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Source: Section 1 of Gathmann

1 Problem Set 1

Exercise 1.0.1(Gathmann 1.19): Prove that every affine variety X ⊂ An/k consisting of only
finitely many points can be written as the zero locus of n polynomials.

Hint: Use interpolation. It is useful to assume at first that all points in X have different
x1-coordinates.

Solution:
Let X = {p1, · · · ,pd} = {pj}dj=1, where each pj ∈ An can be written in coordinates

pj :=
[
p1

j , p
2
j , · · · , pn

j

]
.

Remark 1.0.2: Proof idea: for some fixed k with 2 ≤ k ≤ n, consider the pairs (p1
j , p

k
j ) ∈ A2.

Letting j range over 1 ≤ j ≤ d yields d points of the form (x, y) ∈ A2, so construct an
interpolating polynomial such that f(x) = y for each tuple. Then f(x)− y vanishes at every
such tuple.

Doing this for each k (keeping the first coordinate always of the form p1
j and letting the second

coordinate vary) yields n − 1 polynomials in k[x1, xk] ⊆ k[x1, · · · , xn], then adding in the
polynomial p(x) =

∏
j

(x− p1
j ) yields a system the vanishes precisely on {pj}.

Claim: Without loss of generality, we can assume all of the first components
{
p1

j

}d

j=1
are

distinct.
Todo: follows from "rotation of axes"?

We will use the following fact:
Theorem 1.0.3(Lagrange).
Given a set of d points {(xi, yi)}di=1 with all xi distinct, there exists a unique polynomial
of degree d in f ∈ k[x] such that f̃(xi) = yi for every i.
This can be explicitly given by

f̃(x) =
d∑

i=1
yi

 ∏
0≤m≤d

m6=i

(
x− xm

xi − xm

) .
Equivalently, there is a polynomial f defined by f(xi) = f̃(xi) − yi of degree d whose
roots are precisely the xi.

Using this theorem, we define a system of n polynomials in the following way:
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• Define f1 ∈ k[x1] ⊆ k[x1, · · · , xn] by

f1(x) =
d∏

i=1

(
x− p1

i

)
.

Then the roots of f1 are precisely the first components of the points p.

• Define f2 ∈ k[x1, x2] ⊆ k[x1, · · · , xn] by considering the ordered pairs{
(x1, x2) = (p1

j , p
2
j )
}
,

then taking the unique Lagrange interpolating polynomial f̃2 satisfying f̃2(p1
j ) = p2

j for
all 1 ≤ j ≤ d. Then set f2 := f̃2(x1)− x2 ∈ k[x1, x2].

• Define f3 ∈ k[x1, x3] ⊆ k[x1, · · · , xn] by considering the ordered pairs{
(x1, x3) = (p1

j , p
3
j )
}
,

then taking the unique Lagrange interpolating polynomial f̃3 satisfying f̃2(p1
j ) = p3

j for
all 1 ≤ j ≤ d. Then set f3 := f̃3(x1)− x3 ∈ k[x1, x3].

• · · ·

Continuing in this way up to fn ∈ k[x1, xn] yields a system of n polynomials.

Proposition 1.0.4.
V (f1, · · · , fn) = X.
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Proof .

Claim: X ⊆ V (fi):
This is essentially by construction. Letting pj ∈ X be arbitrary, we find that

f1(pj) =
d∏

i=1

(
p1

j − p1
i

)
= (p1

j − p1
j )
∏
i≤d
i 6=j

(
p1

j − p1
i

)
= 0.

Similarly, for 2 ≤ k ≤ n,

fk(pj) = f̃k(p1
j )− pk

j = 0,

which follows from the fact that f̃k(p1
j ) = pk

j for every k and every j by the construction
of f̃k.

Claim: Xc ⊆ V (fi)c:
This follows from the fact the polynomials f given by Lagrange interpolation are unique,
and thus the roots of f̃ are unique. But if some other point was in V (fi), then one of its
coordinates would be another root of some f̃ .

�

Exercise 1.0.5(Gathmann 1.21): Determine
√
I for

I :=
〈
x3

1 − x6
2, x1x2 − x3

2

〉
E C[x1, x2].

Solution:
For notational purposes, let I,V denote the maps in Hilbert’s Nullstellensatz, we then have

(I ◦ V)(I) =
√
I.

So we consider V(I) ⊆ A2/C, the vanishing locus of these two polynomials, which yields the
system {

x3 − y6 = 0
xy − y3 = 0.

In the second equation, we have (x − y2)y = 0, and since C[x, y] is an integral domain, one
term must be zero.

1. If y = 0, then x3 = 0 =⇒ x = 0, and thus (0, 0) ∈ V(I), i.e. the origin is contained in
this vanishing locus.

2. Otherwise, if x− y2 = 0, then x = y2, with no further conditions coming from the first
equation.

Combining these conditions,

P :=
{

(t2, t)
∣∣∣ t ∈ C

}
⊂ V(I).

Problem Set 1 4



1 Problem Set 1

where I =
〈
x3 − y6, xy − y3

〉
.

We have P = V(I), and so taking the ideal generated by P yields

(I ◦ V) (I) = I(P ) =
〈
y − x2

〉
∈ C[x, y]

and thus
√
I =

〈
y − x2

〉
.

Exercise 1.0.6(Gathmann 1.22): Let X ⊂ A3/k be the union of the three coordinate axes.
Compute generators for the ideal I(X) and show that it can not be generated by fewer than 3
elements.

Solution:
Claim:

I(X) = 〈x2x3, x1x3, x1x2〉 .

We can write X = X1 ∪X2 ∪X3, where

• The x1-axis is given by X1 := V (x2x3) =⇒ I(X1) = 〈x2x3〉,
• The x2-axis is given by X2 := V (x1x3) =⇒ I(X2) = 〈x1x3〉,
• The x3-axis is given by X3 := V (x1x2) =⇒ I(X3) = 〈x1x2〉.

Here we’ve used, for example, that

I(V (x2x3)) =
√
〈x2x3〉 = 〈x2x3〉

by applying the Nullstellensatz and noting that 〈x2x3〉 is radical since it is generated by a
squarefree monomial.
We then have

I(X) = I(X1 ∪X2 ∪X3)
= I(X1) ∩ I(X2) ∩ I(X3)

=
√
I(X1) + I(X2) + I(X3)

=
√
〈x2, x3〉+ 〈x1x3〉+ 〈x1x2〉

=
√
〈x2x3, x1x3, x1x2〉 since 〈a〉+ 〈b〉 = 〈a, b〉

= 〈x2x3, x1x3, x1x2〉,

where in the last equality we’ve again used the fact that an ideal generated by squarefree
monomials is radical.

Claim: I(X) can not be generated by 2 or fewer elements.
Let J := I(X) and R := k[x1, x2, x3], and toward a contradiction, suppose J = 〈r, s〉. Define
m := 〈x, y, z〉 and a quotient map

π : J → J/mJ
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and consider the images π(r), π(s).

Note that J/mJ is an R/m-module, and since R/m ∼= k, J/mJ is in fact a k-vector space.
Since π(r), π(s) generate J/mJ as a k-module,

dimk J/mJ ≤ 2.

But this is a contradiction, since we can produce 3 k-linearly independent elements in J/mJ :
namely π(x1x2), π(x1x3), π(x2x3). Suppose there exist αi such that

α1π(x1x2) + α2π(x1x3) + α3π(x2x3) = 0 ∈ J/mJ ⇐⇒ α1x1x2 + α2x1x3 + α3x2x3 ∈ mJ,

But we can then note that

mJ = 〈x1, x2.x3〉 〈x1x2, x1x3, x2x3〉 =
〈
x2

1x2, x
2
1x3, x1x2x3, · · ·

〉
.

can’t contain any nonzero elements of degree d < 3, so no such αi can exist and these elements
are k-linearly independent.

Exercise 1.0.7(Gathmann 1.23: Relative Nullstellensatz): Let Y ⊂ An/k be an affine
variety and define A(Y ) by the quotient

π : k[x1, · · · , xn]→ A(Y ) := k[x1, · · · , xn]/I(Y ).

a. Show that VY (J) = V (π−1(J)) for every J E A(Y ).

b. Show that π−1(IY (X)) = I(X) for every affine subvariety X ⊆ Y .

c. Using the fact that I(V (J)) ⊂
√
J for every J E k[x1, · · · , xn], deduce that IY (VY (J)) ⊂

√
J

for every J E A(Y ).

Conclude that there is an inclusion-reversing bijection{Affine subvarieties
of Y

}
⇐⇒

{
Radical ideals

in A(Y )

}
.

Problem Set 1 6



2 Problem Set 2

Exercise 1.0.8(Extra): Let J E k[x1, · · · , xn] be an ideal, and find a counterexample to I(V (J)) =√
J when k is not algebraically closed.

Solution:
Take J =

〈
x2 + 1

〉
E R[x], noting that J is nontrivial and proper but R is not algebraically

closed. Then V (J) ⊆ R is empty, and thus I(V (J)) = I(∅).

Claim: I(V (J)) = R[x].
Checking definitions, for any set X ⊂ An/k we have

I(X) =
{
f ∈ R[x]

∣∣∣ ∀x ∈ X, f(x) = 0
}

and so we vacuously have

I(∅) =
{
f ∈ R[x]

∣∣∣ ∀x ∈ ∅, f(x) = 0
}

= {f ∈ R[x]} = R[x].

Claim:
√
J 6= R[x].

This follows from the fact that maximal ideals are radical, and R[x]/J ∼= C being a field implies
that J is maximal. In this case

√
J = J 6= R[x].

That maximal ideals are radical follows from the fact that if J E R is maximal, we have
J ⊂
√
J ⊂ R which forces

√
J = J or

√
J = R.

But if
√
J = R, then

1 ∈
√
J =⇒ 1n ∈ J for some n =⇒ 1 ∈ J =⇒ J = R,

contradicting the assumption that J is maximal and thus proper by definition.

2 Problem Set 2

Exercise 2.0.1(Gathmann 2.17): Find the irreducible components of
X = V (x− yz, xz − y2) ⊂ A3/C.

Solution:
Since x = yz for all points in X, we have

X = V (x− yz, yz2 − y2)

= V
(
x− yz, y(z2 − y)

)
= V (x− yz, y) ∪ V (x− yz, z2 − y)
:= X1 ∪X2.
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Claim: These two subvarieties are irreducible.
It suffices to show that the A(Xi) are integral domains. We have

A(X1) := C[x, y, z]/ 〈x− yz, y〉 ∼= C[y, z]/ 〈y〉 ∼= C[z],

which is an integral domain since C is a field and thus an integral domain, and

A(X2) := C[x, y, z]/
〈
x− yz, z2 − y

〉
∼= C[y, z]/

〈
z2 − y

〉
∼= C[y],

which is an integral domain for the same reason.

Exercise 2.0.2(Gathmann 2.18): Let X ⊂ An be an arbitrary subset and show that

V (I(X)) = X.

Solution:

X ⊆ V (I(X)):
We have X ⊆ V (I(X)) and since V (J) is closed in the Zariski topology for any ideal
J E k[x1, · · · , xn] by definition, V (I(X)) is closed. Thus

X ⊆ V (I(X)) and V (I(X)) closed =⇒ X ⊆ V (I(X)),

since X is the intersection of all closed sets containing X.

V (I(X)) ⊆ X:
Noting that V ( · ), I( · ) are individually order-reversing, we find that V (I( · )) is order-preserving
and thus

X ⊆ X =⇒ V (I(X)) ⊆ V (I(X)) = X,

where in the last equality we’ve used part (i) of the Nullstellensatz: if X is an affine variety,
then V (I(X)) = X. This applies here because X is always closed, and the closed sets in the
Zariski topology are precisely the affine varieties.

Exercise 2.0.3(Gathmann 2.21): Let {Ui}i∈I ⇒ X be an open cover of a topological space with
Ui ∩ Uj 6= ∅ for every i, j.

a. Show that if Ui is connected for every i then X is connected.

b. Show that if Ui is irreducible for every i then X is irreducible.

Solution(a):
Suppose toward a contradiction that X = X1

∐
X2 with Xi proper, disjoint, and open. Since

{Ui} ⇒ X, for each j ∈ I this would force one of Uj ⊆ X1 or Uj ⊆ X2, since otherwise
Uj ∩X1 ∩X2 would be nonempty.
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So without loss of generality (relabeling if necessary), assume Uj ∈ X1 for some fixed j. But
then for every i 6= j, we have Ui ∩ Uj nonempty by assumption, and so in fact Ui ⊆ X1 for
every i ∈ I. But then ∪i∈IUi ⊆ X1, and since {Ui} was a cover, this forces X ⊆ X1 and thus
X2 = ∅.

Solution(b):

Claim: X is irreducible ⇐⇒ any two open subsets intersect.
This follows because otherwise, if U, V ⊂ X are open and disjoint then X \ U, X \ V are
proper and closed. But then we can write X = (X \ U)

∐
(X \ V ) as a union of proper closed

subsets, forcing X to not be irreducible.

So it suffices to show that if U, V ⊂ X then U ∩ V is nonempty. Since {Ui}⇒ X, we can find
a pair i, j such that there is at least one point in U ∩ Ui and one point in V ∩ Uj .

But by assumption Ui∩Uj is nonempty, so both U ∩Ui and Uj ∩Ui are open nonempty subsets
of Ui. Since Ui was assumed irreducible, they must intersect, so there exists a point

x0 ∈ (U ∩ Ui) ∩ (Uj ∩ Ui) = U ∩ (Ui ∩ Uj) := Ũ .

We can now similarly note that Ũ ∩ V and Uj ∩ V are nonempty open subsets of V , and thus
intersect. So there is a point

x̃0 ∈
(
Ũ ∩ V

)
∩ (Uj ∩ V ) = Ũ ∩ V = U ∩ V ∩ (Ui ∩ Uj) ,

and in particular x̃0 ∈ U ∩ V as desired.

Exercise 2.0.4(Gathmann 2.22): Let f : X → Y be a continuous map of topological spaces.

a. Show that if X is connected then f(X) is connected.

b. Show that if X is irreducible then f(X) is irreducible.

Solution(a):
Toward a contradiction, if f(X) = Y1

∐
Y2 with Y1, Y2 nonempty and open in Y , then

f−1(f(X)) ⊆ X

on one hand, and

f−1(f(X)) = f−1(Y1)
∐
f−1(Y2)

on the other. If f is continuous, the preimages f−1(Yi) are open (and nonempty), so X
contains a disconnected subset. However, every subset of a connected set must be connected,
so this contradicts the connectedness of X.

Problem Set 2 9
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Solution(b):
Suppose f(X) = Y1 ∪ Y2 with Yi proper closed subsets of Y . Then f−1(Y1) ∪ f−1(Y 2) =
(f−1 ◦ f)(X) ⊆ X are closed in X, since f is continuous. Since X is irreducible, without loss
of generality (by relabeling), this forces X1 = ∅. But then f(X1) = ∅, forcing f(X) = Y2.

Definition 2.0.5 (Ideal Quotient)
For two ideals J1, J2 E R, the ideal quotient is defined by

J1 : J2 :=
{
f ∈ R

∣∣∣ fJ2 ⊂ J1
}
.

Exercise 2.0.6(Gathmann 2.23): Let X be an affine variety.

a. Show that if Y1, Y2 ⊂ X are subvarieties then

I(Y1 \ Y2) = I(Y1) : I(Y2).

b. If J1, J2 E A(X) are radical, then

V (J1) \ V (J2) = V (J1 : J2).

Solution:
?

Exercise 2.0.7(Gathmann 2.24): Let X ⊂ An, Y ⊂ Am be irreducible affine varieties, and show
that X × Y ⊂ An+m is irreducible.

Solution:
That X × Y is again an affine variety follows from writing X = V (I), Y = V (J), then
X × Y = V (I + J) where I + J E k[x1, · · · , xn, y1, · · · , ym]. So let

X × Y = U ∪ V

with U, V proper and closed, and let πX , πY be the projections onto the factors.

Claim: For each x ∈ X, π−1(x) ∼= Y is contained in only one of U or V .
Note that if this is true, we can write X = GU ∪GV where

GU :=
{
x ∈ X

∣∣∣ π−1
X (x) ⊆ U

}
are the points for which the entire fiber lies in U , and similarly GV are those for which the
fiber lies in V . If we can then show that GU , GV are closed, by irreducibility of X this will
force (wlog) GV = ∅ and X = GU . But then

π−1
X (X) = X × Y and π−1

X (GU ) = U =⇒ X × Y = U.

which shows that X × Y is irreducible.
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Proof (Every fiber is contained in one irreducible component).
For any fixed x, we can write

π−1
X (x) =

(
π−1

X (x) ∩ U
)
∪
(
π−1

X (x) ∩ V
)
.

Since points are closed in the Zariski topology and πX is continuous, each π−1
X (x) is closed.

and thus π−1
X (x)∩U is closed (and similarly for V ). Noting that π−1

X (x) ∼= {x}× Y ∼= Y ,
where we’ve assumed Y to be irreducible, we can conclude wlog that π−1

X (x) ∩ V = ∅.
�

Proof (GU , GV are closed).
Wlog consider GU ⊆ X. Fixing any point y0 ∈ Y , we have

X ∼= Xy0 := X × {y0} ⊆ X × Y,

so we can identify GU ⊂ X with GU ⊂ Xy0 inside a Y -fiber the product. But then

GU = Xy0 ∩ U ⊆ X × Y,

where U is closed in X × Y and thus closed in Xy0 , and Xy0 is trivially closed in itself.
This exhibits GU as the intersection of two sets that are closed in Xy0

∼= X.
�

3 Problem Set 3

Exercise 3.0.1(Gathmann 2.33): Define

X :=
{
M ∈ Mat(2× 3, k)

∣∣∣ rankM ≤ 1
}
⊆ A6/k.

Show that X is an irreducible variety, and find its dimension.

Solution:
We’ll use the following fact from linear algebra:
Definition(Matrix Minor)
For an m×n matrix, a minor of order ` is the determinant of a `× ` submatrix obtained
by deleting any m− ` rows and any n− ` columns.

Theorem 3.0.3(Rank is a Function of Minors).
If A ∈ Mat(m × n, k) is a matrix, then the rank of A is equal to the order of largest
nonzero minor.

Thus

Mij = 0 for all `× ` minors Mij ⇐⇒ rank(M) < `,

Problem Set 3 11
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following from the fact that if one takes ` = min(m,n) and all `× ` minors vanish, then the
largest nonzero minor must be of size j × j for j ≤ `− 1. But detMij is a polynomial fij in
its entries, which means that X can be written as

X = V ({fij}) ,

which exhibits X as a variety. Thus

M =
[
x y z
a b c

]
=⇒ X = V (〈xb− ya, yc− zb, xc− za〉) ⊂ A6.

Claim: The ideal above is prime, and so the coordinate ring A(X) is a domain and thus X
is irreducible.

Claim: dim(X) = 4.
Heuristic: there are three degrees of freedom in choosing the first row x, y, z. To enforce the
rank 1 condition, the second row must be a scalar multiple of the first, yielding one degree of
freedom for the scalar.

Note: I looked at this for a couple of hours, but I don’t know how to prove either of
these statements with the tools we have so far!

Exercise 3.0.4(Gathmann 2.34): Let X be a topological space, and show

a. If {Ui}i∈I ⇒ X, then dimX = sup
i∈I

dimUi.

b. If X is an irreducible affine variety and U ⊂ X is a nonempty subset, then dimX = dimU .
Does this hold for any irreducible topological space?

Solution:
Strictly for notational convenience, we’ll treat {Ui} is if it were a countable open cover.

Part a: We first note that if U ⊆ V , then dimU ≤ dimV . If this were not the case, one
could find a chain {Ij} of closed irreducible subsets of V of length n > dimU . But then
I ′j := Ij ∩ U would again be a closed irreducible set, yielding a chain of length n in U . Thus
dimX ≥ dimUi, and it remains true that dimX ≥ sup dimUi, so it suffices to show that
dimX ≤ sup dimUi.

Set s := sup
i

dimUi and n := dimX, we want to show that s ≥ n. Let {Ij}j≤n be a maximal
chain of length n of closed irreducible subsets of X, so we have

∅ ( I0 ( I1 ( · · · ( In ⊆ X.

Since I0 ⊂ X and {Ui} covers X, we can find some U0 ∈ {Ui} such that I0 ∩ U0 is nonempty,
since otherwise there would be a point in I0 ∩ (X \ ∪i∈JUi) = ∅. We can do this for every Ij ,
so define Aj := Ij ∩ U0.

Each Aj is now closed in U0, and must remain irreducible, since any decomposition of Aj

would lift to a decomposition of I0. To see that A0 ( A1, i.e. that the inclusions are still
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proper, we can just note that

x ∈ Ai+1 \Ai ⇐⇒ x ∈ (Ii+1 ∩ U0) \ (Ii ∩ U0) = (I1 \ I2) ∩ U0 = ∅.

But this exhibits a length n chain in U0, so dimU0 ≥ n. Taking suprema, we have

n ≤ dimU0 ≤ sup
i∈J

dimUi = s.

Part b: The answer is no: we can produce a space X with some dimX and a subset U
satisfying dimU < dimX.
Define a space and a topology by

X := {a, b} τ := {∅, X, {1}} ,

Here {b} is the only proper and closed subset, since its complement is open, so X must be
irreducible. We can find an maximal ascending chain of length 1,

∅ ( {b} ( X,

and so dimX = 1. However, for U := {a}, there is only one possible maximal chain:

∅ ( {a} = X,

so dimU = 0.

Exercise 3.0.5(Gathmann 2.36): Prove the following:

a. Every noetherian topological space is compact. In particular, every open subset of an affine
variety is compact in the Zariski topology.

b. A complex affine variety of dimension at least 1 is never compact in the classical topology.

Exercise 3.0.6(Gathmann 2.40): Let

R = k[x1, x2, x3, x4]/ 〈x1x4 − x2x3〉

and show the following:

a. R is an integral domain of dimension 3.

b. x1, · · · , x4 are irreducible but not prime in R, and thus R is not a UFD.

c. x1x4 and x2x3 are two decompositions of the same element in R which are nonassociate.

d. 〈x1, x2〉 is a prime ideal of codimension 1 in R that is not principal.

Exercise 3.0.7(Problem 5): Consider a set U in the complement of (0, 0) ∈ A2. Prove that any
regular function on U extends to a regular function on all of A2.
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Problem. (Gathmann 3.20)
Let X ⊂ Anbe an affine variety and a ∈ X. Show that

OX,a = OAn,a/I(X)OAn,a,

where I(X)OAn,a denotes the ideal in OAn,a generated by all quotients f/1 for f ∈ I(X).

Problem. (Gathmann 3.21)
Let a ∈ R, and consider sheaves F on R with the standard topology:

1. F := the sheaf of continuous functions
2. F := the sheaf of locally polynomial functions.

For which is the stalk Fa a local ring?
Recall that a local ring has precisely one maximal ideal.

Problem. (Gathmann 3.22)
Let ϕ,ψ ∈ F(U) be two sections of some sheaf F on an open U ⊆ X and show that

a. If ϕ,ψ agree on all stalks, so (U,ϕ) = (U,ψ) ∈ Fa for all a ∈ U , then ϕ and ψ are equal.

b. If F := OX is the sheaf of regular functions on some irreducible affine variety X, then if
ψ = ϕ on one stalk Fa, then ϕ = ψ everywhere.

c. For a general sheaf F on X, (b) is false.

Definition 4.0.1 (Stalk at a subspace)
Let Y ⊂ X be a nonempty and irreducible subspace of X a topological space with a sheaf F
on X. Then the stalk of F at Y is defined by the pairs (U,ϕ) such that U ⊂ X is open, U ∩ Y
is nonempty, and ϕ ∈ F(U), where we identify (U,ϕ) ∼ (U ′, ϕ′) iff there is a small enough
open set such that the restrictions agree.

Problem. (Gathmann 3.23: Geometry of a Certain Localization)
Let Y ⊂ X be a nonempty and irreducible subvariety of an affine variety X, and show that
the stalk OX,Y of OX at Y is a k-algebra which is isomorphic to the localization A(X)I(Y ).

Problem. (Gathmann 3.24)
Let F be a sheaf on X a topological space and a ∈ X. Show that the stalk Fa is a local object,
i.e. if U ⊂ X is an open neighborhood of a, then Fa is isomorphic to the stalk of F|U at a on
U viewed as a topological space.

Problem Set 4 (Tuesday, October 06) 14
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Problem. (Gathmann 4.13)
Let f : X → Y be a morphism of affine varieties and f∗ : A(Y )→ A(X) the induced map on
coordinate rings. Determine if the following statements are true or false:

a. f is surjective ⇐⇒ f∗ is injective.

b. f is injective ⇐⇒ f∗ is surjective.

c. If f : A1 → A1 is an isomorphism, then f is affine linear, i.e. f(x) = ax + b for some
a, b ∈ k.

d. If f : A2 → A2 is an isomorphism, then f is affine linear, i.e. f(x) = Ax + b for some
a ∈ Mat(2× 2, k) and b ∈ k2.

Solution:

a. True. This follows because if p, q ∈ A(Y ), then

f ∗ p = f∗q

=⇒ (p ◦ f) = (q ◦ f) by definition
=⇒ p = q,

where in the last implication we’ve used the fact that f is surjective iff f admits a
right-inverse.

Problem. (Gathmann 4.19)
Which of the following are isomorphic as ringed spaces over C?

(a) A1\{1}

(b) V
(
x2

1 + x2
2

)
⊂ A2

(c) V
(
x2 − x2

1, x3 − x3
1

)
\{0} ⊂ A3

(d) V (x1x2) ⊂ A2

(e) V
(
x2

2 − x3
1 − x2

1

)
⊂ A2

(f) V
(
x2

1 − x2
2 − 1

)
⊂ A2
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Problem. (Gathmann 5.7)
Show that

a. Every morphism f : A1 \ {0} → P1 can be extended to a morphism f̂ : A1 → P1.

b. Not every morphism f : A2 \ {0} → P1 can be extended to a morphism f̂ : A2 → P1.

c. Every morphism P1 → A1 is constant.

Problem. (Gathmann 5.8)
Show that

a. Every isomorphism f : P1 → P1 is of the form

f(x) = ax+ b

cx+ d
a, b, c, d ∈ k.

where x is an affine coordinate on A1 ⊂ P1.

b. Given three distinct points ai ∈ P1 and three distinct points bi ∈ P1, there is a unique
isomorphism f : P1 → P1 such that f(ai) = bi for all i.

Proposition 5.0.1(?).
There is a bijection

{ morphisms X → Y } 1:1←→ {K -algebra homomorphisms OY (Y )→ OX(X)}
f 7−→ f∗

Problem. (Gathmann 5.9)
Does the above bijection hold if

a. X is an arbitrary prevariety but Y is still affine?
b. Y is an arbitrary prevariety but X is still affine?
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