Problem Sets: Moduli

Problem Set 2

D. Zack Garza University of Georgia dzackgarza@gmail.com Last updated: 2022-11-23

Table of Contents

Contents

Table of Contents																	1																						
1	Pro	ble	m	Se	et	2																																	1
	1.1	1																					 																1
	1.2	2																					 																4
	1.3	3																					 																10
	1.4	4																					 																12
	1.5	5		•		•					•	•			•	•	•	•	•	•	•	•	 • •	•	•	•		•	•	•	•	•	•	•	•		•		13

1 | Problem Set 2

$1.1 \ 1$

Problem 1.1.1 (1) Consider the SL₂ action on $X = (\mathbb{P}^1)^n$ with a linearized invertible sheaf $L = \mathcal{O}_X(d_1,\ldots,d_n), d_i \in \mathbb{N}$. Define $w_i := \frac{2d_i}{\sum d_j}$, so that $\sum w_i = 2$. Prove that a point $(P_1, \ldots, P_n) \in X^{ss}(L)$ (resp. $X^s(L)$) \iff whenever some points $P_i, i \in I, I \subset \{1, \ldots, n\}$, coincide, one has $\sum_{i \in I} w_i \leq 1$ (resp. < 1).

Solution:

Write points in this product as

$$X := (\mathbf{P}^1)^n = \left\{ \mathbf{p} := \begin{bmatrix} x_0 & \cdots & x_n \\ y_0 & \cdots & y_n \end{bmatrix} \right\},$$

corresponding to the *n*-tuple $([x_0:y_0], \cdots, [x_n:y_n])$, with SL₂ action given by

$$\operatorname{SL}_{2} \curvearrowright X$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \mathbf{p} \coloneqq \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_{0} & \cdots & x_{n} \\ y_{0} & \cdots & y_{n} \end{bmatrix} = \begin{bmatrix} ax_{0} + by_{0} & \cdots & ax_{n} + by_{n} \\ cx_{0} + dy_{0} & \cdots & cx_{n} + dy_{n} \end{bmatrix}$$

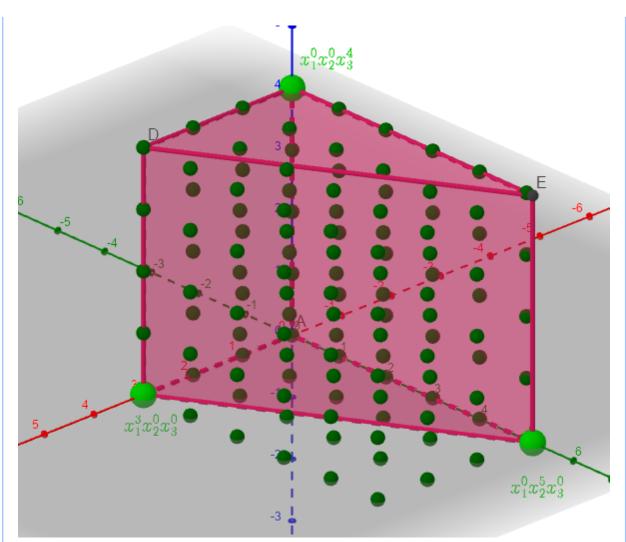
We note that the maximal torus acts as

$$T_{\mathrm{SL}_2} \curvearrowright X$$

$$\begin{bmatrix} t & \cdot \\ \cdot & t^{-1} \end{bmatrix} \cdot \mathbf{p} \coloneqq \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_0 & \cdots & x_n \\ y_0 & \cdots & y_n \end{bmatrix} = \begin{bmatrix} tx_0 & \cdots & tx_n \\ t^{-1}y_0 & \cdots & t^{-1}y_n \end{bmatrix}.$$

We identify X with its image (which we'll also denote X) under the Veronese embedding $X \to \mathbf{P}^N$ associated to the ample line bundle $\mathcal{L} \coloneqq \mathcal{O}(\mathbf{d})$ where $\mathbf{d} \coloneqq [d_1, \cdots, d_n] \subseteq \mathbf{Z}^n$ viewed as an integer vector. Writing D for the convex hull of the d_i in \mathbf{Z}^n , note that every lattice point in $\mathbf{Z}^n \cap D$ defines a monomial, and every point $\mathbf{p} \in X$ corresponds to a collection of lattice points $P_{\mathbf{p}} = \{\mathbf{k} = [k_1, \cdots, k_n]\} \subseteq D \cap \mathbf{Z}^n$ along with a choice of coefficient $\alpha_{\mathbf{k}}$ for each $\mathbf{k} \in P_{\mathbf{p}}$.

The following is an example D and $P_{\mathbf{p}}$ when n = 3 and $\mathbf{d} = [3, 5, 4]$:



The three highlighted lattice points are $\mathbf{k}_1 = [3, 0, 0], \mathbf{k}_2 = [0, 5, 0], \mathbf{k}_3 = [0, 0, 4], P_{\mathbf{p}} \coloneqq {\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3}$ corresponds to a polynomial

$$F(x_1, x_2, x_3) = \alpha_1 x_1^3 x_2^0 x_3^0 + \alpha_2 x_1^0 x_2^5 x_3^0 + \alpha_3 x_1^0 x_2^0 x_3^4.$$

In our situation, lattice points will correspond to monomials

$$\mathbf{k}_{IJ} = x^{I} y^{J} \coloneqq x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{n}^{i_{n}} \cdot y_{1}^{j_{1}} y_{2}^{j_{2}} \cdots y_{n}^{j_{n}}$$

and so each point in \boldsymbol{X} will correspond to a polynomial

$$F(x_1, \cdots, x_n, y_1, \cdots, y_n) = \sum_{(I,J) \subseteq D} \alpha_{IJ} x^I y^J.$$

where $\sum_{i \in I} i + \sum_{j \in J} j = d_i$.

Todo: this is not quite right. If α_j is associated to the embedding along the d_j direction, then the monomial degrees should just sum up to d_j .

Indexing these monomials systematically, we can write

$$F(x_1,\cdots,y_n) = \sum \alpha_j \prod_{i=1}^n x_i^{d_i-k_j} y_i^{k_j}.$$

When points collide, without loss of generality (using the transitive SL₂-action) we can assume that the collision point in \mathbf{P}^1 is [0:1], so $p \in X$ is of the form

$$p = \begin{bmatrix} 0 & \cdots & 0 & p_{m+1} & \cdots & p_n \\ 1 & \cdots & 1 & q_{m+1} & \cdots & q_n \end{bmatrix},$$

where we've written m for the number of colliding points. We can now compute the weights of the torus action over such colliding points

$$\lambda(t).F(x_1,\cdots,y_n) = \sum \alpha_j \prod t^{d_i-2k_j} x_i^{d_i-k_j} y^{k_j}$$
$$= \sum t^{w_{ij}} \alpha_j x_i^{d_i-k_j} y^{k_j}, \qquad w_{ij} \coloneqq \sum_i d_i - 2k_j.$$

We now need $\mu(x, \lambda) \ge 0$ for semistability, i.e. $\min(w_{ij}) \ge 0$, so $\min(\sum d_i - 2k_j) \ge 0$. We can maximally destabilize such a quantity by taking $k_j = d_i$ for each i, j, and so if the collision set is \mathcal{S} , we require

$$\sum_{i=1}^{n} d_i - \sum_{i \in \mathcal{S}} 2d_i \ge 0 \iff \sum_{i=1}^{n} d_i \ge \sum_{i \in \mathcal{S}} d_i \iff \frac{\sum_{i \in \mathcal{S}} 2d_i}{\sum_{i=1}^{n} d_i} \le 1 \iff \sum_{i \in \mathcal{S}} w_i \le 1.$$

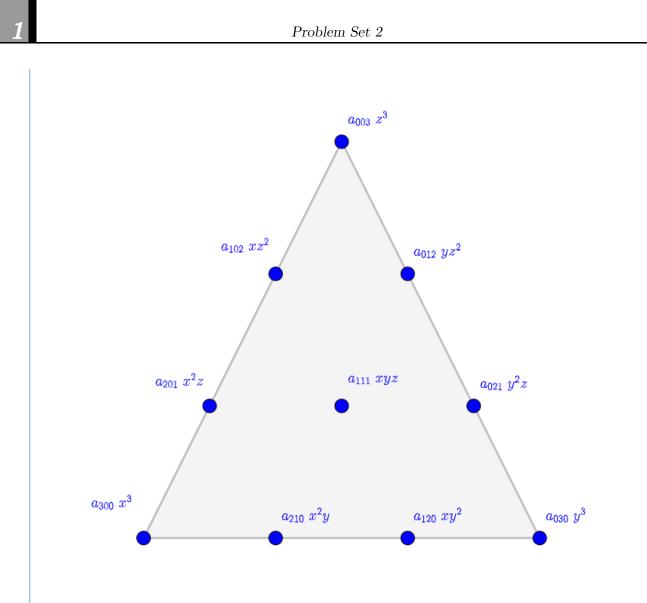
Problem 1.2.1 (2) Consider the SL₃ action on the set $X = \mathbb{P}^N, N = \begin{pmatrix} 3+2\\2 \end{pmatrix} - 1 = 9$, parameterizing cubic curves $C \subset \mathbb{P}^2$, with a linearized invertible sheaf $L = \mathcal{O}_X(1)$. Prove that C is semistable $\iff C$ has only ordinary double points.

Solution:

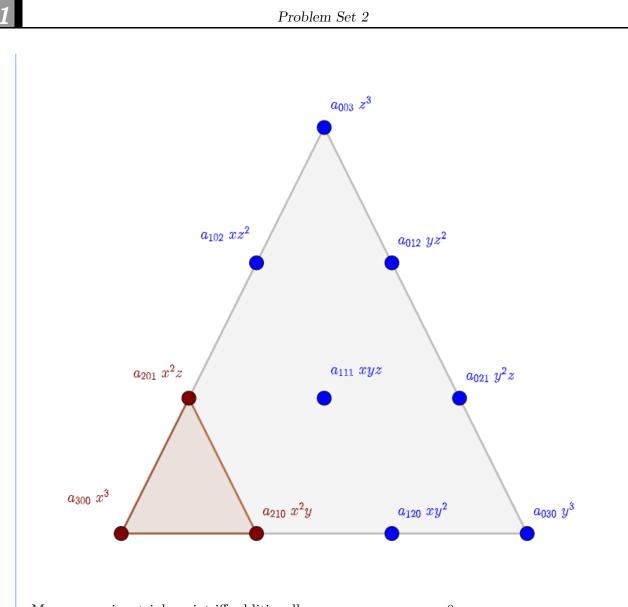
We first note that every choice of cubic curve $C \in Y_{3,2}$ can be represented (after choosing coordinates) by a polynomial

$$F(x,y,z) = \sum_{i+j+k=3} a_{ijk} x^i y^j z^k = \sum_{i+j+k=3} a_i x^i y^j z^k \qquad \mathbf{i} \coloneqq [i,j,k]$$

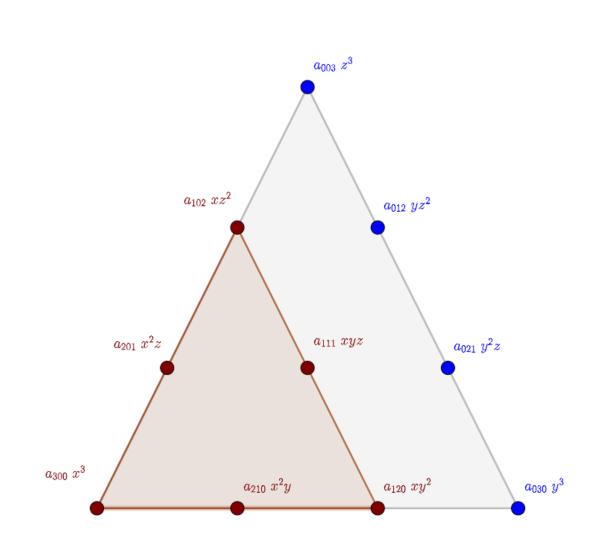
and thus a choice of lattice points C_P in the corresponding weight polytope where each point is labeled with the corresponding coefficient of F:



We record the fact that the point $p \coloneqq [1:0:0]$ is singular iff $a_{300} = a_{201} = a_{210} = 0$:



Moreover, p is a triple point iff additionally $a_{102} = a_{111} = a_{120} = 0$:



Moreover, all of above holds except a_{102} (the coefficient of xz^2) is nonzero, then p is a double point with only a single tangent, and thus not an ordinary double point. These facts follow from computing the gradients and Hessians which characterize these types of singularities. We also note that if $\lambda : \mathbf{G}_m \to \mathrm{SL}_3$ is a 1-parameter subgroup, then $\lambda(t)$ is conjugate to

$$\tilde{\lambda}(t) = \begin{bmatrix} t^{r_1} & \cdot & \cdot \\ \cdot & t^{r_2} & \cdot \\ \cdot & \cdot & t^{r_3} \end{bmatrix}, \qquad \sum_{i=1}^3 r_i = 0,$$

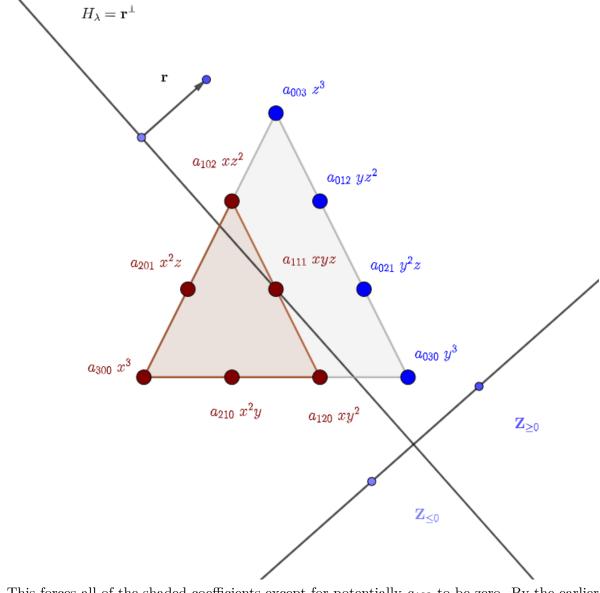
and thus determines a vector $\mathbf{r} \coloneqq [r_1, r_2, r_3] \in \mathbf{Z}^3$. The action can then be written

$$\lambda(t) \cdot F(x, y, z) = \sum_{i+j+k=3} a_{\mathbf{i}} t^{\langle \mathbf{r}, \mathbf{i} \rangle} x^{i} y^{j} z^{k},$$

and so all weights are of the form $w_{\mathbf{i}} = \langle \mathbf{r}, \mathbf{i} \rangle \in \mathbf{Z}$. We note that $C \in Y_{3,2}$ is unstable iff for every λ , every weight is negative or every weight is positive, so $w_{\mathbf{i}} < 0$ or $w_{\mathbf{i}} > 0$ for all $\mathbf{i} \in C_P$. We'll focus on the strictly positive case, since the positive case follows similarly. \implies : Suppose C is unstable, we will show that p is either a non-ordinary double point, a triple point, or worse. Pick λ and its corresponding **r** such that all weights $w_{\mathbf{i}}$ are positive. Then in particular

$$\min\left\{w_{\mathbf{i}} \coloneqq \langle \mathbf{r}, \mathbf{i} \rangle \mid \mathbf{i} \in C_P\right\} > 0.$$

Having strictly positive weights can be phrased geometrically as $\{\mathbf{i} \mid \mathbf{i} \in C_P, a_{\mathbf{i}} \neq 0\}$ being contained in the positive half-space corresponding to the hyperplane $H_C \coloneqq \mathbf{r}^{\perp}$. Picking a maximally destabilizing λ , without loss of generality (changing coordinates if necessary) we can arrange for the lower-left 5 monomials receive non-positive weights:

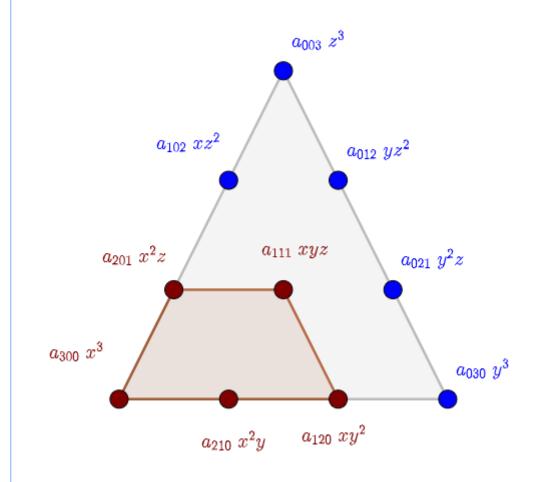


This forces all of the shaded coefficients except for potentially a_{102} to be zero. By the earlier remarks, this forces p = [1 : 0 : 0] to be singular, and if $a_{102} = 0$ this is a triple point. Otherwise, if $a_{102} \neq 0$, this yields a double point which only has a single tangent, and is thus not ordinary. So if C is not an unstable curve (i.e. it is semistable), it must have an ordinary

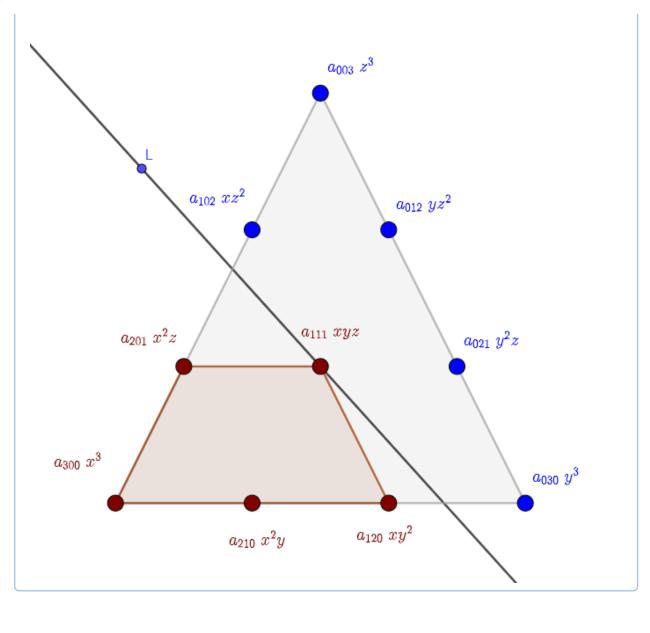
1

double point at worst.

 \Leftarrow : Suppose conversely that C has a triple point or a non-ordinary double point q. Using the transitivity of the SL₃ action, we can move q to p = [1 : 0 : 0] and conclude using the singularity criterion above that the following coefficients vanish:



We can now make a specific choice of λ that yields the following H_{λ} and gives the remaining coefficients strictly positive weights, allowing us to conclude that C is unstable:



1.3 3

Problem 1.3.1(3)

Give an example showing that Hilbert-Mumford's criterion of (semi)stability for $G \curvearrowright X$ does not hold in general if X is not assumed to be projective. (In other words, produce a counterexample with a non-projective X.)

Solution:

Consider the following action:

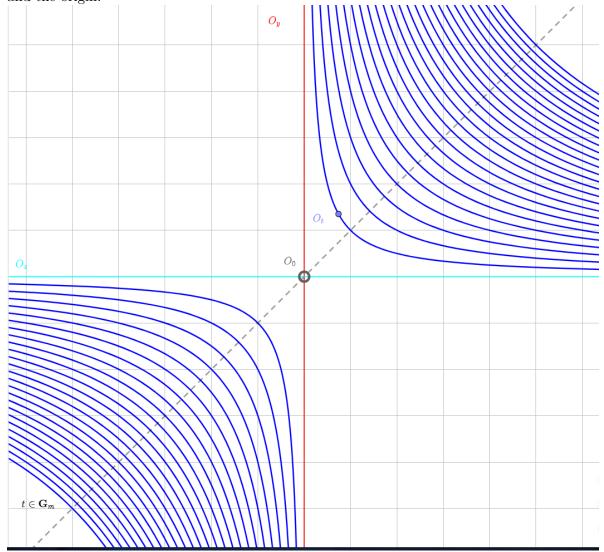
$$\mathbf{G}_m \curvearrowright X \coloneqq \mathbf{A}^2$$
$$t.[x,y] \coloneqq [tx,ty].$$

Thus yields a set theoretic orbit space

$$\mathbf{A}^2/\mathbf{G}_m = \left\{ O_t \mid t \in \mathbf{G}_m \right\} \cup \{O_x, O_y, O_0\}$$

$$O_t \coloneqq \left\{ xy = t \mid t \in \mathbf{G}_m \right\}$$
$$O_x \coloneqq \left\{ [t, 0] \mid t \in \mathbf{G}_m \right\} = \mathbf{G}_m . [1, 0]$$
$$O_y \coloneqq \left\{ [0, t] \mid t \in \mathbf{G}_m \right\} = \mathbf{G}_m . [0, 1]$$
$$O_0 \coloneqq \left\{ 0 \right\},$$

i.e. there is an orbit for each hyperbola xy = t, the punctured x-axis, the punctured y-axis, and the origin:



We record that the following facts:

- The orbits O_t are all closed with 0-dimensional stabilizers,
- The orbits O_x, O_y are not closed but still have 0-dimensional stabilizers, and
- The orbit O_0 is closed but has a 1-dimensional stabilizer \mathbf{G}_m .

Thus $X^s = \mathbf{A}^2 \setminus V(xy)$ is the plane with the axes deleted, and for example $0 \in X \setminus X^s$ is an unstable point and $[1, 0], [0, 1] \in X \setminus X^s$ are not stable points (and may thus either be unstable or semistable).

Noting that $O_x \sim O_y \sim O_0$ are all orbit-closure equivalent since 0 is in the closure of O_x and O_y , we can separate these orbits by redefining our total space to be $X := \mathbf{A}^2 \setminus \{0\}$; then O_x, O_y are closed in X' and have 0-dimensional stabilizer and thus points in those orbits become stable for the restricted action $\mathbf{G}_m \curvearrowright X'$.

For example, pick $p := [1,0] \in O_x \subseteq X'$, then p is stable by construction. However, we can now check the Hilbert-Mumford numerical criterion and note that every 1-parameter subgroup λ acting with weights r_1, r_2 satisfies

$$\lambda(t).p = [t^{r_1}1, t^{r_2}0] = [t^{r_1}1, 0],$$

and in particular always has strictly positive or strictly negative weights, which would otherwise characterize p as an *unstable* point, yielding the desired counterexample.

1.4 4

Problem 1.4.1 (4) Provide a complete VGIT (variation of GIT) analysis for the quotients $(\mathbb{P}^1)^3 / /\mathbb{G}_m$. The line bundle is $L = \mathcal{O}(1, 1, 1)$. The \mathbb{G}_m -action is defined as

$$t.(x_0:x_1) = (x_0:tx_1), \quad t.(y_0:y_1) = (y_0:ty_1), \quad t.(z_0:z_1) = (z_0:tz_1)$$

The linearization is a lift of this action to the action on the coordinates $w_{ijk} = x_i y_j z_k$ on $(\mathbb{P}^1)^3$ embedded into \mathbb{P}^7 with the 8 homogeneous coordinates w_{ijk} . The above equations give an action on the point $(w_{ijk}) \in \mathbb{P}^7$. The linearization is a lift of this action to the point $(w_{ijk}) \in \mathbb{A}^8$.

Determine the following:

- (1) The choices for \mathbb{Q} -linearizations of L (i.e. linearizations of some $L^d, d \in \mathbb{N}$).
- (2) Chamber decomposition.
- (3) For each chamber, the quotient.
- (4) For neighboring chambers, the induced morphisms between the quotients.
- (5) For each chamber, the sets of unstable and strictly semistable points.

Solution: Todo.

1.5 5

Problem 1.5.1 (5)

Let $X \subset \mathbb{P}^N$ be a singular projective curve. Suppose that X has n irreducible components X_i and that deg $\mathcal{O}_X(1)|_{X_i} = \lambda_i \in \mathbb{N}$. Let F be a coherent sheaf on X. Then on an open subset $U_i \subset X_i$ of each irreducible component it is a locally free sheaf of rank r_i . The Seshadri slope of an invertible sheaf F is defined to be

$$\mu(F) = \frac{\chi(F)}{\sum \lambda_i r_i}, \quad \text{where } r_i = \operatorname{rk} F|_{U_i}.$$

By replacing $\mathcal{O}_X(1)$ by a rational multiple, one can assume that $\lambda_i > 0, \sum \lambda_i = 1$.

- 1. Let F be a pure-dimensional coherent sheaf on X. Prove that F is Hilbertstable (resp. semistable) \iff for any subsheaf $E \subset F$ one has $\mu(E) < \mu(F)$ (resp. \leq). (Note in particular, that this definition depends on the polarization (λ_i) , and there is a Variation of GIT here.)
- 2. Prove, however, that if $\chi(F) = 0$ then the (semi)stability condition does not depend on a polarization (λ_i) .

Remark 1.5.1: You can use the following simple observation. If $\pi : \tilde{X} \to X$ is a normalization then \tilde{X} is a smooth curve, so Riemann-Roch is applicable:

$$\chi(E) = \deg(E) + \operatorname{rank}(E)(1-g),$$

and the difference of Hilbert polynomials

$$\chi(X, F(m)) - \chi\left(\tilde{X}, (\pi^*F)(m)\right)$$

is a constant.

Solution:

We first recall that a sheaf $\mathcal{F} \in \mathsf{Coh}(X)$ is Hilbert stable if for every subsheaf $E \leq F$, we have an inequality of reduced Hilbert polynomials $\tilde{p}_E(n) < \tilde{p}_F(n)$, and semistability is characterized by replacing < with \leq . Noting that

$$p_F(n) \coloneqq \chi(X; F(n)) = c_0 n^{\dim X} = c_0 n + c_1$$

since X is a curve and consequently dim X = 1. We have $\tilde{p}_F(n) = n + \frac{c_0}{c_1}$ and thus $\tilde{p}_E(n) = n + \frac{d_0}{d_1}$ for some constants c_i depending on F and d_i depending on E, and so

$$\tilde{p}_E(n) < \tilde{p}_F(n) \iff \frac{d_0}{d_1} < \frac{c_0}{c_1}$$

Thus it suffices to show that $\frac{d_0}{d_1} = \mu(E)$ and $\frac{c_0}{c_1} = \mu(F)$. We'll proceed by computing $p_F(n)$ in order to identify what c_0, c_1 are in general.

Noting that X may be singular and thus Riemann-Roch won't apply directly, take the normalization $\pi: \tilde{X} \to X$. Let $X = \bigcup_i X_i$ be the decomposition of X into irreducible components and let \tilde{X}_i be their lifts in the normalization, which are all curves with some genera g_i . We now have

$$p_F(n) \coloneqq \chi(X; F(n))$$

$$= \chi(\tilde{X}, (\pi^*F)(n)) + c \quad \text{for some constant of}$$
$$= \sum_{1 \le i \le n} \chi(\tilde{X}_i, (\pi^*F)(n)|_{\tilde{X}_i}) + c$$
$$= \sum_{1 \le i \le n} \left(\deg (\pi^*F)(n)|_{\tilde{X}_i} + (1 - g_i) \right) + c.$$

As an aside, we can compute the degrees inside of the sum as follows:

$$\deg (\pi^* F)(n)|_{X_i} = \deg F(n)|_{X_i}$$
$$= \deg F|_{X_i} \otimes \bigoplus_{1 \le j \le r_i} \mathcal{O}_{X_i}(n)$$
$$= \deg F|_{X_i} + nr_i\lambda_i.$$

Continuing the above calculation, we have

$$p_F(n) = \sum_{1 \le i \le n} \left(\deg F|_{X_i} + nr_i\lambda_i + (1 - g_i) \right) + c$$
$$= n \left(\sum_{1 \le i \le n} r_i\lambda_i \right) + \left(\sum_{1 \le i \le n} \deg F|_{X_i} + (1 - g_i) + c \right)$$
$$= n \left(\sum_{1 \le i \le n} r_i\lambda_i \right) + \left(\sum_{1 \le i \le n} \chi(X_i; F|_{X_i}) + c \right)$$
$$= n \left(\sum_{1 \le i \le n} r_i\lambda_i \right) + \chi(X; F).$$

Thus $c_0 = \sum r_i \lambda_i$, $c_1 = \chi(F)$, and $\frac{c_1}{c_0} = \frac{\chi(F)}{\sum r_i \lambda_i} = \mu(F)$.

1.5 5