# Problem Set 5 (Monday, October 26) ::: {.problem .proofenv .proofenv .proofenv .proofenv .proofenv title="Gathmann 4.13"} Let $f:X\to Y$ be a morphism of affine varieties and $f^*: A(Y) \to A(X)$ the induced map on coordinate rings. Determine if the following statements are true or false: a. $f$ is surjective $\iff f^*$ is injective. b. $f$ is injective $\iff f^*$ is surjective. c. If $f:{\mathbb{A}}^1\to{\mathbb{A}}^1$ is an isomorphism, then $f$ is *affine linear*, i.e. $f(x) = ax+b$ for some $a, b\in k$. d. If $f:{\mathbb{A}}^2\to{\mathbb{A}}^2$ is an isomorphism, then $f$ is *affine linear*, i.e. $f(x) = Ax+b$ for some $a \in \operatorname{Mat}(2\times 2, k)$ and $b\in k^2$. ::: ::: {.solution .proofenv .proofenv .proofenv .proofenv .proofenv} ```{=tex} \hfill ``` a. **True**. This follows because if $p, q\in A(Y)$, then ` \begin{align*} f* p &= f^* q \\ &\implies (p\circ f) = (q\circ f) && \text{by definition}\\ &\implies p = q ,\end{align*} `{=html} where in the last implication we've used the fact that $f$ is surjective iff $f$ admits a right-inverse. ::: ::: {.problem .proofenv .proofenv .proofenv .proofenv .proofenv title="Gathmann 4.19"} Which of the following are isomorphic as ringed spaces over ${\mathbb{C}}$? (a) $\mathbb{A}^{1} \backslash\{1\}$ (b) $V\left(x_{1}^{2}+x_{2}^{2}\right) \subset \mathbb{A}^{2}$ (c) $V\left(x_{2}-x_{1}^{2}, x_{3}-x_{1}^{3}\right) \backslash\{0\} \subset \mathbb{A}^{3}$ (d) $V\left(x_{1} x_{2}\right) \subset \mathbb{A}^{2}$ (e) $V\left(x_{2}^{2}-x_{1}^{3}-x_{1}^{2}\right) \subset \mathbb{A}^{2}$ (f) $V\left(x_{1}^{2}-x_{2}^{2}-1\right) \subset \mathbb{A}^{2}$ ::: ::: {.problem .proofenv .proofenv .proofenv .proofenv .proofenv title="Gathmann 5.7"} Show that a. Every morphism $f:{\mathbb{A}}^1\setminus\left\{{0}\right\}\to {\mathbb{P}}^1$ can be extended to a morphism $\widehat{f}: {\mathbb{A}}^1 \to {\mathbb{P}}^1$. b. Not every morphism $f:{\mathbb{A}}^2\setminus\left\{{0}\right\}\to {\mathbb{P}}^1$ can be extended to a morphism $\widehat{f}: {\mathbb{A}}^2 \to {\mathbb{P}}^1$. c. Every morphism ${\mathbb{P}}^1\to {\mathbb{A}}^1$ is constant. ::: ::: {.problem .proofenv .proofenv .proofenv .proofenv .proofenv title="Gathmann 5.8"} Show that a. Every isomorphism $f:{\mathbb{P}}^1\to {\mathbb{P}}^1$ is of the form ` \begin{align*} f(x) = {ax+b \over cx+d} && a,b,c,d\in k .\end{align*} `{=html} where $x$ is an affine coordinate on ${\mathbb{A}}^1\subset {\mathbb{P}}^1$. b. Given three distinct points $a_i \in {\mathbb{P}}^1$ and three distinct points $b_i \in {\mathbb{P}}^1$, there is a unique isomorphism $f:{\mathbb{P}}^1 \to {\mathbb{P}}^1$ such that $f(a_i) = b_i$ for all $i$. ::: ::: {.proposition .proofenv .proofenv .proofenv .proofenv .proofenv title="?"} There is a bijection ` \begin{align*} \begin{array}{c} \{\text { morphisms } X \rightarrow Y\} \stackrel{1: 1}{\longleftrightarrow}\left\{K \text { -algebra homomorphisms } \mathscr{O}_{Y}(Y) \rightarrow \mathscr{O}_{X}(X)\right\} \\ f \longmapsto f^{*} \end{array} \end{align*} `{=html} ::: ::: {.problem .proofenv .proofenv .proofenv .proofenv .proofenv title="Gathmann 5.9"} Does the above bijection hold if a. $X$ is an arbitrary prevariety but $Y$ is still affine? b. $Y$ is an arbitrary prevariety but $X$ is still affine? :::