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Problem Set 1

Source: Section 1 of Gathmann

1 ‘ Problem Set 1

Exercise 1.0.1(Gathmann 1.19): Prove that every affine variety X C A"/k consisting of only
finitely many points can be written as the zero locus of n polynomials.

Hint: Use interpolation. It is useful to assume at first that all points in X have different
x1-coordinates.

Solution:
Let X ={p1, - ,pda} = {pj};.lzl, where each p; € A" can be written in coordinates

p; = [p},pf',--' ,pﬂ-

Remark 1.0.2: Proof idea: for some fixed k& with 2 < k < n, consider the pairs (p},p?) e A%
Letting j range over 1 < j < d yields d points of the form (z,y) € A2, so construct an
interpolating polynomial such that f(z) =y for each tuple. Then f(x) — y vanishes at every
such tuple.

Doing this for each k (keeping the first coordinate always of the form p]l and letting the second
coordinate vary) yields n — 1 polynomials in k[zi,x;] C k[z1,- - ,zy], then adding in the
polynomial p(x) = H(m — p}) yields a system the vanishes precisely on {p;}.
J
d

Claim: Without loss of generality, we can assume all of the first components {p}} _, are
j=
distinct.

We will use the following fact:

Theorem 1.0.3 (Lagrange).

Given a set of d points {(x;, yi)}le with all z; distinct, there exists a unique polynomial
of degree d in f € k[z] such that f(z;) = y; for every i.

This can be explicitly given by

d
~ r—
For=Yow | T (5=2)
i=1 | 0<m<d NPT Tm
m£i

Equivalently, there is a polynomial f defined by f(z;) = f(z;) — y; of degree d whose
roots are precisely the x;.

Using this theorem, we define a system of n polynomials in the following way:
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o Define fi € k[z1] C k[zy,--- ,zp] by

d
@ =11 (=)

Then the roots of f; are precisely the first components of the points p.

o Define fy € k[x1,22] C k[z1,- - ,zy] by considering the ordered pairs
{@1,22) = 0}, p))}

then taking the unique Lagrange interpolating polynomial fy satisfying fo (pjl) = pjz for
all 1 < j <d. Then set fy = fg(xl) — x9 € k[x1,x3].

o Define f3 € k[z1, 23] C k[x1,- -+ ,xy,] by considering the ordered pairs
{(131,.173) = (p})p?)} ;

then taking the unique Lagrange interpolating polynomial f3 satisfying fo (p;) = p? for
all 1 < j <d. Then set f3:= fg(zl) —x3 € klz1, 23]

Continuing in this way up to f,, € k[z1,x,] yields a system of n polynomials.

Proposition 1.0.4.
V(flu'” 7fn) :X
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Proof .

Claim: X C V(f;):
This is essentially by construction. Letting p; € X be arbitrary, we find that

d

fie) =TI (o - p}) = @} - ) I (p} - p}) = 0.
i=1 i<d
1#]
Similarly, for 2 < k < n,
fu(pi) = fep}) — i =0,

which follows from the fact that fj, (pjl) = pg-“‘ for every k and every j by the construction
of fk
Claim: X°CV(f;)"
This follows from the fact the polynomials f given by Lagrange interpolation are unique,
and thus the roots of f are unique. But if some other point was in V(f;), then one of its

coordinates would be another root of some f.
[ |

Exercise 1.0.5(Gathmann 1.21): Determine VT for

. 3_ .6 3
I= <:1:1 — T, T1T9 — :L'2> < Clxy, x2].

Solution:
For notational purposes, let Z,V denote the maps in Hilbert’s Nullstellensatz, we then have

(ZoV)(I)=+VI.

So we consider V(I) C A%/C, the vanishing locus of these two polynomials, which yields the

System
2 —yb =0
Ty — y3 =0.
In the second equation, we have (z — y?)y = 0, and since C[z,y] is an integral domain, one

term must be zero.

1. If y = 0, then 2° =0 = 2 = 0, and thus (0,0) € V(I), i.e. the origin is contained in
this vanishing locus.

2. Otherwise, if z — y? = 0, then z = y?, with no further conditions coming from the first
equation.

Combining these conditions,

P

{0 |tec) v,
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where [ = <333 — % zy — ).
We have P = V(I), and so taking the ideal generated by P yields

(ToV) (1) =Z(P) = (y—2?) € Cla,y]

and thus VT = <y — x2>.

Exercise 1.0.6 (Gathmann 1.22): Let X C A3/k be the union of the three coordinate axes.
Compute generators for the ideal I(X) and show that it can not be generated by fewer than 3
elements.

Solution:
Claim:

I(X) = (xozs, 2173, T122) .
We can write X = X7 U X5 U X3, where

o The xj-axis is given by X = V(zox3) — I(X
o The x9-axis is given by X = V(z123) = I(X2) = (z123),
o The x3-axis is given by X3 =V (z122) = I(X

Here we’ve used, for example, that

I(V(22x3)) = \/(w2m3) = (2273)

by applying the Nullstellensatz and noting that (xox3) is radical since it is generated by a
squarefree monomial.
We then have

I(X):IX1UX2UX3)

X1) NI(X2) NI(X3)
= \/T(X1) + I(X2) + I(X3)

—~ o~

= \/(51?2,$3) + (T123) + (T172)
\/(:L‘gmg, 123, T1X2) since (a) + (b) = (a,b)

= <$2.’E3, r1xr3, 5611‘2>,

where in the last equality we’'ve again used the fact that an ideal generated by squarefree
monomials is radical.

Claim: I(X) can not be generated by 2 or fewer elements.
Let J := I(X) and R = k[z1,x2,z3], and toward a contradiction, suppose J = (r, s). Define
m = (x,y, z) and a quotient map

m:J— J/mJ
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and consider the images 7(r), 7(s).

Note that J/mJ is an R/m-module, and since R/m = k, J/mJ is in fact a k-vector space.
Since 7(r), m(s) generate J/mJ as a k-module,

dimy, J/mJ < 2.
But this is a contradiction, since we can produce 3 k-linearly independent elements in J/m.J:
namely 7(x122), 7(z123), T(z223). Suppose there exist o; such that
am(x122) + agm(z1x3) + agm(xaws) = 0 € J/mJ <= ajri1x2 + aox123 + asrars € mJ,
But we can then note that
mJ = (r1, x2.73) (T122, 123, ToTy) = <£L’%l’2, 2x3, T1T013, - - >

can’t contain any nonzero elements of degree d < 3, so no such «a; can exist and these elements

are k-linearly independent.
Exercise 1.0.7(Gathmann 1.23: Relative Nullstellensatz): Let Y C A"/k be an affine
variety and define A(Y') by the quotient

mklzy, o o] = AY) = Kxy, - 2]/ L(Y).
a. Show that V4 (J) = V(7 1(J)) for every J < A(Y).
b. Show that 7! (Iy (X)) = I(X) for every affine subvariety X C Y.

c. Using the fact that I(V(J)) € V/J for every J < k[zy,--- , 2], deduce that Iy (Vy (J)) € VJ
for every J < A(Y).
Conclude that there is an inclusion-reversing bijection

Affine subvarieties] o Radical ideals
{ of % } { in A(Y) } :
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Exercise 1.0.8 (Extra): Let J < k[xy,--- ,z,] be an ideal, and find a counterexample to I(V (J)) =
V/J when k is not algebraically closed.

Solution:
Take J = <£L'2 + 1> < R[z], noting that J is nontrivial and proper but R is not algebraically

closed. Then V(J) C R is empty, and thus I(V(J)) = I(0).

Claim: I(V(J)) = R[z].
Checking definitions, for any set X C A"/k we have

I(X) = {f € R[a] ‘ vz € X, f(z) =0}

and so we vacuously have
1(0) = {f €Rla] | Vo €0, f(z) =0} = {f € Rla]} =R[z].

Claim: VJ # Rlz].
This follows from the fact that maximal ideals are radical, and R[z]/J = C being a field implies
that J is maximal. In this case V/.J = J # Rlz].

That maximal ideals are radical follows from the fact that if J < R is maximal, we have

J C V/J C R which forces V.J = J or V.J = R.

But if v/J = R, then
1eVJ = 1" Jforsomen = 1eJ = J=R,

contradicting the assumption that J is maximal and thus proper by definition.

2 ‘ Problem Set 2

Exercise 2.0.1(Gathmann 2.17): Find the irreducible components of
X =V(z—yz,zz—y*) C A3/C.

Solution:
Since z = yz for all points in X, we have

X =V(z—yzyz*—y?)
=V (z-yzy(z*-y))
=V(@z—yzy) UV(z—yz2>—y)
= X7 U Xos.
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Claim: These two subvarieties are irreducible.
It suffices to show that the A(X;) are integral domains. We have

A(Xy1) = Clz,y, 2]/ (z — yz,y) = Cly, 2]/ (y) = C[2],
which is an integral domain since C is a field and thus an integral domain, and
A(Xs) = Clz,y, 2]/ (3= y2, 22 —y) 2 Cly, 2]/ (2 —y) = C[y),

which is an integral domain for the same reason.

Exercise 2.0.2(Gathmann 2.18): Let X C A" be an arbitrary subset and show that

V(X)) = X.

Solution:

X CVI(X)):
We have X C V(I(X)) and since V(J) is closed in the Zariski topology for any ideal
J < k[xy1,- -+, x,] by definition, V(I(X)) is closed. Thus

X CV(I(X))and V(I(X)) closed = X C V(I(X)),
since X is the intersection of all closed sets containing X.

V(I(X)) C X:
Noting that V(- ), I( - ) are individually order-reversing, we find that V' (I(-)) is order-preserving
and thus

XCX = VI(X)) CV(IX)) =X,

where in the last equality we’ve used part (i) of the Nullstellensatz: if X is an affine variety,
then V(I(X)) = X. This applies here because X is always closed, and the closed sets in the
Zariski topology are precisely the affine varieties.

Exercise 2.0.3(Gathmann 2.21): Let {U;},.; = X be an open cover of a topological space with
U; NU; # 0 for every 1, j.

a. Show that if U; is connected for every i then X is connected.

b. Show that if U; is irreducible for every ¢ then X is irreducible.

Solution (a):

Suppose toward a contradiction that X = X 1HX2 with X proper, disjoint, and open. Since
{U;} = X, for each j € I this would force one of U; C X; or U; C X, since otherwise
U; N X1 N X2 would be nonempty.
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So without loss of generality (relabeling if necessary), assume U; € X; for some fixed j. But
then for every ¢ # j, we have U; N U; nonempty by assumption, and so in fact U; C X for
every ¢ € I. But then U;c;U; C X5, and since {U;} was a cover, this forces X C X; and thus
Xo = 0.

Solution (b):

Claim: X is irreducible <= any two open subsets intersect.

This follows because otherwise, if U,V C X are open and disjoint then X \ U, X \ V are
proper and closed. But then we can write X = (X \ U) H (X \ V) as a union of proper closed
subsets, forcing X to not be irreducible.

So it suffices to show that if U,V C X then U NV is nonempty. Since {U;} = X, we can find
a pair 4, j such that there is at least one point in U N U; and one point in V' N Uj.

But by assumption U; NUj is nonempty, so both U NU; and U; NU; are open nonempty subsets
of U;. Since U; was assumed irreducible, they must intersect, so there exists a point

:E()E(UﬂUi)ﬂ(UjﬂUi):Uﬂ(UiﬂUj) =U.

We can now similarly note that U N’V and U; NV are nonempty open subsets of V', and thus
intersect. So there is a point

o (UNV)NU;NnV)=0UnNV=UnVnUNU,),
J J

and in particular £op € U NV as desired.

Exercise 2.0.4(Gathmann 2.22): Let f : X — Y be a continuous map of topological spaces.

a. Show that if X is connected then f(X) is connected.

b. Show that if X is irreducible then f(X) is irreducible.

Solution(a):
Toward a contradiction, if f(X) = Y1HY2 with Y7, Y5 nonempty and open in Y, then

X)) cx
on one hand, and
U&= o[ (ve)

on the other. If f is continuous, the preimages f~1(Y;) are open (and nonempty), so X
contains a disconnected subset. However, every subset of a connected set must be connected,
so this contradicts the connectedness of X.
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Solution (b):

Suppose f(X) = Y; U Yy with Y; proper closed subsets of Y. Then f~!(Y)u f~1(Y?) =
(f~Lo f)(X) C X are closed in X, since f is continuous. Since X is irreducible, without loss
of generality (by relabeling), this forces X7 = (). But then f(X;) = 0, forcing f(X) = Ya.

Definition 2.0.5 (Ideal Quotient)
For two ideals Ji, Jo < R, the ideal quotient is defined by

JI:J2::{feR‘fJ2cJ1}.

Exercise 2.0.6 (Gathmann 2.23): Let X be an affine variety.

a. Show that if Y7,Y5 € X are subvarieties then
IY1\Yz) =1(Y1): I(Y2).

b. If Jy, Jo < A(X) are radical, then
V(J)\V(J2) =V (J;: Jo).

e
Solution:
?
Exercise 2.0.7(Gathmann 2.24): Let X C A", Y C A™ be irreducible affine varieties, and show
that X x Y C A" is irreducible. ~

Solution:
That X x Y is again an affine variety follows from writing X = V(I),Y = V(J), then
XxY=V({I+J) where I +J < k[z1, - ,Zn, Y1, ,Ym]. So let

XxY=UuV

with U, V proper and closed, and let wx, 7y be the projections onto the factors.

Claim: For each z € X, 7 !(z) 2 Y is contained in only one of U or V.

Note that if this is true, we can write X = Gy U Gy where
Gy = {:U e X ’ 5 () C U}

are the points for which the entire fiber lies in U, and similarly Gy are those for which the
fiber lies in V. If we can then show that Gy, Gy are closed, by irreducibility of X this will
force (wlog) Gy = 0 and X = Gy. But then

e (X) =X xY and 73 (Gp) =U = X xY =U.

which shows that X x Y is irreducible.
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Proof (Every fiber is contained in one irreducible component).
For any fixed z, we can write

% () = (7[')_(1(33) N U) U (71')_(1(1,‘) N V) .

Since points are closed in the Zariski topology and mx is continuous, each 7T;(1(:L‘) is closed.
and thus 73! (z) N U is closed (and similarly for V). Noting that m3'(z) & {z} x Y 2V,
where we’ve assumed Y to be irreducible, we can conclude wlog that 71';{1(28) nv =40.

Proof (Guy,Gy are closed).
Wlog consider Gy € X. Fixing any point yp € Y, we have

X=Xy, =Xx{yw}CXxY,
so we can identify Gy C X with Gy C X, inside a Y-fiber the product. But then
Gy =X,, NU CX XY,

where U is closed in X x Y and thus closed in X, and X, is trivially closed in itself.
This exhibits G as the intersection of two sets that are closed in X, = X.
[

3 ‘ Problem Set 3

Exercise 3.0.1(Gathmann 2.33): Define

X = {M € Mat(2 x 3,k) | rankM <1} C A%/k.

Show that X is an irreducible variety, and find its dimension.

Solution:
We’ll use the following fact from linear algebra:

Definition (Matrixz Minor)
For an m x n matrix, a minor of order ¢ is the determinant of a ¢ x ¢ submatrix obtained
by deleting any m — £ rows and any n — £ columns.

Theorem 3.0.3(Rank is a Function of Minors).
If A € Mat(m x n,k) is a matrix, then the rank of A is equal to the order of largest
nonzero minor.

Thus

M;; = 0 for all £ x £ minors M;; <= rank(M) < ¥,

Problem Set 3 11
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following from the fact that if one takes ¢ = min(m,n) and all £ x ¢ minors vanish, then the
largest nonzero minor must be of size j x j for j </ — 1. But det M;; is a polynomial f;; in
its entries, which means that X can be written as

X=V{/fy}),
which exhibits X as a variety. Thus

M = [2 '7; j — X =V ({xb—ya,yc — zb,xc — za)) C AS.

Claim: The ideal above is prime, and so the coordinate ring A(X) is a domain and thus X
is irreducible.

Claim: dim(X) =4.
Heuristic: there are three degrees of freedom in choosing the first row x,y, z. To enforce the
rank 1 condition, the second row must be a scalar multiple of the first, yielding one degree of

freedom for the scalar.
Note: I looked at this for a couple of hours, but I don’t know how to prove either of
these statements with the tools we have so far!

Exercise 3.0.4(Gathmann 2.34): Let X be a topological space, and show

a. If {Ui},c; = X, then dim X = sup dim U;.
1€l
b. If X is an irreducible affine variety and U C X is a nonempty subset, then dim X = dimU.
Does this hold for any irreducible topological space? P

Solution:

Strictly for notational convenience, we’ll treat {U;} is if it were a countable open cover.
Part a: We first note that if U C V, then dimU < dim V. If this were not the case, one
could find a chain {I;} of closed irreducible subsets of V' of length n > dimU. But then
I ; = I; N U would again be a closed irreducible set, yielding a chain of length n in U. Thus
dim X > dimU;, and it remains true that dim X > supdim U;, so it suffices to show that
dim X < supdim U;.

Set s ;= supdim U; and n := dim X, we want to show that s > n. Let {I;}._ be a maximal

Jj<n
(2
chain of length n of closed irreducible subsets of X, so we have

0CIChG - CL CX.

Since Iy C X and {U;} covers X, we can find some Uy € {U;} such that Iy N Uy is nonempty,
since otherwise there would be a point in Iy N (X \ U;e;U;) = 0. We can do this for every I,
so define A; == I; N Ujp.

Each A; is now closed in Up, and must remain irreducible, since any decomposition of A;
would lift to a decomposition of Iy. To see that Ay C Aj, i.e. that the inclusions are still
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proper, we can just note that
x€A\A <= € (L11NnU)\(LiNnUy) = (L \I)NUy=0.
But this exhibits a length n chain in Up, so dim Uy > n. Taking suprema, we have
n < dim Uy < supdim U; = s.
ieJ
Part b: The answer is no: we can produce a space X with some dim X and a subset U

satisfying dim U < dim X.
Define a space and a topology by

X = {a,b} 7:={0,X,{1}},

Here {b} is the only proper and closed subset, since its complement is open, so X must be
irreducible. We can find an maximal ascending chain of length 1,

D c{b}C X,
and so dim X = 1. However, for U := {a}, there is only one possible maximal chain:
0 C fa} = X,

sodimU = 0.

Exercise 3.0.5(Gathmann 2.36): Prove the following:

a. Every noetherian topological space is compact. In particular, every open subset of an affine
variety is compact in the Zariski topology.

b. A complex affine variety of dimension at least 1 is never compact in the classical topology.

Exercise 3.0.6 (Gathmann 2.40): Let
R = k[z1,x9, 3, x4]/ (x124 — T23)

and show the following:

a. R is an integral domain of dimension 3.

b. x1, -+, x4 are irreducible but not prime in R, and thus R is not a UFD.

c. z1x4 and zox3 are two decompositions of the same element in R which are nonassociate.

d. (x1,x9) is a prime ideal of codimension 1 in R that is not principal.

Exercise 3.0.7 (Problem 5): Consider a set U in the complement of (0,0) € A%. Prove that any
regular function on U extends to a regular function on all of A2

Problem Set 3 13
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4 ‘ Problem Set 4 (Tuesday, October 06)

Problem. (Gathmann 3.20)
Let X C A"be an affine variety and a € X. Show that

OX,a = OA",a/I(X)OA”,aa

where I(X)Opn , denotes the ideal in Ogn , generated by all quotients f/1 for f € I(X).

Problem. (Gathmann 3.21)
Let a € R, and consider sheaves F on R with the standard topology:

1. F := the sheaf of continuous functions
2. F = the sheaf of locally polynomial functions.

For which is the stalk F, a local ring?
Recall that a local ring has precisely one maximal ideal.

Problem. (Gathmann 3.22)
Let ¢, € F(U) be two sections of some sheaf F on an open U C X and show that

a. If o, agree on all stalks, so (U, ¢) = (U,¥) € F, for all a € U, then ¢ and 1) are equal.

b. If F := Ox is the sheaf of regular functions on some irreducible affine variety X, then if
1) = @ on one stalk F,, then ¢ = 1) everywhere.

c. For a general sheaf F on X, (b) is false.

Definition 4.0.1 (Stalk at a subspace)

Let Y C X be a nonempty and irreducible subspace of X a topological space with a sheaf F
on X. Then the stalk of F at Y is defined by the pairs (U, ¢) such that U C X is open, UNY
is nonempty, and ¢ € F(U), where we identify (U, ) ~ (U’, ') iff there is a small enough
open set such that the restrictions agree.

Problem. (Gathmann 3.23: Geometry of a Certain Localization)
Let Y C X be a nonempty and irreducible subvariety of an affine variety X, and show that
the stalk Ox y of Ox at Y is a k-algebra which is isomorphic to the localization A(X)(y).

Problem. (Gathmann 3.24)

Let F be a sheaf on X a topological space and a € X. Show that the stalk F, is a local object,
i.e. if U C X is an open neighborhood of a, then F, is isomorphic to the stalk of F|;; at a on
U viewed as a topological space.

Problem Set 4 (Tuesday, October 06) 14
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Problem. (Gathmann 4.13)
Let f: X — Y be a morphism of affine varieties and f*: A(Y) — A(X) the induced map on
coordinate rings. Determine if the following statements are true or false:

a. fis surjective <= f* is injective.
b. f is injective <= f* is surjective.

c. If f: A' — Al is an isomorphism, then f is affine linear, i.e. f(x) = ax + b for some
a,bek.

d. If f: A% — A? is an isomorphism, then f is affine linear, i.e. f(z) = Az + b for some
a € Mat(2 x 2,k) and b € k2.

Solution:

a. True. This follows because if p,q € A(Y), then

f*p=f'q
— (pof)=1(qof) by definition
= p=q,

where in the last implication we’ve used the fact that f is surjective iff f admits a
right-inverse.

Problem. (Gathmann 4.19)
Which of the following are isomorphic as ringed spaces over C?

(a) AN{1}
(b) V (3 +23) C A2
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Problem. (Gathmann 5.7)
Show that

a. Every morphism f : A'\ {0} — P! can be extended to a morphism f: Al — Pt
b. Not every morphism f : A \ {0} — P! can be extended to a morphism f: A% - PL

c. Every morphism P! — A! is constant.

Problem. (Gathmann 5.8)
Show that

a. Every isomorphism f : P! — P! is of the form

ar +b
f(m)—cx+d a,b,c,d € k.

where z is an affine coordinate on A! ¢ PL.

b. Given three distinct points a; € P! and three distinct points b; € P!, there is a unique
isomorphism f : P! — P! such that f(a;) = b; for all 4.

Proposition 5.0.1(%).
There is a bijection

{ morphisms X — Y} LN {K -algebra homomorphisms Oy (Y) — Ox(X)}
fr—=r

Problem. (Gathmann 5.9)
Does the above bijection hold if

a. X is an arbitrary prevariety but Y is still affine?
b. Y is an arbitrary prevariety but X is still affine?

Problem Set 5 (Monday, October 26) 16
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