# Tuesday, September 06 ## Group varieties :::{.remark} Last time: group varieties. Most of today will work over $\CC, k\neq \kbar$, or $\ZZ$. There is a correspondence: | Affine varieties | Rings and k-algebras | |------------------------- |---------------------------- | | Group varieties/schemes | Hopf coalgebras | | $\mu: G\times G\to G$ | $\mu^*: R\to R\tensor_k R$ | | $e: \pt\to G$ | $e^*: R\to k$ | | $i: G\to G$ | $i^*: R\to R$ | Recall: - For $M, N\in\rmod$, there is a tensor product $M\tensor_R N$, - A morphism $f\in \CRing(R, S)$ yields a functor $f^*: \mods{S}\to \bimods{R}{S}$ given by the base change/scalar extension $(\wait)\tensor_R S$ - If $S_1, S_2 \in \ralg$ then $S_1\tensor_R S_2 \in \rmod$ is in fact a ring, using the product $(u_1\tensor v_1)\cdot(u_2\tensor v_2) \da u_1u_2\tensor v_1 v_2$. - For any $N\in \rmod$, the functor $(\wait) \tensor_R N$ is **right** exact, so \[ A\injects B\surjects &C \\ \leadsto \\ A\tensor_R N\to B\tensor_R N \surjects &C\tensor_R N .\] ::: :::{.corollary title="?"} If $M$ is finitely generated, there is a generator/relation exact sequence $R\sumpower{m} \to R\sumpower{n}\surjects C$. Tensoring with any $N\in \rmod$ yields \[ N \sumpower{m} \to N\sumpower{n} \surjects C\tensor_R N .\] In particular, this works for base change $\rmod\to\mods{S}$ -- the new module is generated as a module by the same generators but new scalars. ::: :::{.example title="?"} Consider $\CC\tensor_\RR \CC$, which has a ring structure. Write $\CC = \RR[x]/\gens{x^2+1}$, then the base change is \[ \CC[x]/\gens{x^2+1} = \CC[x]/\gens{x-i} \oplus \CC[x]/\gens{x+i} \cong \CC \oplus \CC ,\] which is a ring with zero divisors and idempotents since $(1, 0)^2 = (1^2, 0^2) = (1, 0)$. ::: :::{.slogan} For tensor products: same generators, same relations, extend scalars. ::: :::{.remark} Recall: - $\GG_m = \spec k[x^{\pm 1}] \approx \CCstar$. - $\GG_m^n = \spec k[x_1^{\pm 1}, \cdots, x_n^{\pm 1}] \approx (\CCstar)^n$. - $\GG_a = \spec k[x] \approx (\CC, +)$. - $\mu_n \subseteq \GG_m = \spec k[x]/\gens{x^n-1} \approx \ts{\xi \in \CC \st \xi^n=1}$. - In characteristic $p$, $\mu_p = \spec k[x]/\gens{x^p-1} = \spec k[x]/\gens{x-1}^p$. ::: :::{.example title="?"} Of using the tensor product slogan: identifying the map \[ { k[z] \over \gens{z^n-1}} \to {k[x] \over \gens{x^n-1}} \tensor_k {k[y]\over \gens{y^n-1} } \cong {k[x,y]\over \gens{x^n-1, y^n-1} } ,\] realizing this as $z\mapsto x\tensor y\mapsto xy$, checking that $z^n=1 \implies (xy)^n = 1$. ::: :::{.remark} If $G$ is an arbitrary finite group it can be made into an affine algebraic group variety over $k$. Give the underlying set of $G = \disjoint_{g\in G}\ts{\pt}$ the discrete topology to get an algebraic variety. To get the algebraic group structure, note that any map of finite sets is algebraic. Define a ring $R \da \bigoplus _{g\in G} k$, and a comultiplication as follows: note that \[ R\tensor_k R \cong \bigoplus _{(a, b) \in G\times G } k e_{a,b} \] where the $e_{a, b}$ just tracks which summand we're in. So define \[ R &\to R\tensor_k R \\ e_g &\mapsto \sum_{ab=g} e_{a, b} .\] ::: :::{.remark} Note that we could have let $\pt = \spec k$. E.g. $C_p \neq \mu_p$ but are Cartier dual. However, the ring $k[x]/\gens{x-1}^p$ is much easier to understand than the $R\tensor_k R$ from above, even for very small groups like $C_2$. ::: :::{.example title="?"} Recall $\GL_n \subseteq \AA^{n^2}$ is the open subspace which is the complement of $V(\det)$, so a principal open subset. The ring is $k[x_{ij}, 1/\det]$ for $1\leq i,j\leq k$, which is obtained by localizing at the determinant. Thus we can embed it as a closed subset in $\AA^{n^2+1}$ using $V(y\det(x_{ij}) = 1)$, i.e. introducing a new free variable for $1/\det$ and ensuring it's nonzero. ::: :::{.definition title="Affine algebraic groups"} An **affine algebraic group** is a closed subgroup $G$ of $\GL_n$, and the coordinate ring $R_G$ is a quotient of $R_{\GL_n}$. ::: :::{.example title="?"} For $\SL_n$, the ring is $k[x_{ij}]/\gens{\det - 1}$, and define $\PGL_n$ as $\SL_n/\mu_n$ or $\GL_n/\GG_m$. Although it's not obvious, these are affine -- for $\PGL_n$, the ring is the $\mu_n$ invariants of the coordinate ring of $\SL_n$, so one gets the ring of polynomials in $R_{\SL_n}$ whose powers are multiples of $n$. ::: ## Algebraic group actions :::{.definition title="Algebraic group action"} An **action of an algebraic group $G$ on a variety (or scheme) $X$** is a map $G\fiberprod{k}X \mapsvia{a} X$ satisfying the usual axioms encoded in commuting diagrams: - $(gh).x = g.(h.x)$: \begin{tikzcd} {G\times G\times X} && {G\times X} \\ \\ {G\times X} && X \arrow["{(\id_G, a)}", from=1-1, to=1-3] \arrow["a", from=1-3, to=3-3] \arrow["{(\mu, \id_X)}"', from=1-1, to=3-1] \arrow["a"', from=3-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJHXFx0aW1lcyBHXFx0aW1lcyBYIl0sWzAsMiwiR1xcdGltZXMgWCJdLFsyLDAsIkdcXHRpbWVzIFgiXSxbMiwyLCJYIl0sWzAsMiwiKFxcaWRfRywgYSkiXSxbMiwzLCJhIl0sWzAsMSwiKFxcbXUsIFxcaWRfWCkiLDJdLFsxLDMsImEiLDJdXQ==) - $1.x = x$ for all $x$: \begin{tikzcd} {\ts{1}\times X} && {G\times X} \\ \\ X && X \arrow[from=1-1, to=1-3] \arrow["a", from=1-3, to=3-3] \arrow[Rightarrow, no head, from=1-1, to=3-1] \arrow[Rightarrow, no head, from=3-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJcXHRzezF9XFx0aW1lcyBYIl0sWzAsMiwiWCJdLFsyLDIsIlgiXSxbMiwwLCJHXFx0aW1lcyBYIl0sWzAsM10sWzMsMiwiYSJdLFswLDEsIiIsMix7ImxldmVsIjoyLCJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzEsMiwiIiwyLHsibGV2ZWwiOjIsInN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XV0=) Note that one can now reverse these diagrams to get the coaction on rings $a^*: A\to R\tensor_k A$. ::: :::{.example title="?"} Let $\mu_n \actson \AA^2$ by $\xi.(x,y) \da (\xi x, \xi^k y)$, then the coaction is \[ k[x,y] &\to {k[x,y,\xi] \over \gens{\xi^n-1} } = {k[\xi] \over \xi^n-1}[x, y] \\ x &\mapsto \xi x \\ y &\mapsto \xi^k y .\] ::: :::{.exercise title="?"} Check that this satisfies the axioms for a coaction. ::: :::{.definition title="Linear coactions"} Let $G\in \Grp\Var\slice k, X\in \Vect\slice k$, then a **linear coaction** is a homomorphism $V \mapsvia{a^*} R\tensor_k V$ satisfying the duals of the axioms above. ::: :::{.example title="?"} If $V = kx \oplus ky$ then $V\to R\tensor_k V = Rx \oplus Ry$. ::: :::{.remark} There is a coaction on $A = \Sym^* V = k \oplus V \oplus \Sym^2 V \oplus \cdots$, where $V = \gens{x,y}, \Sym^2 V = \gens{x^2, xy, y^2}$. This is the same as an action $G\actson \AA^N$ for some $N$ acting on an affine space. :::