## III.3: Cohomology of a Noetherian Affine Scheme ### V.3.1. #to-work Let $X$ be a noetherian scheme. Show that $X$ is affine if and only if $X_{\text {red }}$ (II, Ex. 2.3) is affine.[^hint.3.3.1] [^hint.3.3.1]: Hint: Use (3.7), and for any coherent sheaf $\mathcal{F}$ on $X$, consider the filtration $\mathcal{F} \supseteq \mathcal{N} \cdot \mathcal{F} \supseteq \mathcal{N}^2 \cdot \mathcal{F} \supseteq \ldots$, where $\mathcal{N}$ is the sheaf of nilpotent elements on $X$. ### V.3.2. #to-work Let $X$ be a reduced noetherian scheme. Show that $X$ is affine if and only if each irreducible component is affine. ### V.3.3. #to-work Let $A$ be a noetherian ring, and let $\mathfrak{a}$ be an ideal of $A$. a. Show that $\Gamma_{\mathrm{\mfa}}(\cdot)$ (II, Ex. 5.6) is a left-exact functor from the category of $A$-modules to itself. We denote its right derived functors, calculated in $\mathsf{Mod}(A)$, by $H_{\mfa}^i(\cdot)$. b. Now let $X=\operatorname{Spec} A, Y=V(\mathfrak{a})$. Show that for any $A$-module $M$, \[ H_{\mfa }^i(M)=H_Y^i(X, \tilde{M}), \] where $H_Y^i(X, \cdot)$ denotes cohomology with supports in $Y($ Ex. 2.3). c. For any $i$, show that $\Gamma_{\mfa}\left(H_{\mathfrak{a}}^i(M)\right)=H_{\mathfrak{a}}^i(M)$. ### V.3.4. Cohomological Interpretation of Depth. #to-work If $A$ is a ring, $\mfa$ an ideal, and $M$ an $A$ module, then $\depth_\mfa M$ is the maximum length of an $M$-regular sequence $x_1, \ldots, x_r$, with all $x_i \in \mathfrak{a}$. This generalizes the notion of depth introduced in $(II, \S 8)$. a. Assume that $A$ is noetherian. Show that if $\depth_\mfa M \geqslant 1$, then $\Gamma_{\mathfrak{a}}(M)=0$, and the converse is true if $M$ is finitely generated.[^hint.3.3.4.a] b. Show inductively, for $M$ finitely generated, that for any $n \geqslant 0$, the following conditions are equivalent: (i) $\depth_{\mathfrak{a}} M \geqslant n$; (ii) $H_\mfa^i(M)=0$ for all $i