorem does not apply here since the action is given by $\matt {-1} 0 0 {-1}$, which is not a reflection. ::: :::{.example title="?"} Take $C^2\actson \AA^2$ by $(x,y)\mapsto (x,-y)$, then $k[x,y]^{C_2} = k[x, y^2]$. ::: :::{.remark} Note that in general, $\AA^n/G = \mspec \kxn^G$ has quotient singularities. Three types of varieties we work with in AG: - Affine $\mapstofrom$ rings, - Projective $\mapstofrom$ graded rings, - General: covered by affines, not necessarily projective. Upshot: we can think of projective varieties not as covered by affines, but rather as a "spectrum" of a single *graded* ring. Given a subset $Z = V(f_1,\cdots, f_m) \subseteq \PP^n\slice k$ cut out by homogeneous polynomials of degree $d_i$ in the homogeneous degree 1 coordinates $x_0,\cdots, x_n$, one can take the affine cone $C(Z) \subseteq \AA^{n+1}$. A linear action of $G\actson \PP^n\slice k$ descends to $G\actson Z$, where linear means that $g.\tv{x_0:\cdots:x_n} = M g\tv{x_0: \cdots: x_n}$. Not every action is of this form: take $G=\CCstar\actson \PP^1$ by \( \lambda \tv{x_0: x_1} = \tv{x_0: \lambda x_1} \). This is linear; to make a nonlinear action glued the fixed points $\ts{0}$ and $\ts{\infty}$ to get a rational nodal curve: \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2022/Fall/Moduli/sections/figures}{2022-09-01_13-23.pdf_tex} }; \end{tikzpicture} Note that $\Pic(C) = \ZZ \bigoplus \CCstar$. ::: :::{.remark} For a linear action by a finite group $G$, writing $Z = \mproj R$ with $R = \kxn/\sqrt{\gens{f_i}}$ then $Z/G = \mproj R^G$. Such actions can be lifted from $Z$ to $\ro{\OO_{\PP^n}(1) }{Z} = \OO_Z(1)$. ::: ## Group Varieties :::{.definition title="Group variety"} A variety $G\in\Var\slice k$ is a **group variety** if it admits morphisms - Multiplication $\mu \in \Alg\Var(G\fiberprod{k} G, G)$, - Units: $e\in \Alg\Var(\spec k, G)$, - Inverses: $i\in \Alg\Var(G\to G)$. These are required to satisfy some axioms. Encoding associativity: \begin{tikzcd} {G\cartpower{3}} && {G\cartpower{2}} \\ \\ {G\cartpower{2}} && G \arrow["{(\mu_{12}, \id_3)}", from=1-1, to=1-3] \arrow["\mu", from=1-3, to=3-3] \arrow["{(\id_1, \mu_{23})}"', from=1-1, to=3-1] \arrow["\mu"', from=3-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJHXFxjYXJ0cG93ZXJ7M30iXSxbMiwwLCJHXFxjYXJ0cG93ZXJ7Mn0iXSxbMCwyLCJHXFxjYXJ0cG93ZXJ7Mn0iXSxbMiwyLCJHIl0sWzAsMSwiKFxcbXVfezEyfSwgXFxpZF8zKSJdLFsxLDMsIlxcbXUiXSxbMCwyLCIoXFxpZF8xLCBcXG11X3syM30pIiwyXSxbMiwzLCJcXG11IiwyXV0=) Encoding $1a=a$: \begin{tikzcd} {\spec k\times G} && {G\times G} \\ \\ && G \arrow[Rightarrow, no head, from=1-1, to=3-3] \arrow["{(e, \id_2)}", from=1-1, to=1-3] \arrow["\mu", from=1-3, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMCwwLCJcXHNwZWMga1xcdGltZXMgRyJdLFsyLDAsIkdcXHRpbWVzIEciXSxbMiwyLCJHIl0sWzAsMiwiIiwwLHsibGV2ZWwiOjIsInN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMCwxLCIoZSwgXFxpZF8yKSJdLFsxLDIsIlxcbXUiXV0=) Encoding $aa\inv = 1$: \begin{tikzcd} G && {G\cartpower{2}} \\ \\ {\spec k} && G \arrow["{\text{structure map}}"', from=1-1, to=3-1] \arrow["\mu", from=1-3, to=3-3] \arrow["e"', from=3-1, to=3-3] \arrow["{a\mapsto (a, a\inv)}", from=1-1, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJHIl0sWzIsMCwiR1xcY2FydHBvd2VyezJ9Il0sWzAsMiwiXFxzcGVjIGsiXSxbMiwyLCJHIl0sWzAsMiwiXFx0ZXh0e3N0cnVjdHVyZSBtYXB9IiwyXSxbMSwzLCJcXG11Il0sWzIsMywiZSIsMl0sWzAsMSwiYVxcbWFwc3RvIChhLCBhXFxpbnYpIl1d) ::: :::{.remark} Suppose that $G = \spec R$ is affine, then there are dual notions: - Comultiplication: $\mu^*: R\to R\tensor_k R$. - Counits: $e^*: R\to k$. - Coinverses: $i^*: R\to R$. ::: :::{.example title="?"} The additive group $\GG_a = \spec k[x]$, whose underlying variety is $\AA^1$. In coordinates, the group law is written additively as - $\mu(x, y) = x+y$ - $e = 0$ - $i(x) = -x$ Write $z=x+y$, then on the ring side we have - Comultiplication: \[ \mu^*: k[z] &\to k[x]\tensor_k k[y] \cong k[x+y] \\ z &\mapsto x\tensor 1 + 1\tensor y &\mapsto x+y .\] - Counit: $e^*: k[x] \to k$ where $x\mapsto 0$ - Coinverse: $i^*: k[x] \to k[x]$ where $x\mapsto -x$. ::: :::{.example title="?"} The multiplicative group $\GG_m = \spec k[x, x\inv]$ whose underlying variety is $\AA^2\smz$ The group law is: - $\mu(x, y) = xy$ - $e = 1$ - $i(x) = x\inv$ For rings: - Comultiplication: \[ \mu^*: k[z] &\mapsto k[x,x\inv]\tensor_k k[y,y\inv] \cong k[x^{\pm 1}, y^{\pm 1}] \\ z &\mapsto x\tensor y \mapsto xy .\] - Counit: $e^*: k[x^{\pm 1} ] \to k$ where $x\mapsto 1$. - Coinverse: $i^*: k[x^{\pm 1}] \to k[x^{\pm 1}]$ where $x\mapsto x\inv$. ::: :::{.example title="?"} Roots of units $\mu_n = \spec k[x]/\gens{x^n-1}$. Note that there is a closed embedding $\mu_n \injects \GG_m$ since there is a surjection $\spec k[x, x\inv] \surjects k[x]/\gens{x^n-1}$. Note that in $\characteristic k = p$, this yields a scheme that is not a variety since it is not reduced: one has $\mu_p = \spec k[x]/\gens{x^p-1} = \spec k[x]/\gens{(x-1)^p}$ which contains nilpotents. This is the first example of a *group scheme* which is not a group variety. The group operations agree with that on $\GG_m$, e.g. comultiplication is \[ \mu^*: k[z]/\gens{z^n-1} \to k[x]/\gens{x^n-1}\tensor_k k[y]/\gens{y^n-1} \cong k[x,y]/\gens{x^n-1, y^n-1} .\] One can similarly define $\alpha_p = \ker\Frob \embeds \GG_m = \spec k[x]/\gens{x^p}$. ::: :::{.remark} Upcoming: more group varieties and schemes, especially $\GL_n, \SL_n$, and their actions/coactions. :::