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Problem 1.1.1 (1)

Consider the SLy action on X = (P1)" with a linearized invertible sheaf L =

Ox (di,...,dy),d; € N. Define w; := f:dél-’ so that > w; = 2. Prove that a point
J
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(Py,...,P,) € X**(L) (resp. X*(L)) <= whenever some points P;, i € I,I C {1,...

coincide, one has y ,c;w; <1 (resp. <1).

Solution:
Write points in this product as

xm @y fpfo ol

corresponding to the n-tuple ([0 : yol, -, [Zn : Yn]), with SLg action given by
SL2 ~N X
a b a b||zg - xp axg+byy -+ axy+ by,
p = = .
c d c dl|lyo - Yn cro+dyo -+ crp+dy,
We note that the maximal torus acts as
TSLQ X
| o _|a bl |zo -+ xp| | txzog -0ty
e P T e dl o | e o |

We identify X with its image (which we’ll also denote X) under the Veronese embedding
X — P associated to the ample line bundle £ := O(d) where d := [dy,- - - ,d,] C Z" viewed
as an integer vector. Writing D for the convex hull of the d; in Z", note that every lattice
point in Z"™ N D defines a monomial, and every point p € X corresponds to a a collection of
lattice points Pp = {k = [k1, -+ ,kn]} € D NZ" along with a choice of coefficient oy for each

k € P,
The following is an example D and P, when n =3 and d = 3,5, 4]:
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The three highlighted lattice points are k; = [3,0,0],ks = [0,5,0], ks = [0,0,4], P, =
{ki,ka,ks} corresponds to a polynomial

3,00 05,0 0,0 4
F(z1,22,23) = 12]T9T3 + QX ToT3 + A3x]T9T3.
In our situation, lattice points will correspond to monomials

Ji, g2

I J. 1 0 in
kij=x'y’ =al'zy - Ty Y

_ i
=Xy Ty Ty Y

and so each point in X will correspond to a polynomial
F(:Ela"' yLns Y1, 70 7yn): Z aIJnyJ'
(,J)eD

where Eiefi + Ejer = dl
Todo: this is not quite right. If a; is associated
to the embedding along the d; direction, then the
monomial degrees should just sum up to d;.

Indexing these monomials systematically, we can write

n

di—k; k;

F(xy, - ,yn) = Zajn%‘ Ty
i=1
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When points collide, without loss of generality (using the transitive SLa-action) we can assume
that the collision point in P! is [0: 1], so p € X is of the form

{0 - 0 Py o D
p=
1 1 dm+1 °° Qn

)

where we’ve written m for the number of colliding points. We can now compute the weights
of the torus action over such colliding points

op. di—k; I
)\(t).F(l‘17"' 7y7’l,) :Zagth@ 2,{:]1;1 Jykfj
= Z tWii ajx?iikjykj, wyj = Z d; — 2k;.

7

We now need p(x, A) > 0 for semistability, i.e. min(w;;) > 0, so min(}_ d; — 2k;) > 0. We can
maximally destabilize such a quantity by taking k; = d; for each ¢, j, and so if the collision set
is §, we require
€S <t
zdi—ZZdiZO — zdiZZdi — iTldigl — Zwigl.

i=1 €S i=1 €S v i€S

— 1.2 2 ~

Problem 1.2.1 (2)

342
2
curves C' C P2, with a linearized invertible sheaf L = Ox(1). Prove that C is semistable

<= (C has only ordinary double points.

Consider the SL3 action on the set X = PN N = < ) — 1 =9, parameterizing cubic

Solution:
We first note that every choice of cubic curve C' € Y35 can be represented (after choosing
coordinates) by a polynomial

F<x7y7 Z) = Z Qijk xlyjzk = Z aimiyjzk i= [i’j) k]
i+j+k=3 i+j+k=3

and thus a choice of lattice points C'p in the corresponding weight polytope where each point
is labeled with the corresponding coefficient of F":
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agos 2°
®
102 3".-?.'-2 2
ap12 Yz
® ®
apor 22z G111 *Y= ag21 12
o o ®
azop @° ) ) ;
aig Y G120 TY ansn Y
® o @ @

We record the fact that the point p := [1: 0 : 0] is singular iff aggpp = az01 = a219 = 0:

1.2 2
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3
Gnp3 #

2
@ rz 2
102 ap12 Yz

agn %z a1 LYz aoa Y2

aspg T 9 5 4
ao1p T°Y aiz Y apzn Y

Moreover, p is a triple point iff additionally a192 = a111 = a120 = O:

1.2 2
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3
Qoo3 #

ai T2

ap12 Y22

4] a0s
gp1 T°Z a1 TYz ago1 Y22

@300 T 5 4
Q120 TY Q30 Y

Moreover, all of above holds except ajg2 (the coefficient of x22) is nonzero, then p is a double
point with only a single tangent, and thus not an ordinary double point. These facts follow
from computing the gradients and Hessians which characterize these types of singularities.
We also note that if A : G,,, — SL3 is a 1-parameter subgroup, then \(¢) is conjugate to

. t7'1 . . 3
Aty=1]- t= |, > =0,
. . =1

s

and thus determines a vector r := [r1,79,73] € Z3. The action can then be written
MO -Floyg,2) = 3 at® Vaiyizh,
i+j+k=3

and so all weights are of the form w; = (r, i) € Z. We note that C' € Y35 is unstable iff for
every A, every weight is negative or every weight is positive, so w; < 0 or w; > 0 for all i € Cp.
We’ll focus on the strictly positive case, since the positive case follows similarly.

1.2 2 7
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= : Suppose C is unstable, we will show that p is either a non-ordinary double point, a
triple point, or worse. Pick A and its corresponding r such that all weights w; are positive.
Then in particular

min {wi = (r, i) ‘ ie Cp} > 0.

Having strictly positive weights can be phrased geometrically as {i ‘ ieCp, a; # 0} being

contained in the positive half-space corresponding to the hyperplane Ho := rt. Picking a
maximally destabilizing A\, without loss of generality (changing coordinates if necessary) we
can arrange for the lower-left 5 monomials receive non-positive weights:

agos #

ap12 Wz

9 -
agny T ain TYz agol Yoz

300 &

This forces all of the shaded coefficients except for potentially aig2 to be zero. By the earlier
remarks, this forces p = [1 : 0 : 0] to be singular, and if ajgp2 = 0 this is a triple point.
Otherwise, if ajg2 # 0, this yields a double point which only has a single tangent, and is thus
not ordinary. So if C' is not an unstable curve (i.e. it is semistable), it must have an ordinary

1.2 2 8
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double point at worst.

<= Suppose conversely that C has a triple point or a non-ordinary double point ¢. Using
the transitivity of the SL3 action, we can move ¢ to p = [1 : 0 : 0] and conclude using the
singularity criterion above that the following coeflicients vanish:

@03 2

2
L xrZ 2
102 ap1z Y=

2 a1 TYz
agoL T°% B aga Y2

Q300 T 5
Qpan Y

2

We can now make a specific choice of A that yields the following H) and gives the remaining
coefficients strictly positive weights, allowing us to conclude that C' is unstable:

1.2 2 9
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o3 2

ap12 Z"-fzz

i ryz
21 y%

G3ng T

210 552@'

o 1.3 3 e

Problem 1.3.1 (3)

Give an example showing that Hilbert-Mumford’s criterion of (semi)stability for G ~ X
does not hold in general if X is not assumed to be projective. (In other words, produce a
counterexample with a non-projective X.)

Solution:

1.3 3 10
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Consider the following action:
G, X =A?
t.[xz,y] = [tx, ty].
Thus yields a set theoretic orbit space

A?/Gp = {0 ] LE G} U{0s,0y,00}

i.e. there is an orbit for each hyperbola xy = t, the punctured z-axis, the punctured y-axis,
and the origin:

1.3 3 11
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We record that the following facts:

e The orbits O, are all closed with 0-dimensional stabilizers,
e The orbits O;, O, are not closed but still have 0-dimensional stabilizers, and
e The orbit Oq is closed but has a 1-dimensional stabilizer G,,.

Thus X® = A2\ V(xy) is the plane with the axes deleted, and for example 0 € X \ X® is an
unstable point and [1,0], [0, 1] € X \ X® are not stable points (and may thus either be unstable
or semistable).

Noting that O, ~ Oy ~ Oy are all orbit-closure equivalent since 0 is in the closure of O, and
Oy, we can separate these orbits by redefining our total space to be X = A2\ {0}; then Oy, Oy
are closed in X’ and have 0-dimensional stabilizer and thus points in those orbits become
stable for the restricted action G,, ~ X'.

For example, pick p := [1,0] € O, C X', then p is stable by construction. However, we can
now check the Hilbert-Mumford numerical criterion and note that every 1-parameter subgroup
A acting with weights rq, ro satisfies

A(t).p = [t"11,#720] = [t™11, 0],

and in particular always has strictly positive or strictly negative weights, which would otherwise
characterize p as an unstable point, yielding the desired counterexample.

= 1.4 4 ~o

Problem 1.4.1 (4)

Provide a complete VGIT (variation of GIT) analysis for the quotients (IP’I)3 //Gp. The line
bundle is L = O(1,1,1). The G,,-action is defined as

t. (l’o : xl) = (.%‘0 : t.%‘l), t. (y() : yl) = (yo : tyl), t. (Z() : 21) = (Z() : tzl)

The linearization is a lift of this action to the action on the coordinates w;j;, = x;y;zr on

(]P’l)3 embedded into P7 with the 8 homogeneous coordinates wjj,. The above equations give
an action on the point (w;j;) € P7. The linearization is a lift of this action to the point
(wijk) € A8,

Determine the following:

1) The choices for Q-linearizations of L (i.e. linearizations of some L% d € N ).

2) Chamber decomposition.

4

(1)

(2)

(3) For each chamber, the quotient.

(4) For neighboring chambers, the induced morphisms between the quotients.
(5)

5) For each chamber, the sets of unstable and strictly semistable points.

1.4 4 12



I Problem Set 2

Solution:
Todo.

s 1.5 5 =

Problem 1.5.1 (5)

Let X C PV be a singular projective curve. Suppose that X has n irreducible components X;
and that deg Ox(1)|x, = A\; € N. Let F' be a coherent sheaf on X. Then on an open subset
U; C X; of each irreducible component it is a locally free sheaf of rank r;.

The Seshadri slope of an invertible sheaf F' is defined to be

_ x(F)
EDIPYICE

By replacing Ox (1) by a rational multiple, one can assume that A\; > 0,>" \; = 1.

wu(F) where 7; = 1k F|;. .

1. Let F be a pure-dimensional coherent sheaf on X. Prove that F' is Hilbertstable (resp.
semistable) <= for any subsheaf E' C F one has pu(E) < p(F) (resp. < ). (Note in
particular, that this definition depends on the polarization (J;), and there is a Variation
of GIT here.)

2. Prove, however, that if x(F') = 0 then the (semi)stability condition does not depend on
a polarization (\;).

\ J

Remark 1.5.1: You can use the following simple observation. If 7 : X — X is a normalization
then X is a smooth curve, so Riemann-Roch is applicable:

X(E) = deg(E) + rank(E)(1 - g),

and the difference of Hilbert polynomials

X(X, F(m)) = x (X, (x°F) (m))

is a constant.

Solution:
We first recall that a sheaf F € Coh(X) is Hilbert stable if for every subsheaf £ < F', we have
an inequality of reduced Hilbert polynomials pg(n) < pr(n), and semistability is characterized

1.5 5 13
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by replacing < with <. Noting that
pr(n) = x(X;F(n)) = con®™X = con + ¢
since X is a curve and consequently dim X = 1. We have pp(n) =n + ¢ and thus pg(n) =
n+ 3—(1’ for some constants ¢; depending on F' and d; depending on F, and so
d c
b o

Thus it suffices to show that Z—fl’ = p(E) and £ = pu(F). We'll proceed by computing pp(n) in
order to identify what ¢y, c; are in general.

Noting that X may be singular and thus Riemann-Roch won’t apply directly, take the nor-
malization 7 : X — X. Let X = U; X; be the decomposition of X into irreducible components
and let X; be their lifts in the normalization, which are all curves with some genera g;. We
now have

pr(n) = x(X;F(n))
— X(X, (7*F)(n))+c for some constant c

= X(Xi, (7" F)(n)|z,) +

= 3 (deg (" F)(m)lg, + (1 - 9)) +c.

1<i<n
As an aside, we can compute the degrees inside of the sum as follows:
deg (" F)(n)|x, = deg F(n)|y,
=deg Flx, ® @ Ox,(n)

1<5<r;
= deg F|Xi + nri ;.

Continuing the above calculation, we have

pr(n) = Z (deg Fly, +nridi + (1 - gz)) +c

1<i<n

:n( Z ri)\i) —{—(Z degF]XZ_—i—(l—gi)—i—c)

1<i<n

=7’L< > T‘i)\i) + ( > x(Xi F|X,L-)+C)
1<i<n

1<i<n

1.5 5 14
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Thus ¢ = Y riXi, 1 = x(F), and E_(l) =

- Z’Iﬁ)\i

Q&L — y(R).

1.5 5
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