--- aliases: - Algebraic geometry basics - algebraic geometry - AG sort: 001 title: "References: Algebraic Geometry" --- Tags: #AG #resources #resources #projects/notes #MOC/resources # References: Algebraic Geometry ## Texts - Gathmann, [Algebraic Geometry Course Notes](https://www.mathematik.uni-kl.de/~gathmann/de/alggeom.php) ⭐ - Vakil, *[The Rising Sea](http://math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf)* - Hartshorne, *Algebraic Geometry* - Harris, *Algebraic Geometry: A First Course* - Shafarevich, *Basic Algebraic Geometry 1* - Mumford, *The Red Book of Varieties and Schemes* - Fulton, *Introduction to Toric Varieties* - Milne, [Algebraic Geometry Notes](https://www.jmilne.org/math/CourseNotes/AG510.pdf) - Lazarsfeld, *Positivity in Algebraic Geometry* \> Recommended by Haiyang for divisors - Kollár-Mori, *Birational Geometry of Algebraic Varieties* \> Recommended by Haiyang for [[ample]], very big, nef divisors - Kawamata, [Introduction to the minimal model problem](attachments/Kawamata%20Intro%20MMP.pdf). - Eisenbud [Commutative algebra with a view towards algebraic geometry](http://books.google.com/books?isbn=0387942696) for the commutative algebra we need. - The older book [Introduction to commutative algebra](http://books.google.com/books?isbn=0201407515) by Atiyah and Macdonald is also fine. - Grothendieck's [FGA](http://www.math.jussieu.fr/~leila/grothendieckcircle/FGA.pdf), [EGA](http://en.wikipedia.org/wiki/Elements%20de%20geometrie%20algebrique), and [SGA](http://modular.fas.harvard.edu/sga/sga/). - Serre's [GAGA](http://www.numdam.org/item?id=AIF_1956__6__1_0), [English translation](http://www.math.mcmaster.ca/~arnoldt/Serre-GAGA.dvi) and [FAC](http://www.jstor.org/stable/1969915) [English translation](http://students.mimuw.edu.pl/~pta/fac/fac.pdf) - [Dolachev's lectures on algebraic geometry](http://www.math.lsa.umich.edu/~idolga/lecturenotes.html) - [Mumford's red book](http://dx.doi.org/10.1007/b62130) - [The geometry of schemes](http://dx.doi.org/10.1007/b97680) by Eisenbud and Harris - [Vakil's notes](http://math.stanford.edu/~vakil/0910-216/) - [Dolgachev's book "Classical Algebraic Geometry: a modern view"](http://www.math.lsa.umich.edu/~idolga/CAG.pdf) ## Notes - [ ] McKernan's UCSD lectures, graduate AG #resources/full-courses \^adb5c0 - [x] Quarter 1 ✅ 2022-06-03 \^856ee3 - [x] [Lecture 1](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Autumn/203A/l_1.pdf) ✅ 2022-06-02 - [x] [Lecture 2](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Autumn/203A/l_2.pdf) ✅ 2022-06-02 - [x] [Lecture 3](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Autumn/203A/l_3.pdf) ✅ 2022-06-02 - [x] [Lecture 4](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Autumn/203A/l_4.pdf) ✅ 2022-06-02 - [x] [Lecture 5](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Autumn/203A/l_5.pdf) ✅ 2022-06-02 - [x] [Lecture 6](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Autumn/203A/l_6.pdf) ✅ 2022-06-03 - [x] [Lecture 7](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Autumn/203A/l_7.pdf) ✅ 2022-06-03 - [x] [Lecture 8](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Autumn/203A/l_8.pdf) ✅ 2022-06-03 - [x] [Lecture 9](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Autumn/203A/l_9.pdf) ✅ 2022-06-03 - [x] [Lecture 10](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Autumn/203A/l_10.pdf) ✅ 2022-06-03 - [x] [Lecture 11](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Autumn/203A/l_11.pdf) ✅ 2022-06-03 - [x] [Lecture 12](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Autumn/203A/l_12.pdf) ✅ 2022-06-03 - [x] [Lecture 13](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Autumn/203A/l_13.pdf) ✅ 2022-06-03 - [x] [Lecture 14](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Autumn/203A/l_14.pdf) ✅ 2022-06-03 - [x] [Lecture 15](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Autumn/203A/l_15.pdf) ✅ 2022-06-03 - [x] [Lecture 16](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Autumn/203A/l_16.pdf) ✅ 2022-06-03 - [x] [Lecture 17](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Autumn/203A/l_17.pdf) ✅ 2022-06-03 - [x] [Lecture 18](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Autumn/203A/l_18.pdf) ✅ 2022-06-03 - [ ] Quarter 2 \^a55fd7 - [x] [Lecture 1](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Winter/203B/l_1.pdf) ✅ 2022-10-27 - [x] [Lecture 2](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Winter/203B/l_2.pdf) ✅ 2022-10-27 - [ ] [Lecture 3](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Winter/203B/l_3.pdf)\ - [ ] [Lecture 4](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Winter/203B/l_4.pdf)\ - [ ] [Lecture 5](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Winter/203B/l_5.pdf)\ - [ ] [Lecture 6](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Winter/203B/l_6.pdf)\ - [ ] [Lecture 7](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Winter/203B/l_7.pdf)\ - [ ] [Lecture 8](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Winter/203B/l_8.pdf)\ - [ ] [Lecture 9](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Winter/203B/l_9.pdf)\ - [ ] [Lecture 10](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Winter/203B/l_10.pdf)\ - [ ] [Lecture 11](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Winter/203B/l_11.pdf)\ - [ ] [Lecture 12](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Winter/203B/l_12.pdf)\ - [ ] [Lecture 13](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Winter/203B/l_13.pdf)\ - [ ] [Lecture 14](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Winter/203B/l_14.pdf)\ - [ ] [Lecture 15](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Winter/203B/l_15.pdf)\ - [ ] [Lecture 16](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Winter/203B/l_16.pdf) - [ ] Quarter 3 - [ ] [Lecture 1](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Spring/203C/l_1.pdf) \^dd69c9 - [ ] [Lecture 2](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Spring/203C/l_2.pdf)\ - [ ] [Lecture 3](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Spring/203C/l_3.pdf)\ - [ ] [Lecture 4](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Spring/203C/l_4.pdf)\ - [ ] [Lecture 5](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Spring/203C/l_5.pdf)\ - [ ] [Lecture 6](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Spring/203C/l_6.pdf)\ - [ ] [Lecture 7](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Spring/203C/l_7.pdf)\ - [ ] [Lecture 8](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Spring/203C/l_8.pdf)\ - [ ] [Lecture 9](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Spring/203C/l_9.pdf)\ - [ ] [Lecture 10](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Spring/203C/l_10.pdf)\ - [ ] [Lecture 11](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Spring/203C/l_11.pdf)\ - [ ] [Lecture 12](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Spring/203C/l_12.pdf)\ - [ ] [Lecture 13](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Spring/203C/l_13.pdf)\ - [ ] [Lecture 14](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Spring/203C/l_14.pdf)\ - [ ] [Lecture 15](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Spring/203C/l_15.pdf)\ - [ ] [Lecture 16](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Spring/203C/l_16.pdf)\ - [ ] [Lecture 17](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Spring/203C/l_17.pdf)\ - [ ] [Lecture 18](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Spring/203C/l_18.pdf)\ - [ ] [Lecture 19](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Spring/203C/l_19.pdf)\ - [ ] [Lecture 20](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Spring/203C/l_20.pdf)\ - [ ] [Lecture 21](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Spring/203C/l_21.pdf)\ - [ ] [Lecture 22](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Spring/203C/l_22.pdf)\ - [ ] [Lecture 23](https://mathweb.ucsd.edu/~jmckerna/Teaching/13-14/Spring/203C/l_23.pdf) - Sheaf cohomology: - - - [Reading seminar review of sheaf theory:](http://www.math.toronto.edu/jkamnitz/seminar/perverse/stefan.pdf) - [Quick Review](http://www.mat.uniroma2.it/~ricerca/geomet/workshops/Zaidenbergnotes.pdf) - [Short overview of a course](attachments/2013SP_algebra.pdf) - Tripos Part 3, quick review: - [Tripos Part III 2019 Course notes](http://qk206.user.srcf.net/notes/algebraic_geometry_iii.pdf) - [Harvard 233A 2017 Course notes](https://dongryul-kim.github.io/harvard_notes/Math233a/Notes_Math233a.pdf) - [Olsson course notes](https://etale.site/livetex/256a.pdf) - [UW Spring 2016 Course](attachments/iag.pdf) - [MIT OCW 2009, Kedlaya](https://ocw.mit.edu/courses/mathematics/18-726-algebraic-geometry-spring-2009/lecture-notes/) - [MIT OCW 2015](https://ocw.mit.edu/courses/mathematics/18-725-algebraic-geometry-fall-2015/lecture-notes/) - - # Topics ## Advanced topics - [MSRI Summer School on toric varieties](https://www.msri.org/summer_schools/455) - [Seminar: ind-coherent sheaves](http://people.math.harvard.edu/~yifei/indcoh.html) - [Hartshorne on Deformation Theory](https://math.berkeley.edu/~robin/math274root.pdf) - [MSRI Summer School on derived categories of coherent sheaves on algebraic varietes](https://www.msri.org/summer_schools/821) - #MMP: #resources/videos