\newpage # IV: Curves $\star$ :::{.remark} Summary of major results: - $p_a(X) \da 1 - P_X(0) = (-1)^r (1-\chi(\OO_X))$. - Note: $P_X(\ell)$ is defined as the Hilbert polynomial of the homogeneous coordinate ring $S(Y)$, and then defined for graded $S\dash$modules $M$ by setting $\phi_M(\ell) = \dim_k M_\ell$ and showing $\exists ! P_M(z) \in \QQ[z]$ with $\phi_M(\ell) = P_M(\ell)$ for $\ell \gg 0$. - $p_g(X) \da h^0(\omega_X) = h^0(\mcl(K_X))$. - Remembering these: ![](Reading%20Notes/4_Hartshorne/figures/2022-12-04_20-08-00.png) > [Link to Diagram](https://q.uiver.app/?q=WzAsMTIsWzUsNCwiaF57MCwwfSA9IGheMChcXE9PX1gpIl0sWzQsMywiaF57MSwwfSA9IGheMChcXE9tZWdhXjEpIl0sWzYsMywiaF57MCwxfSA9IGheMShcXE9PX1gpIl0sWzUsMiwiaF57MSwxfSA9IGheMShcXE9tZWdhXjEpIl0sWzMsMiwicF9nXFxkYSBoXnsyLDB9PWheMChcXE9tZWdhXjIpID0gaF4wKEtfWCkiLFszMzgsNDEsNjAsMV1dLFs3LDIsImheezAsMn0gPSBoXjIoXFxPT19YKSJdLFs0LDEsImheezIsMX0gPSBoXjEoXFxPbWVnYV4yKSA9IGheMShLX1gpIl0sWzYsMSwiaF57MSwyfSA9IGheMihcXE9tZWdhXjEpIl0sWzUsMCwiaF57MiwyfSA9IGheMihcXE9tZWdhXjIpID0gaF4yKEtfWCkiXSxbMCwyLCJoXntwLCBxfSA9IEhecShcXE9tZWdhXnApIl0sWzQsNSwiXFxidWxsZXQiXSxbOCwxLCJcXCwiXSxbMTAsMTEsIlxccG0gcF9hID0gXFxjaGkoXFxPT19YKSAtIDEiLDAseyJsYWJlbF9wb3NpdGlvbiI6MTAwLCJvZmZzZXQiOjQsImNvbG91ciI6WzI0MCw2MCw2MF0sInN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX0sWzI0MCw2MCw2MCwxXV1d) - For curves, $p_a(X) = p_g(X) = h^1(\OO_X)$ by setting $D\da K_C$ in RR. - $\deg K_C = 2g-2$. - $D_1\sim D_2 \iff D_1-D_2 = (f)$ for $f\in K(X)$ rational, $\abs{D} = \ts{D'\sim D}$, and this bijects with points of $H^0(\mcl(D))\smz\over \GG_m$. - Thus $\dim \abs{D} = h^0(\mcl(D)) - 1 \da \ell(D) - 1$. - $X$ smooth $\implies \Cl(X)\iso \Pic(X)$ via $D\mapsto \mcl(D)$. - $h^0(\mcl(D)) >0 \implies \deg(D) \geq 0$, and if $\deg D = 0$ then $D\sim 0$ and $\mcl(D) \cong \OO_X$. - RR: \[ \chi(\mcl(D) &= h^0(\mcl(D)) - h^1(\mcl(D)) \\ &= h^0(\mcl(D)) - h^0(\mcl(K-D)) \\ &= \deg(D) + (1-g) .\] - How to remember: note $g= h^1(\OO_X) = h^1(\mcl(0))$, and $H^0(\OO_X) = k$ so $h^0(\OO_X) = 1$, thus \[ \chi(\OO_X) = h^0(\OO_X) - h^1(\OO_X) = 1-g = \deg \mcl(0) + 1-g .\] - For $C \subseteq \PP^n, \deg(C) = d$ and $D = C \intersect H$ a hyperplane section defining $\mcl(D) = \OO_X(1)$, \[ \chi(\mcl(D)) = \deg(D) + (1-g) = d + (1-p_a(C)) \] - A curve is rational iff isomorphic to $\PP^1$ iff $g=0$. - $K\sim 0$ on an elliptic curve since $\deg K = 2g-2 = 0$ and $\deg D = 0\implies D\sim 0$. - For $X$ elliptic, $\Pic^0(X) \da \ts{D\in \Div(X) \st \deg D = 0}$ and $\abs{X} \iso \abs{\Pic^0(X)}$ via $p\mapsto \mcl(p-p_0)$ for any fixed $p_0\in X$, inducing its group structure. (This is proved with RR.) ::: :::{.remark} Comments from preface: - The statement of Riemann-Roch is important; less so its proof. - Representing curves: - A branched covering of $\PP^1$, - More generally a branched covering of another curve, - Nonsingular projective curves: admit embeddings into $\PP^3$, maps to $\PP^2$ birationally such that the image is at worst a nodal curve. - The central result regarding representing curves: Hurwitz's theorem which compares $K_X, K_Y$ for a cover $Y\to X$ of curves. - Curves of genus 1: elliptic curves. - Later sections: the canonical embedding of a curve. ::: ## IV.1: Riemann-Roch :::{.definition title="Curves"} A **curve** over $k=\kbar$ is a scheme over $\spec k$ which is - Integral - Dimension 1 - Proper over $k$ - With regular local rings In particular, a curve is smooth, complete, and necessary projective. A **point** on a curve is a closed point. ::: :::{.definition title="Arithmetic genus"} The **arithmetic genus** of a projective curve $X$ is \[ p_a(X) \da 1 - P_X(0) \] where $P_X(t)$ is the **Hilbert polynomial** of $X$. ::: :::{.definition title="Geometric genus"} The **geometric genus** of a curve is \[ p+g(X) \da \dim_k H^0(X; \omega_X) \] where $\omega_X$ is the canonical sheaf. ::: :::{.exercise title="?"} Show that if $X$ is a curve, there is a single well-defined **genus** \[ g \da p_A(X) = p_G(X) = \dim_k H^1(X; \OO_X) .\] > Hint: see Ch. III Ex. 5.3, and use Serre duality for $p_g$. ::: :::{.exercise title="?"} Show that for any $g\geq 0$ there exists a curve of genus $g$. > Hint: take a divisor of type $(g+1, 2)$ on a smooth quadric which is irreducible and smooth with $p_a = g$. ::: :::{.definition title="Divisors on a curve"} Reviewing divisors: - The **divisor group**: $\Div(X) = \zadjoin{X_\cl}$ - **Degrees**: $\deg(\sum n_i D_i) \da \sum n_i$, and - **Linear equivalence**: $D_1\sim D_2 \iff D_1 - D_1 = \div(f)$ for some $f\in k(X)$ a rational function. - $D$ is **effective** if $n_i \geq 0$ for all $i$. - $\abs{D} \da \ts{D'\in \Div(X) \st D'\sim D}$ is the **complete linear system** of $D$. - $\abs{D} \cong \PP H^0(X; \mcl(D))$ - **Dimensions of linear systems**: $\ell(D) \da \dim_k H^0(X; \mcl(D))$ and $\dim \abs{D} \da \ell(D) - 1$. - **Relative differentials**: $\Omega_X \da \Omega_{X\slice k}$ is the sheaf of relative differentials on $X$. - The technical definition: $\Omega_{X\slice S} \da \Delta_{X\slice Y}^*(\mci/\mci^2)$ where $\mci$ is the sheaf of ideals defining the locally closed subscheme $\im(\Delta_{X\slice Y}) \subseteq X\fp{Y} X$. - On affine schemes: on the ring side, $\Omega_{B/{A}} \in \mods{B}$ equipped with a differential $d: B\to \Omega{B/ A}$, defined as $$\gens{db\st b\in B}_B \over \gens{d(b_1+b_2) =db_1 + db_2, d(b_1 b_2) = d(b_1)b_2 + b_1 d(b_2), da = 0\, \forall a\in A}_B$$ - On curves, $\Omega_{X\slice Y}$ measures the "difference" between $K_X$ and $K_Y$. - **Canonical sheaf**: $\dim X = 1, \Omega_{X\slice k} \cong \omega_X$. - **Canonical divisor**: $K_X$ 2is any divisor in the linear equivalence class corresponding to $\omega_X$ - $D$ is **special** iff its **index of speciality** $\ell(K-D) > 0$, otherwise $D$ is **nonspecial**. ::: :::{.exercise title="?"} Show that $D_1\sim D_2\implies\deg(D_1) = \deg(D_2)$. ::: :::{.exercise title="?"} Show that \[ \abs{D} \mapstofrom \PP H^0(X; \mcl(D)) ,\] so $\abs{D}$ has the structure of the closed points of some projective space. ::: :::{.exercise title="Lemma 1.2"} Show that if $D\in \Div(X)$ for $X$ a curve and $\ell(D) \neq 0$, then $\deg(D) \geq 0$. Show that is $\ell(D) \neq 0$ and $\deg D = 0$ then $D\sim 0$ and $\mcl(D) \cong \OO_X$. ::: :::{.theorem title="Riemann-Roch"} \[ \ell(D) - \ell(K-D) = \deg(D) + (1-g) .\] ::: :::{.exercise title="Ingredients for proof of RR"} Show the following: - The divisor $K-D$ corresponds to $\omega_X \tensor\mcl(D)\dual\in \Pic(X)$. - $H^1(X; \mcl(D))\dual \cong H^0(X; \omega_X \tensor \mcl(D)\dual)$. - If $X$ is any projective variety, \[ H^0(X; \OO_X) = k .\] ::: :::{.exercise title="?"} Show that if $X \subseteq \PP^n$ is a curve with $\deg X = d$ and $D = X \intersect H$ is a hyperplane section, then $\mcl(D) = \OO_X(1)$ and $\chi(\mcl(D)) = d + 1 - p_a$. ::: :::{.exercise title="?"} Show that if $g(X) = g$ then $\deg K_X = 2g-2$. > Hint: set $D = K$ and use $\ell(K) = p_g = g$ and $\ell(0) = 1$. ::: :::{.remark} More definitions: - $X$ is **rational** iff birational to $\PP^1$. - $X$ is **elliptic** if $g=1$. ::: :::{.exercise title="?"} Show that 1. If $\deg D > 2g-2$ then $D$ is nonspecial. 2. $p_a(\PP^1) = 0$. 3. A complete nonsingular curve is rational iff $X\cong \PP^1$ iff $g(X) = 0$. 4. If $X$ is elliptic then $K\sim 0$ > Hint: for (3) apply RR to $D = p-q$ for points $p\neq q$, and use $\deg(K-D) = -2$ and $\deg(D) = 0 \implies D\sim 0 \implies p\sim q$. > For (4), show $\ell(K) = p_g = 1$. ::: :::{.exercise title="?"} If $X$ is elliptic and $p\in X$, then there is a bijection \[ m_p: X &\iso \Pic(X) \\ x &\mapsto \mcl(x-p) ,\] so $\Pic(X) \in \Grp$. > Hint: show that if $\deg(D) = 0$ then there is some $x\in X$ such that $D\sim x-p$ and apply RR to $D+p$. :::