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1 Solutions

Problem 1 (II.2.14(a)) Let S be a graded ring. Show that ProjS = ∅ iff
every element of S+ is nilpotent.

Proof. This is equivalent to showing that the nilradical of S is equal to
the intersection of all homogenous primes of S. Indeed, if every element of
S+ is nilpotent then every homogenous prime contains S+ so ProjS = ∅.
Conversely, if ProjS = ∅, then every homogenous prime contains S+ so the
nilradical of S contains S+ so that every element of S+ is nilpotent.

It remains to show that the intersection of all homogenous primes of
S is the nilradical of S. Using Zorn’s lemma we can show that if I is a
proper homogenous ideal then there is at least one maximal homogenous ideal
containing I. (The proof preceeds just as on page 2 of Matsumura except
one notes that the union of a chain of homogenous ideals is homogeneous. If
I1 ⊂ I2 ⊂ · · · is a chain of homogeneous ideals, then ∪∞

n=1In is an ideal and
if x ∈ ∪∞

n=1In then x ∈ In for some n, so the homogenous components of x
are in In, so they are in ∪∞

n=1In, so ∪∞
n=1In is homogeneous.)

Theorem 1 Let T be a multiplicative set and I a homogeneous ideal disjoint
from T ; then there exists a homogeneous prime ideal containing I and disjoint
from T .

Proof. Using Zorn’s lemma we see that the set of homogeneous ideals dis-
joint from T and containing I contains a maximal element, say P . Then P
is prime. For if x /∈ P , y /∈ P are homogenous, then P + (x) and P + (y)
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are both homogenous and so they meet T , so their product also meets T .
However,

(P + (x))(P + (y)) ⊂ P + (xy)

so xy /∈ P since P does not meet T .

Theorem 2 The nilradical of S is the intersection of the homogeneous primes
of S.

Proof. Suppose x is in the nilradical of S so that x is nilpotent, say xn =
0. If I is a homogenous prime then xn = 0 ∈ I so, by induction, x ∈
I. Conversely, suppose x is not nilpotent. Then T = {1, x, x2, . . .} is a
multiplicative set disjoint from (0). So, by the above theorem, there is a
homogeneous prime ideal containing (0) disjoint from T . Thus x is not in
the intersection of all homogeneous prime ideals of S.

Problem 2 (II.2.14(b)) Let φ : S → T be a graded homomorphism of
graded rings. Let U = {p ∈ ProjT : p ̸⊇ φ(S+)}. Show that U is an open
subset of ProjT , and show that φ determines a natural morphism f : U →
ProjS.

Proof. U is open because ProjT − U = {p ∈ ProjT : p ⊇ φ(S+)} =
{p ∈ ProjT : p ⊇ Tφ(S+)} = V (Tφ(S+)) and the ideal Tφ(S+) is ho-
mogenous because it is generated by the homogeneous elements {φ(f) : f ∈
S+ is homogeneous}.

The natural morphism f : U −ProjS is defined as follows. As a map on
topological spaces we specify that, for x ∈ U , f(x) = φ−1(x). Because of the
way U was chosen and since φ is homogeneous f maps U into ProjS, so f is
well-defined. If V (a) is a closed subset of ProjS with a homogeneous, then
f−1(V (a)) = {p ∈ U : φ−1(p) ⊇ a} = {p ∈ U : p ⊇ φ(a)} = V (Tφ(a)). As
above, Tφ(a) is homogeneous so f−1(V (a)) is closed so f is continuous.

To define the associated map f# : OProjS → f∗OU of sheaves let V ⊂
ProjS be open. Then an element of OProjS(V ) is a map s : V → ⊔

p∈V S(p)

such that s is locally a quotient of elements of S. We specify that f#(s) =
φ ◦ s ◦ f : f−1(V ) → ⊔

p∈f−1(V ) T(p). To see that f#(s) ∈ f∗O(V ) we must
check that it is locally a quotient. So suppose p ∈ f−1(V ). Let W ⊂ V be
an open neighborhood of f(p) on which s is represented as a quotient. Then
f#(s) is represented as a quotient on the open set f−1(W ), as required. Since
f# respects the restriction maps we see that f is a morphism.
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Problem 3 (II.2.14(c)) f can be an isomorphism even when φ is not. For
example, suppose that φd : Sd → Td is an isomorphism for all d ≥ d0. Show
that U = ProjT and the morphism f : ProjT → ProjS is an isomorphism.

Proof. To see that U = ProjT note that if p ∈ ProjT but p /∈ U then
p ⊇ φ(S+). In particular, p ⊇ ⊕

d≥d0 Td, so p ⊇ (T+)
d so, since p is prime,

p ⊇ T+, a contradiction.
Let {gα} be a set of generators of T+. Then ∪αDT (gα) = ∪α{x ∈ ProjT :

gα /∈ x} = ProjT since every prime in ProjT must omit some gα. Since
gα /∈ x iff gd0α /∈ x for x prime, we may replace the gα by elements of T≥d0

and still have a cover of ProjT by distinguished open sets.
Our strategy is as follows. We first show that f |DT (gα) : DT (gα) →

DS(φ
−1(gα) is an isomorphism for each α and then show that the open sets

DS(φ
−1(gα)) cover ProjS. Then showing that f is injective completes the

proof.
Let g = gα be one of our gα. By Proposition 2.5, DT (g) ∼= SpecT(g) and

so f ′ = f |DT (g) is a morphism of affine schemes f ′ : SpecTg → SpecS(φ−1(g)).
This map is induced by φ : S(φ−1(g)) → T(g) where φ is the localization of the
ring homomorphism φ : S → T . So we just need to verify that φ is an iso-
morphism. Suppose φ(a/b) = 0. Then φ(aφ−1(g)/bφ−1(g)) = φ(a/b) = 0 so
φ(aφ−1(g))/φ(bφ−1(g)) = 0 in T(g) so there is n such that gnφ(aφ−1(g)) = 0
in T so φ(aφ−1(gn+1) = 0. Thus aφ−1(g)n+1 = 0 since φ is an isomor-
phism in high enough degree. Thus a = 0 in S(φ−1(g)), so a/b = 0 in
S(φ−1(g)). This shows that φ is injective. To see that φ is surjective let
a/gn ∈ T(g). Then φ−1(ag)/φ−1(gn+1) is a well-defined element of S(φ−1(g))

and φ(φ−1(ag)/φ−1(gn+1)) = ag/gn+1 = a/gn, which shows that φ is surjec-
tive.

Next we verify that ∪gαDS(φ
−1(gα) = ProjS. Suppose x /∈ DS(φ

−1(gα)
for all α. Then φ−1(gα) ∈ x for each α, so, since we may assume that the gα
generate T≥d0 , and x is prime, φ−1(T≥d0) ⊆ x, a contradiction since S+ ̸⊆ x.

Next we show that the induced map f : ProjT → ProjS is injective.
Let p, q ∈ ProjT and suppose f(p) = f(q). Then φ−1(p) = φ−1(q) so, since
φ is an isomorphism, for d ≥ d0 we see that p ∩ Td = q ∩ Td. So if a ∈ p is
homogeneous then an ∈ p ∩ Td for some n and d ≥ d0. So an ∈ q ∩ Td so
an ∈ q so a ∈ q. Likewise a ∈ q implies a ∈ p. Thus p = q so f is injective.

Finally, no solution is complete without an actual example of a map
φ : S → T which satisfies the hypothesis of the theorem. Let T = k[x, y]
and let S = T0 + T2 + · · · and let φ : S ↪→ T be the inclusion map. Then φ
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is graded and an isomorphism for d ≥ 2. But φ is not an isomorphism.

Problem 4 (II.2.14(d)) Let V be a projective variety with homogeneous
coordinate ring S. Show that t(V ) ∼= ProjS.

Proof. Define f : t(V ) → ProjS by f takes a point x ∈ t(V ) to its homo-
geneous ideal I(x) ∈ ProjS. By exercise I.2.4 f is injective and surjective
hence a bijection. Furthermore, x ⊇ y iff f(x) ⊆ f(y) so f and f−1 send
closed sets to closed sets hence f is a homeomorphism.

To define f# let U be an open subset of ProjS. Then we must define
f# so that (notation as in the proof of proposition 2.6) f# : OProjS(U) →
f∗Ot(V )(U) = Ot(V )(f

−1(U)) = OV (α
−1(f−1(U))). Let s ∈ ProjS(U). Then

s can locally be represented in the form g/h where g, h ∈ S have the same
degree and h is nonzero on the appropriate subset of V . Thus s naturally
defines an element of OV (α

−1(f−1(U))) and any element of OV (α
−1(f−1(U)))

defines an element of OProjS(U). Thus f
# is an isomorphism. [I’m glossing

over a lot of details!]

Problem 5 (II.2.16(a)) Let X be a scheme, let f ∈ Γ(X,OX), and define
Xf to be the subset of points x ∈ X such that the stalk fx of f at x is not
contained in the maximal ideal mx of the local ring Ox. (a) If U = SpecB
and f ∈ B = Γ(U,OX|U) is the restriction of f , show that U ∩ Xf = D(f)
so Xf is an open subset of X.

Proof. Note that D(f) = {x ∈ U : f /∈ x} = {x ∈ U : fx /∈ mx} = {x ∈
U : fx /∈ mx} = U ∩Xf . Thus U ∩Xf is an open subset of U . Now let {Uα}
be an affine open over of X. Then Xf = ∪α(Uα ∩Xf ) is the union of open
sets, hence open.

Problem 6 (II.2.16(b)) Assume that X is quasi-compact. Let A = Γ(X,OX),
and let a ∈ A be an element whose restriction to Xf is 0. Show that for some
n > 0, fna = 0.

Proof. Using the fact that X is quasi-compact we can find a finite cover
{Ui = SpecBi}mi=1 of X by affine open sets. Since a|Xf

is 0, the image of a

in OXf∩Ui
= (Bi)f is 0. Thus there exists ni such that f

nia = 0 in Bi. That
is, fnia|Xf∩Ui

is 0. Letting n = max{n1, . . . , nm} we see that fna|Xf∩Ui
is 0

for each i whence fna = 0 in A = Γ(X,OX).
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Problem 7 (II.2.16(c)) Assume X has a finite cover by open affines Ui

such that each intersection Ui ∩ Uj is quasi-compact. Let b ∈ Γ(Xf ,OXf
).

Show that for some n > 0, fnb is the restriction of an element of A.

Proof. Write Ui = SpecBi. Then b|Ui
∈ (Bi)f so, from the definition of

(Bi)f , there exists ni such that fnib|Ui
∈ Bi = OX(Ui). LetN = max{ni} and

let gi = fNb|Ui
∈ OX(Ui). Then gi|Xf∩Ui∩Uj

= fNb|Ui∩Uj∩Xf
= gj|Xf∩Ui∩Uj

so
(gi − gj)|(Ui∩Uj)f = 0. By part (b) since Ui ∩ Uj is quasi-compact there is
an integer nij such that fnij(gi − gj) = 0 in OUi∩Uj

. Let M = max{nij},
and let hi = fMgi. Then hi ∈ O(Ui) for each i and hi|Ui∩Uj

= hj|Ui∩Uj
so

we can find h ∈ Γ(X,OX) such that h|Ui
= hi. But, for each i, h|Xf∩Ui

=
fMgi|Xf∩Ui

= fMfNb|Xf∩Ui
= fM+Nb|Xf∩Ui

so by uniqueness (sheaf axiom
iii), h|Xf

= fM+Nb, as desired.

Problem 8 (II.2.16(d)) With the hypothesis of (c), conclude that Γ(Xf ,OXf
) ∼=

Af .

Proof. Define a homomorphism φ : Af → Γ(Xf ,OXf
) by φ(a/fn) =

a|Xf
/fn|Xf

. This is well-defined because the stalk fx is invertible in each
local ring Ox for each x ∈ Xf . φ is a homomorphism since restriction is
a homomorphism. Suppose φ(a/fn) = 0, then a|Xf

/f |nXf
= 0 so a|Xf

= 0.

By part (b) there exists m such that fma = 0, so a is 0 in Af , whence
φ is injective. Suppose b ∈ Γ(Xf ,OXf

), then by part (c) there exists
n such that fnb is the restriction of some a ∈ Γ(X,OX) to Xf . Then
φ(a/fn) = a|Xf

/f |nXf
= fnb/fn|Xf

= b so φ is surjective, which establishes
the desired isomorphism.

Problem 9 (II.2.17(a)) A Criterion for Affineness. Let f : X → Y be
a morphism of schemes, and assume that Y can be covered by open sets Ui,
such that for each i, the induced map f−1(Ui) → Ui is an isomorphism. Then
f is an isomorphism.

Proof. Define a morphism g : Y → X as follows. On each open set Ui

let gi be the morphism inverse to f |f−1(Ui) : f
−1(Ui) → Ui. Then gi|Ui∩Uj

=
f |f−1(Ui)∩f−1(Uj) = gj|Ui∩Uj

so, as in step 3 of the proof of Theorem 3.3, we can
glue the morphisms gi to obtain a morphism g : Y → X such that g|Ui

= gi.
As a map of spaces g is clearly inverse to f . Since each gi is an isomorphism,
the induced maps g# on stalks are isomorphisms so the induced map on
sheaves is an isomorphism. Thus g is an isomorphism.
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Problem 1 (3.6) Let X be an integral scheme. Show that the local ring
Oξ of the generic point ξ of X is a field. Call it K(X). Show also that if
U = Spec A is any open affine subset of X, then K(X) is isomorphic to the
quotient field of A.

Proof. Let U = Spec A be any nonempty open affine subset of X. Then
since the closure of a generic point of X is all of X, every open set must
contain a generic point. Thus if ξ is a generic point, then ξ ∈ U . But
A is an integral domain so (0) is the unique generic point of U , whence
ξ = (0). This shows the generic point is unique if it exists. Since X is
integral it is irreducible so every open set intersects U . Thus every open set
contains (0) ∈ Spec A = U , so X actually contains a generic point ξ = (0).
Furthermore, Oξ

∼= A(0) is the quotient field of A.

Problem 2 (3.7) Let f : X → Y be a dominant, generically finite mor-
phism of finite type of integral schemes. Show that there is an open dense
subset U ⊆ Y such that the induced morphism f−1(U) → U is finite.

Proof. Let U = Spec B be an open affine subset of Y which contains the
generic point of Y . Let V = Spec A be an open affine subset of f−1(U).
Since f is of finite type A is a finitely generated B-algebra. The generic
point of X is in V since every open set contains the generic point. Let
φ : B → A be the homomorphism corresponding to the induced morphism
of affine schemes f : V → U . Since f is dominant, we know that φ is
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injective. The induced map on stalks then gives an inclusion of function
fields K(Y ) = B(0) ↪→ A(0) = K(X). Since A is a finitely generated B-
algebra, K(X) is a finitely generated field extension of K(Y ). If this field
extension is not of finite degree then K(X) must contain an element which
is transcendental over K(Y ). Thus A must contain an element t which is
transcendental over B. But then infinitely many primes of A lie over (0).
Indeed, sinceK(X) is finitely generated overK(Y ),K(X) is a finite algebraic
extension of k(t) for some field k. Then (since the algebraic closure of a
field is infinite), there are infinitely many irreducible polynomials in k[t].
Since K(X) is finite algebraic over k(t) infinitely many of these must remain
irreducible in A. Multiplying through denominators this gives infinitely many
irreducible elements of A which generate prime ideals which lie over (0). This
would contradict the fact that f is generically finite. Thus K(X) is finite
over K(Y ).

Let x1, . . . , xn generate A as a B-algebra. Then, since K(X) is finite over
K(Y ) each xi satisfies some polynomial fi with coefficients in B. Let b be
the product of all of the leading coefficients of the polynomials fi. If b is a
unit in B then so are all of the leading coefficients of the fi so we can divide
by them and hence assume the fi are monic polynomials. If not, replace B
by the localization Bb and repeat the whole argument with U = Spec Bb. In
either case we may assume the fi are monic from which we conclude that A
is a finitely generated integral extension of B, thus A is a finite module over
B.

Now let U = Spec B be an open affine subset of Y which contains the
generic point. Since f is of finite type we may write f−1(U) = ∪i=1,...,nVi
where each Vi = Spec Ai is finitely generated B-algebra. By the work above
we may shrink U so that we can assume each Ai is actually a finitely generated
B-module. To complete the proof we need to show that there is a distinguised
open subset of U (which necessarily contains the generic point) whose inverse
image under f is an open affine which is the spectrum of a finitely generated
B-module. Let φi : B → Ai be the homomorphism which induces f |Vi

.
Since f is dominant, each φi is an injection. Thus we may, for notational
convenience, identify B with it’s images in the various Ai. The morphism f
is then induced by the inclusion map B ↪→ Ai.

Since ∩i=1,...,nVi is open we can, for each i, 1 ≤ i ≤ n − 1, find αi ∈ Ai

such that Spec (Ai)αi
⊆ ∩i=1,...,nVi. Since Ai is a finite module over B there
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is an integral equation

αn
i + bn−1α

n−1
i + · · ·+ b0 = 0

where each bj ∈ B and b0 ̸= 0. Let b =
∏

i=1,...,n−1 bi. Then any prime of Ai

which contains αi must also contain bi and hence b. Therefore Spec (Ai)b ⊆
Spec (Ai)α. We then have that g−1(Spec Bb) = ∪i=1,...,n−1Spec (Ai)b∪Spec (An)b =
Spec (An)b. The latter equality follows since, for 1 ≤ i ≤ n−1, Spec (Ai)b ⊆
∩i=1,...,nVi ∩ f−1(Ub) ⊆ f−1(Ub) ∩ Vn = Spec (An)b. We thus see that Ub is a
dense open subset of Y such that the morphism f : f−1(Ub) → Ub is finite
(since f−1(Ub) is the affine scheme Spec (An)b which a finite Bb-module).
This completes the proof.

Problem 3 (3.8) Normalization. Let X be an integral scheme. For each
open affine subset U = Spec A, let Ã be the integral closure of A in its
quotient field, and let Ũ = Spec Ã. Show that one can glue the schemes Ũ to
obtain a normal integral scheme X̃, called the normalization of X. Show also
that there is a morphism X̃ → X, having the following universal property:
for every normal integral scheme Z, and for every dominant morphism f :
Z → X, f factors uniquely through X̃. If X is of finite type over a field k,
then the morphism X̃ → X is a finite morphism.

Proof.
We first verify the universal property for affine schemes where it is clear

what the normalization is.

Proposition 1 Suppose X = Spec A, X̃ = Spec Ã its normalization and
Z = Spec B is a normal integral scheme. Then every dominant morphism
f : Z → X factors uniquely through X̃.

Proof. Let φ : A → B be the homomorphism corresponding to f . Then,
since f is dominant, φ is injective. Indeed, f(Z) ⊆ V (ker(φ)) so if ker(φ) ̸= 0
then f(Z) doesn’t meet the nonempty open set X − V (ker(φ)) (nonempty
since A is a domain so (0) is prime so (0) ∈ X − V (ker(φ)). So there is
a unique extension of φ to a homomorphism from Ã → B. Indeed, define
φ(a/b) = φ(a)/φ(b). Then since φ is injective this is well-defined since b ̸= 0
implies φ(b) ̸= 0. Furthermore, if ψ is another possible extension of φ to Ã,
then ψ(b)ψ(a/b) = ψ(a) = φ(a) = φ(b)φ(a/b) = ψ(b)φ(a/b) so cancelling
shows that ψ(a/b) = φ(a/b). Thus there is a unique morphism f ′ : Z → X̃
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whose composition with the natural map X̃ → X equals f . (The natural
map is induced by the inclusion A ↪→ Ã.)

Now we prove the universal property holds when Z is an arbitrary normal
integral scheme but X is still affine.

Proposition 2 Let X = Spec A, X̃ = Spec Ã its normalization and Z be
any normal integral scheme. Then every dominant morphism f : Z → X
factors uniquely through X̃.

Proof. Let Ui be a cover of Z by open affines. If U = Ui is any Ui then U is
a normal integral affine scheme and f |U is a dominant morphism. Indeed, U is
dense in Z since Z is irreducible (Proposition 3.1). Thus f−1(f(U)) ⊇ U = Z
so f−1(f(U)) = Z so f(U) ⊇ f(Z) so f(U) = f(Z) = X. We can thus apply
the above proposition to find a unique morphism gi : Ui → X̃ such that
ψ ◦ gi = f |U where ψ : X̃ → X. By uniqueness on a cover of Ui ∩ Uj by
open affines, gi|Ui∩Uj

= gj|Ui∩Uj
. We can thus glue the morphism gi to obtain

a morphism g : Z → X̃ such that ψ ◦ g = f . The morphism g is evidently
unique.

Now we can define the identification maps φij. Let {Ui = Spec Ai}
be the open affine subsets of X. Let {Ũi = Spec Ãi} be the associated
normalizations. Let ψi : Ũi → Ui be the morphism induced by the inclusion
Ai ↪→ Ãi. Let Wij = ψ−1

i (Ui ∩ Uj). Then Wij is an open subset of a
normal scheme hence normal. ψi : Wij → Ui ∩ Uj ⊆ Uj so there is a unique
morphism which we call φij : Wij → Ũj such that ψj|Wji

◦ φij = ψi|Wij
. By

uniqueness we see that φij ◦ φji = id so φij = φ−1
ji . Furthermore, for each

i, j, k, φij(Wij∩Wik) = ψ−1
j (ψi(Wij∩Wik)) = ψ−1

j (ψi(Wij))∩ψ−1
j (ψi(Wik)) =

Wji ∩Wjk. By uniqueness, φjk ◦ φij = φik on Wij ∩Wik. So by the glueing
lemma (Exercise 2.12) we may glue to obtain a scheme X̃. We can also glue
the morphisms ψi to obtain a morphism ψ : X̃ → X.

Next, we must verify that the universal property holds in general. Let
Z be an arbitrary normal integral scheme, and let X and X̃ be as above
and suppose f : Z → X is a morphism. Cover X be open affines Ui. Then
for each morphism f |f−1(Ui) we can apply the above proposition to find a
morphism gi such that ψ ◦ gi = f |f−1(Ui). By uniqueness we can glue these

morphism to obtain the required morphism g : Z → X̃.
Now we check that X̃ is a normal integral scheme. Note first that each Ũi

is the spectrum of an integrally closed domain and is hence a normal integral
scheme (since the localization of an integrally closed domain is integrally
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closed). Let x ∈ X̃. Then x is contained in some Ũi. But the local ring of x
in X̃ is the same as the local ring of x in Ũi which is integrally closed. This
shows that X̃ is normal.

Since X is irreducible, every Ui intersects every Uj. Thus every Ũi inter-
sects every Ũj after glueing. Since each Ũj is irreducible and they all overlap
this implies X̃ is irreducible. Indeed, if X̃ = A ∪ B with A and B closed,
then every Ũi is either completely contained in A or in B. If they are not
all contained in one of A or B then we can find an open subset U contained
in A and an open subset V contained in B but not contained in A. Then
V = (U ∩ V )∪ (U c ∩ V ) = (A∩ V )∪ (U c ∩ V ) which expresses V as a union
of two proper closed subsets of V . A ∩ V is a proper subset of V since V is
not contained in A and U c∩V is a proper subset of V since U ∩V ̸= ∅. This
contradicts the fact that V is irreducible. Thus X̃ = A or X̃ = B whence X̃
is irreducible.

Now we check that the structure sheaf has no nilpotents. Let U be an
open subset of X̃ and suppose f ∈ OX̃(U) is nilpotent. Then since f is
nonzero, there is some point x ∈ X̃ so that the stalk fx of f at x in the local
ring OX̃ is nonzero and nilpotent (use sheaf axiom (iii) and the definition
of OX̃ .) Let Ũi be some Ũi which contains x. Then the local ring at x is
a localization of the integral domain Ãi so it can’t contain any nilpotents.
Thus the scheme X̃ is reduced.

Now we check that if X is of finite type over a field k, then the morphism
f : X̃ → X is a finite morphism. The Ui form an open cover of X and
f−1(Ui) = Spec Ãi is affine for each i, so we just need to check that Ãi is a
finite module over Ai. This follows from Theorem 3.9A of chapter I.

Problem 4 (3.12) Closed Subschemes of Proj S.
(a) Let φ : S → T be a surjective homomorphism of graded rings, pre-

serving degrees. Show that the open set U of (Ex. 2.14) is equal to Proj T ,
and the morphism f : Proj T → Proj S is a closed immersion.

(b) If I ⊆ S is a homogeneous ideal, take T = S/I and let Y be the closed
subscheme of X = Proj S defined as the image of the closed immersion
Proj S/I → X. Show that different homogeneous ideals can give rise to
the same closed subscheme. For example, let d0 be an integer, and let I ′ =⊕

d≥d0 Id. Show that I and I ′ determine the same closed subscheme.

Proof. (a) Since φ is graded and surjective, φ(S+) = T+ from which it
is immediate that U = Proj T . By the first isomorphism theorem T ∼=
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S/ ker(φ) so f(Proj T ) = f(Proj S/ ker(φ)) = V (ker(φ)) which is a closed
subset of Proj S. (This is just the fact that there is a one to one correspon-
dence between homogeneous ideals of S/ ker(φ) and homogeneous ideals of
S which contain ker(φ).) The map on the stalk corresponding to a point
x ∈ Proj T is the map S(φ−1(x)) → T(x) induced by φ. This map is surjective
since φ is surjective. Thus the induced map on sheaves is surjective.

(b) Let φ : S/I ′ → S/I be the natural projection homomorphism. (This
makes sense because S/I is a quotient of S/I ′. Indeed, S/I = (S/I ′)/

⊕
0≤d<d0 Id.)

Then φ is a graded homomorphism of graded rings such that φd is the
identity for d ≥ d0. So by (Exercise 2.14c) φ induces an isomorphism
f : Proj S/I → Proj S/I ′. Since this is a morphism over Proj S (the corre-
sponding triangle of homomorphisms commutes) it follows that I and I ′ give
rise to the same closed subscheme.

Problem 5 (3.14) If X is a scheme of finite type over a field, show that
the closed points of X are dense. Give an example to show that this is not
true for arbitrary schemes.

Proof. Since X is of finite type over k we can cover X with affine open sets
Ui = Spec Ai where each Ai is a finitely generated k-algebra. Let U be an
open subset of X. We must show that U contains a closed point. Since the
Ui cover X, U must intersect some Ui. Then U ∩ Ui contains a distinguised
open subset of Ui. So, to show that every open set contains a closed point,
it suffices to show that every nonempty distinguised open subset of each Ui

contains a closed points of X. Since a distinguished open subset (Ui)x of a
Ui is also the spectrum of a finitely generated k-algebra Spec (Ai)x we can
just add it to our collection {Ui}. The problem thus reduces to showing that
each Ui contains a closed point.

Proposition 3 With the notation as above, if x ∈ Ui is closed in Ui (here
Ui has the subspace topology) then x is closed in X.

Proof. Suppose x ∈ Uj. There is a natural injection Ui ∩ Uj ↪→ Uj. Let
Spec (Bi)f be a distinguished open subset of Ui contained in Ui ∩ Uj which
contains x. Then we have a morphism Spec (Bi)f ↪→ Uj = Spec Bj. We
thus get a ring homomorphism φ : Bj → (Bi)f of Jacobson rings. Since it
is induced by a restriction of the identity map X → X which is a morphism
over k, φ is a k-algebra homomorphism. Since (Bi)f is a finitely generated
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k-algebra, (Bi)f is also a finitely generated Bj-algebra. Since x is closed in
Spec (Bi)f , x is a maximal ideal of (Bi)f . Thus by page 132 of Eisenbud’s
Commutative Algebra φ−1(x) is a maximal ideal of Bj. Thus x is also a closed
point of Uj in the subspace topology on Uj. Thus X − x = ∪i(Ui − x) is a
union of open subsets of X, hence open in X, so x is closed.

To finish we just need to know that Ui has a closed point.

Proposition 4 Let X = Spec A be an affine scheme with A a finitely gener-
ated k-algebra. Then any nonempty distinguished open subset of X contains
a closed point.

Proof. The key observation is that A is a Jacobson algebra since it finitely
generated over a field, so by page 131 of Eisenbud’s Commutative Algebra the
Jacobson radical of A equals the nilradical of A. Let D(f) be a nonempty
distinguised open subset of X. Then some prime omits f so f is not in the
nilradical of A. Thus f is not in the Jacobson radical of A so there is some
maximal ideal m so that f /∈ m. Then m ∈ D(f) and m is a closed point of
X since m is maximal.

Strangely enough I never used the hypothesis that X is of finite type over
k but just the weeker hypothesis that X is locally of finite type over k. Did
I miss something?

Finally, we present a counterexample in the more general situation. Let
X = Spec Z(2). Then X contains precisely one closed point, the ideal (2). So
the set of closed points in X is not dense in X. In fact, if X is the spectrum
of any DVR we also get a counterexample.

Problem 6 (4.2) Let S be a scheme, let X be a reduced scheme over S,
and let Y be a seperated scheme over S. Let f1 and f2 be two S-morphisms
of X to Y which agree on an open dense subset U of X. Show that f1 = f2.
Give examples to show that this result fails if either (a) X is nonreduced, or
(b) Y is nonseparated.

Proof. Let g = (f1, f2)S : X → Y ×S Y be the product of f1 and f2 over
S. By hypothesis the diagonal T = ∆Y (Y ) is a closed subscheme of Y ×S Y .
Thus Z = g−1(T ) is a closed subscheme of X. If h : U → Y is the common
restriction of f1 and f2 to U , then, since g|U makes the correct diagram
commute, the restriction of g to U is g′ = (h, h)S and g′ = ∆Y ◦ h since
∆Y ◦ h makes the correct diagram commute.
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Thus ∆−1
Y (T ) = Y implies

g−1(T ) ⊇ (g′)−1(T ) = h−1(∆−1
Y (T )) = h−1(Y ) = U.

Thus g−1(T ) is a closed set which contains the dense set U . Thus g−1(T ) = X
so g(X) ⊆ T . So, by the proposition below, since X is reduced, g factors
as g = ∆Y ◦ f where f : X → Y . From the definition of ∆Y , we see that
π1 ◦ ∆Y = idY = π2 ◦ ∆Y . Thus f1 = π1 ◦ g = π1 ◦ ∆Y ◦ f = f and
f2 = π2 ◦ g = π2 ◦∆Y ◦ f = f so f = f1 = f2, as desired.

Proposition 5 Let X be a reduced scheme, f : X → Y a morphism, Z a
closed subscheme of Y , j : Z ↪→ Y , such that f(X) ⊆ j(Z). Then f factors
uniquely as

X
g→ Z

j
↪→ Y.

Proof. First assume X and Y are affine, X = Spec A, Y = Spec B,
Z = Spec B/I. (Use exercise 3.11 to see that every closed subscheme Z of
Y is of the form Spec B/I.) Let φ : B → A be the homomorphism which
induces f . Since f(X) ⊆ Z, the inverse image of any prime of A contains I.
Since A is reduced the intersection of all primes of A equals {0}. Thus

ker(φ) = φ−1({0}) = φ−1(∩primespp) ⊆ I

so φ factors uniquely through B/I.

B
j#→ B/I

g#

↪→ A

This proves the proposition when X and Y are affine.
Now suppose X is an arbitrary reduced scheme. Cover X by open affines

X = ∪iUi. For each i let gi be the unique map which factors f |Ui
through

Z. By uniqueness gi|Ui∩Uj
= gj|Ui∩Uj

, so we can glue the gi to obtain a
morphism g : X → Z such that j ◦ g = f . Now suppose both X and Y are
arbitrary. Cover Y by open affines, take their inverse images in X, perform
the construction locally for each one, use uniqueness and glue.
Counterexamples.

(a) Let A = k[x, y]/(x2, xy), let X = Y = Spec A and let S = Spec k.
Then Y is affine hence seperable over S, butX is not reduced. Let f : X → Y
be the morphism induced by the identity homomorphism id : A → A. Let
g : X → Y be the morphism induced by the homomorphism φ : A → A :
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x 7→ 0, y 7→ y. Let U = D(y) = Spec Ay. Then since Ay
∼= Spec k[y, y−1],

the localized homomorphisms agree, idy = φy. Thus f |U = g|U . Now X is
irreducible since A has just one minimal prime, namely (x), so U is dense in
X. But, f ̸= g. since f# = id ̸= φ = g#.

(b) Let X be the affine line and Y the affine line with a doubled origin
both thought of as schemes over S = Spec k. Let f1 : X → Y be one of the
inclusions of the affine line in Y and let f2 : X → Y be the other one. Then
f1 and f2 agree on X minus the origin but not on X.

[Reference, EGA, I.8.2.2.1.]

Problem 7 (4.4) Let f : X → Y be a morphism of separated schemes of
finite type over a noetherian scheme S. Let Z be a closed subscheme of X
which is proper over S. Show that f(Z) is closed in Y , and that f(Z) with
its image subscheme structure is proper over S.

Proof. First we show that since X, Y and Z are of finite type over S
and S is noetherian, X, Y and Z are noetherian. Suppose g : X → S is
the map from X to S. Cover S by finitely many Spec Ai, Ai noetherian.
Then for each f−1(Spec Ai) = ∪jSpec Bij, with Bij a finitely generated Ai-
algebra. Since Ai is noetherian each Bij is noetherian (this is the Hilbert
basis theorem). Since X = ∪ijSpec Bij, X is noetherian. One shows that Y
and Z are noetherian in exactly the same way.

Since the following diagram commutes 4.8(e) implies f |Z is proper.

Thus f |Z(Z) is closed in Y . (I’m assuming Z is an S-subscheme of X so that
the diagram must commute.)

We now have f(Z) ↪→ Y → S. We must show the composition f(Z) → S
is proper. By Corollary 4.8a the closed immersion f(Z) ↪→ Y is proper.
We are given that the map Y → S is seperated and of finite type. Since
the composition of seperated morphisms is seperated and the composition of
finite type morphisms is of finite type, the morphism f(Z) → S is seperated
and of finite type. The hard part is to show that it is universally closed.
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Since the morphism Z → S is proper it is closed and from above the
morphism Z → f(Z) is closed so the morphism f(Z) → S is closed. Let W
be an any scheme over S. We must show that the map f(Z)×S W → W is
closed. We have the following diagram.

If we can show that g1 is surjective we will be done. For then if A is closed
subset of f(Z)×S W ,

g2(A) = g3(g
−1
1 (A)),

which, since g3 is closed, is also closed. (We wouldn’t have equality in the
above expression if g1 weren’t surjective.)

In order to establish the surjectivity of g1 we prove that the property of
being a surjective morphism is preserved under base extension. It will then
follow, since g1 is a base extension of the surjective morphism Z → f(Z),
that g1 is surjective.

Proposition 6 Let X and Y be schemes over S. Suppose x ∈ X and y ∈ Y
both lie over the same point s ∈ S. Then there exists α ∈ X ×S Y such that
pX(α) = x and pY (α) = y.

Proof. Let g1 : Spec (k(x)) → X and g2 : Spec (k(y)) → Y be the nat-
ural maps with g1((0)) = x and g2((0)) = y. Let Z = Spec (k(x))×Spec (k(s))

Spec (k(y)) = Spec (k(x)⊗k(s)k(y)), and let π1 be the projection to Spec (k(x)),
π2 the projection to Spec (k(y)). Let g = g1 ×S g2 be the product of g1 ◦ π1
with g2 ◦ π2. So g : Z → X ×S Y . See the following diagram.
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Since Z is the spectrum of the tensor product of two fields over a common
base field, Z ̸= ∅ so there is some z ∈ Z. By the definition of g, g1◦π1 = px◦g
and g2 ◦π2 = py ◦g so x = g1 ◦π1(z) = px ◦g(z) and y = g2 ◦π2(z) = py ◦g(z)
so we may take α = g(z).

Proposition 7 If f : X → Y is a surjective S-morphism then f × 1 :
X ×S S

′ → Y ×S S
′ is surjective.

Proof. We have the following diagram.

Let y′ ∈ Y ×S S
′. Then q(y′) ∈ Y = f(X) so there is x ∈ X such that

f(x) = q(y′). Then by the above proposition there is some α ∈ X×S S
′ such

that p(α) = x and (f × 1)(α) = y′. Thus f × 1 is surjective.
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Algebraic Geometry Homework
II.5, 1,2,3,4,5,7,8

William A. Stein

April 4, 1996

Problem 1 (II.5.1) Let (X,OX) be a ringed space, and let E be a locally
free OX-module of finite rank. We define the dual of E, denoted by Ě, to be
the sheaf HomOX

(E ,OX).
(a) Show that (Ě )̌ ∼= E.
(b) For any OX-module F , HomOX

(E ,F) ∼= Ě ⊗OX
F .

(c) For any OX-modules F ,G, HomOX
(E⊗F ,G) ∼= HomOX

(F ,HomOX
(E ,G)).

(d) (Projection Formula). If f : (X,OX) → (Y,OY ) is a morphism of
ringed spaces, if F is an OX-module, and if E is a locally free OY -module of
finite rank, then there is a natural isomorphism f∗(F ⊗OX

f ∗E) ∼= f∗(F)⊗OY

E.

Proof. (a) A free module of finite rank is canonically isomorphic to its
double-dual via m̌(λ) = λ(m) where m ∈ M , λ ∈ M̌ , and m̌ ∈ (M̌ )̌. Let U
be an open set on which E|U is a free OX-module of finite rank. Define a
map φ : E|U → (Ě )̌|U by, for all V ⊆ U , E(V ) → (Ě )̌(V ) is the isomorphism
described above. Since the isomorphisms are canonical, we can patch on
intersections and define a global isomorphism.

(b) As above we may assume E is a free OX-module. Let e1, . . . , en be a
basis for F and let e∗1, . . . , e

∗
n be the corresponding dual basis. Let U be an

open subset of X. Define φU : HomOX
(E ,F)|U → (Hom(E ,OX)⊗OX

F)|U by
f 7→ ∑n

i=1 e
∗
i ⊗ f(ei). Define ψU : (Hom(E ,OX)⊗OX

F)|U → HomOX
(E ,F)|U

by f ⊗ a 7→ (x 7→ f(x)a). For convenience of notation write φ = φU and
ψ = ψU . Let f ⊗ a ∈ (Hom(E ,OX)⊗OX

F)|U . Then φ ◦ ψ(f ⊗ a) = φ(x 7→
f(x)a) =

∑n
i=1 e

∗
i ⊗f(ei)a =

∑n
i=1 e

∗
i f(ei)⊗a = f⊗a. Let f ∈ HomOX

(E ,F),
then ψ ◦ φ(f) = ψ(

∑n
i=1 e

∗
i ⊗ f(ei)) = (x 7→ ∑n

i=1 e
∗
i (x)f(ei)) = (x 7→
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f(
∑n

i=1 e
∗
i (x)ei)) = (x 7→ f(x)). Thus φ and ψ are inverse bijective homo-

morphisms, hence ring isomorphisms, and since they respect the restriction
maps we see that the corresponding sheaves are isomorphic.

(c) On each open set define φ|U : HomOX
(E⊗F ,G) → HomOX

(F ,HomOX
(E , sg))

by f 7→ (a 7→ (e 7→ f(e⊗a))). (For notational convenience we omit the sheaf
restrictions.) If φ(f) = 0 then the map (a 7→ (e 7→ f(e⊗ a))) is 0 so f is the
zero map, hence φ is injective. Let f ∈ HomOX

(F ,HomOX
(E , sg)). Define

g ∈ HomOX
(E ⊗ F ,G) by g(a ⊗ b) = (f(b))(a). Then φ(g) = (a 7→ (e 7→

g(e ⊗ a))) = (a 7→ (e 7→ (f(a))(e)) = (a 7→ f(a)) = f so φ is surjective.
Thus φ is the desired isomorphism which, since φ evidently commutes with
the restriction maps, induces an isomorphism of sheaves.

(d) First we consider the case when E ∼= On
Y . One one hand,

f∗(F)⊗OY
E ∼= f∗(F)⊗OY

On
Y

∼= ⊕n
i=1(f∗(F)⊗OY

OY )
∼= ⊕n

i=1f∗(F).

On the other hand,

F ⊗OX
f ∗E = F ⊗OX

f ∗(On
Y )

∼= F ⊗OX
(f−1(On

Y )⊗f−1OY
OX)

∼= F ⊗OX
((f−1(OY )

n ⊗f−1OY
OX)

∼= F ⊗OX
(

n∑
i=1

f−1OY ⊗f−1OY
OX)

∼= F ⊗OX
(On

X)
∼= (F ⊗OX

OX)
n = Fn

where f−1(On
Y )

∼= f−1(OY )
n since f−1 is a left adjoint functor hence com-

mutes with direct sums (which are a right universal construction).
Putting this together we have that

f∗(F ⊗OY
f ∗(E)) = f∗(Fn) = f∗(⊕n

i=1F) = ⊕n
i=1f∗(F).

In general, we construct isomorphisms as above on an open cover then,
since all of the isomorphisms are canonical, the isomorphisms match up on
the intersections so we can glue to obtain an isomorphism.
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Problem 2 (II.5.2) Let R be a discrete valuation ring with quotient field
K, and let X = SpecR.

(a) To give an OX-module F is equivalent to giving an R-module M , a
K-vector space L, and a homomorphism ρ :M ⊗R K → L.

(b) That OX-module is quasi-coherent if and only if ρ is an isomorphism.

Proof. (a) First suppose we are given an OX-module F . Since R is a DVR,
X has exactly two nonempty open sets,X and the set consisting of the generic
point, {ξ}. Let M = Γ(F , X) and let L = Γ(F , {ξ}). Since Γ(OX , X) = R
and Γ(OX , {ξ}) = K, M is an R-module and L is a K-vector space. Let
g : M → L be the restriction map. Define ρ by ρ(m⊗ α) = α · g(m). Since
g is a homomorphism, so is ρ.

Now suppose we are given an R-module M , a K-vector space L, and a
homomorphism ρ : M ⊗R K → L. Define an OX-module F as follows. Let
Γ(F , X) =M and Γ(F , {ξ}) = L. Define the restriction map g :M → L by
g(m) = ρ(m ⊗ 1). We just need to check that g is a valid restriction map.
Let r ∈ R,m ∈M , then g is a valid restriction map iff r ·g(m) = g(rm), that
is, when r · ρ(m ⊗ 1) = ρ(rm ⊗ 1) = ρ(m ⊗ r). So we must verify that the
given homomorphism ρ is R-linear. But there is absolutely no reason why
this should be the case! (For example, let M = L = K, then ρ : K → K
and it is easy to construct nontrivial homomorphisms of the additive group
of a field). I think the problem is imprecisely stated. It should be assumed
throughout that ρ is K-linear.

(b) First suppose F is quasi-coherent. Then F = M̃ so Proposition 5.1
implies that L = Γ(M̃, {ξ}) = (R − 0)−1M ∼= M ⊗R K. Thus ρ must be an
isomorphism. Conversely, if ρ is an isomorphism, we see that F ∼= M̃ since
they are the same on each open set and the restriction map is the same.

Problem 3 (II.5.3) Let X = SpecA be an affine scheme. Show that the
functors ˜ and Γ are adjoint, in the following sense: for any A-module M ,
and for any sheaf of OX-modules F , there is a natural isomorphism

HomA(M,Γ(X,F)) ∼= HomOX
(M̃,F).

Proof.
Define a homomorphism F : HomA(M,Γ(X,F)) → HomOX

(M̃,F) as
follows. Send a ring homomorphism φ : M → Γ(X,F) to the morphism of
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sheaves F (φ) : M̃ → F . It suffices to define F (φ) on distinguished open sets
(Eisenbud & Harris, page 13). For f ∈ A let F (φ)D(f) be the map

m

fn
7→ 1

fn
· resX,D(f)(φ(m))

where resX,D(f) : F(X) → F(D(f)) is the restriction map of F . F (φ)D(f) is a
well-defined homomorphism since both φ and resX,D(f) are homomorphisms
and φ is an A-module homomorphism. Next note that F (φ) commutes with
the restriction maps since each resX,D(f) does. To see that F is injective
suppose φ and ψ are two homomorphisms M → Γ(X,F). If F (φ) = F (ψ)
then, in particular, φ = F (φ)X = F (ψ)X = ψ. To see that F is surjective,
let φ ∈ HomOX

(M̃,F). Define ψ :M → Γ(X,F) by letting ψ = φX , that is,
by taking the induced map on global sections. Then, for f ∈ A, F (ψ)D(f) :

M̃(D(f)) → F(D(f)) is the map ( m
fn 7→ 1

fn resX,D(f) ◦φX(m)) which, since φ

is a morphism of sheaves, equals = ( m
fn 7→ 1

fnφD(f)(m) = φD(f)(
m
fn ) = φD(f).

(We are just using the fact that φ commutes with the appropriate restriction
maps.) Thus F (ψ) agrees with φ on a basis for X hence F (ψ) = φ. This
shows that F is surjective. So F is an isomorphism, as required.

Problem 4 (II.5.4) Show that a sheaf of OX-modules F on a scheme X
is quasi-coherent if and only if every point of X has a neighborhood U , such
that F|U is isomorphic to a cokernel of a morphism of free sheaves on U . If
X is noetherian, then F is coherent iff it is locally a cokernel of a morphism
of free sheaves of finite rank.

Proof. Suppose first that F is quasi-coherent. Let x ∈ X. Then there
is an affine open neighborhood U = SpecA of x such that F|U ∼= M̃ ,
M an A-module. It suffices to show that M is isomorphic to a cokernel
of a morphism of finitely generated A-algebras. Indeed, if φ : A(I) →
A(J) then Coker(φ̃) = ˜A(J)/φ(A(I))̃ = (A(J)/φ(A(I)))̃ since, for all f ∈ A,
(A(J))f/φ(A

(I))f = (A(J)/φ(A(I)))f so that they agree on a basis.
Let A|M | be the free A-module on the elements of M . Let φ : A|M | →M

be the natural map. Similiary, let ψ : A| ker(φ)| → ker(φ) ⊆ A|M | be the
natural map. Then Coker(ψ) ∼= A|M |/ ker(φ) ∼= M , as required.

Now assume the F is coherent. We proceed as above but now M is a
finitely generated A-module, generated by e1, . . . , en, say, and we must show
that M is the cokernel of a morphism of free modules of finite rank. Let
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φ : An → M be the map which takes the ith generator (0, . . . , 1, . . . , 0) of
An to ei ∈ M . Then ker(φ) is a submodule of M so, since M is neotherian
(any finitely generated module over a noetherian ring is noetherian), ker(φ)
is finitely generated. Let f1, . . . , fm be a generating set. Let ψ : Am → ker(φ)
be the surjection defined by sending the ith basis element of Am to fi. Then
Coker(ψ) ∼= An/ψ(Am) ∼= An/ ker(φ) ∼= M . Thus M is isomorphic to a
cokernel of a morphism of free sheaves of finite rank.

Problem 5 (II.5.5) Let f : X → Y be a morphism of schemes.
(a) Show by example that if F is coherent on X, then f∗F need not be

coherent on Y , even if X and Y are varieties over a field k.
(b) Show that a closed immersion is a finite morphism.
(c) If f is a finite morphism of neotherian schemes, and if F is coherent

on X, then f∗F is coherent on Y .

Proof. (a) Lex k be a field, let X = Spec(k[x]x), Y = Spec(k[x]) and
F = OX . Then f∗(F)(U) = F(f−1(U)), so f∗(F) = (k[x]x)Ỹ . But (k[x]x)Ỹ

is not a coherent sheaf of OY -modules. Indeed, if it were, there would be
a distinguished neighborhood D(f) of 0 so that (k[x]x)Ỹ |D(f) is a finitely
generated module over k[x] (here I’m using the fact that over open set is
distinguished in the topology of Spec(k[x])). But, k[x]f is never a finitely
generated module over k[x] for any f of degree at least 1. For k[x]f con-
tains elements of arbitrarily small degree whereas the degrees of elements
of k[x]{α1, . . . , αn} are bounded below. (k[x]{α1, . . . , αn} is the k[x]-module
generated by α1, . . . , αn.)

(b) Let f : Y → X be a closed immersion. Let U = Spec(A) ⊆ X
and let W = f−1(U) ⊆ Y . Then W is a a scheme (give it the induced
scheme structure as an open subset of Y ). Furthermore, f(W ) = U ∩ f(Y )
is a relatively closed subset of U , that is, a closed subset of Spec(A). The
map f# : OU → OW is surjective since f# : OX → OY is surjective and
surjectivety is a local property. Thus W is a closed subscheme of Spec(A)
so, by Corollary 5.10, W ∼= Spec(A/I) for some ideal I of A. Since A/I is a
finitely generated A module (generated by 1 + I), f is a finite morphism.

(c) Let U = Spec(A) ⊆ Y be an affine open subset of Y . Then, since f is
finite, f−1(U) = Spec(B) is affine with B is a finitely generated A-module.
By Proposition 5.4 it suffices to show that f∗(F)|U is M̃ for some finitely
generated A-module M . Now by Proposition 5.4, since f−1(U) is affine and
B is noetherian, F|f−1(U) = M̃ for some finitely generated B module M .
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But f∗(F)|U = (f |f−1(U))∗F|f−1(U) = (f |f−1(U))∗(M̃) = ˜(AM) where the last
equality follows from Proposition 5.2(d). Since B is a finite module over A
and M is a finite module over B, it follows that M is a finite module over A
which completes the proof.

Problem 6 (II.5.7) Let X be a noetherian scheme, and let sf be a coherent
sheaf.

(a) If the stalk Fx is a free OX-module for some point x ∈ X, then there
is a neighborhood U of x such that F|U is free.

(b) F is locally free iff its stalks Fx are free OX-modules for all x ∈ X.
(c) F is invertible iff there is a coherent sheaf G such that F ⊗ G ∼= OX .

Proof. (a) Let U = Spec(A) be a neighborhood of x so that F|U = M̃ ,
M a finitely generated A-module. Then Fx = Mx so we have reduced the
problem to the following purely algebraic result.

Proposition 1 If M is a finitely generated free A module and there is a
prime ℘ of A such that M℘ is a free A℘-module, then there exists f ∈ A such
that f ̸∈ ℘ and Mf is a free Af -module.

Once we have proven this we will know that F|DU (f) is free since Propo-

sition 5.1 asserts that M̃(D(f)) ∼= Mf .
Proof. (of Proposition) Let a1, . . . , an ∈ M be a free basis of M℘ over

A℘ (we can clear denominators so that we may assume all ai lie in M .)
Let b1, . . . , bm ∈ M be a generating set for M over A. For each i we can
write bi as an A℘-linear combination of the ai. Clearing denominators we
see that dibi ∈ A{a1, . . . , an} for some di ̸∈ ℘. Let f =

∏
di, then f ̸∈ ℘

and a1, . . . , an have Af -span including all of the bi, and thus including M ,
and thus including Mf . But a1, . . . , an is free over A℘ hence over Af since
Af ⊆ A℘. [This proposition is in Bourbaki, Commutative Algebra, II.5.1,
although the proof is more abstract than mine.]

(b) (=⇒) Let x ∈ X and let U = Spec(A) be an open neighborhood of
x such that F|U = M̃ with M a free A module. Suppose ℘ is the prime of
A corresponding to x. Then Fx =M℘ which is a free A℘-module. Indeed, if
e1, . . . , en is a free A-basis for M , then it is also a free A℘-basis for M℘. For
if a1

b1
e1 + · · · + an

bn
en = 0, bi ̸∈ ℘, then a1

b
b1
e1 + · · · + an

b
bn
en = 0, b =

∏
bi so

bai
bi
= 0 for each i, so ai

bi
= 0 in the localization A℘ since b ̸∈ ℘.

(⇐=) By part (a) every point has a neighborhood on which F is free.
Therefore X can be covered by open affines on which F is free so F is locally
free.
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(c) (=⇒) Let G = F̌ = Hom(F ,OX), we will show that F ⊗ G ∼= OX .
To define a morphism φ : F ⊗ Hom(F ,OX) → OX it is enough to define
φ on the presheaf (U 7→ F(U) ⊗OX(U) Hom(F(U),OX(U)). Define φ by
a ⊗ f 7→ f(a). Thus φ commutes with the restrictions so φ defines a valid
morphism of sheaves.

Let U be an open affine subset of X such that F(U) is a free OX(U)-
module of rank 1 with basis e0. Then Hom(F(U),OX(U)) has basis e∗0
where e∗0(e0) = 1. Thus Hom(F(U),OX(U)) is a free OX(U)-module of rank
1. Thus every element of F(U)⊗Hom(F(U),OX(U)) can be written in the
form a ⊗ f (as opposed to as a sum of such products). Now φU(a ⊗ f) = 0
implies f(a) = 0 which implies a = 0 or f = 0 so a⊗f = 0, so φU is injective.
Since φU(ae0 ⊗ e∗0) = a, φU is surjective. Thus φU is an isomorphism.

Use the definition of locally free of rank 1 to cover X by affine open sets
U such that F|U is a free OX |U module of rank 1. Then, by Proposition 5.1
(c) and an argument like that for (b) above, any distinguished open subset
of U has a F -sections free of rank 1. Since φ is an isomorphism on each of
these distinguished open sets (use the argument in the above paragraph) and
these distinguished open sets form a basis for the topology on X it follows
that φ must be an isomorphism.

(⇐=) Because of part (b) above it suffices to show that Fx is free of rank
one for each x ∈ X. Since Fx ⊗Ox Gx = (F ⊗ G)x ∼= OX,x the problem is
reduced to the following purely algebraic statement.

Proposition 2 Let M and N be finitely generated modules over a local ring
(A,m) and suppose that M ⊗A N ∼= A. Then M is free of rank 1.

Proof. Let k = A/m. Let ν : M ⊗A N → A be the given isomorphism.
Then, taking the product with the identity, we get an isomorphism ν ⊗ 1k :
(M ⊗A N) ⊗A k → A ⊗A k ∼= k (it is obvious that ν ⊗ 1k is surjective,
but it is not at all obvious that it is injective, for this see the Bourbaki
reference below.) Thus k ∼= M ⊗A N ⊗A k = M ⊗A (k ⊗A k) ⊗A N =
(M ⊗A k) ⊗A (N ⊗A k) = (M ⊗A k) ⊗k (N ⊗A k) = (M/mM) ⊗k (N/mN)
so, since the k-rank of (M/mM)⊗k (N/mN) is 1 and is the product of the
ranks of M/mM and N/mN , each has rank 1. In particular, M/mM is
monogeneous (generated by one element) as an A/m-module and hence as
an A-module so, by Nakayama’s lemma, M is monogeneous as an A-module.
Since AnnA(M) anihilates M ⊗A N = A as well, it is 0 (any element of
AnnA(M) would have to annihilate the identity of A and hence be 0). Thus
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M is a free module of rank one over A. [See Bourbaki, Commutative Algebra,
II.5.4, for a more general theorem.]

Problem 7 (II.5.8) Again let X be a noetherian scheme, and F a coherent
sheaf on X. We will consider the function

φ(x) = dimk(x)Fx ⊗OX
k(x)

where k(x) = OX/mx is the residue field at the point x. Use Nakayama’s
lemma to prove the following results.

(a) The function φ is upper semi-continuous, i.e., for any n ∈ Z, the set
{x ∈ X : φ(x) ≥ n} is closed.

(b) If F is locally free, and X is connected, then φ is a constant function.
(c) Conversely, if X is reduced, and φ is constant, then F is locally free.

Proof.
(a) We must show that {x : φ(x) ≥ n} is closed. A good way to do

this is by showing that {x : φ(x) < n} is open. To do this we show that if
φ(x) = m then there is an open neighborhood U of x so that, for all y ∈ U ,
φ(y) ≤ m. Since we need only look locally, we can assume that X = SpecA,
F = M̃ ,M a finitely generated A-module. Note that Fx⊗OX

k(x) =M℘⊗A℘

A℘/℘A℘ = M℘/℘M℘. Let s1, . . . , sm ∈ M be elements whose images form a
basis for the vector space M℘/℘M℘ over A℘/℘A℘ (to do this choose a basis
for M℘/℘M℘ then clear fractions). Note that the images of the si in fact
generate M℘/℘M℘ as an A℘-module. By Nakayama’s lemma the si generate
M℘ as an A℘-module. Let m1, . . . ,mk be a generating set for M over A.
Write mj =

∑ ai
bi
si, bi ̸∈ ℘, then, if cj =

∏
bi, cjmj is in the A-span of the

si. Let f =
∏
cj. Then ℘ ∈ D(f) and if q ∈ D(f), then m1, . . . ,mk all lie

in the Aq-span of s1, . . . , sm (since cjmj is in the A-span of the si and cj is
inverted in Aq. Thus M is spanned by the si over Aq, so Mq is spanned by
the si over Aq. It follows that φ(q) = dimMq/qMq ≤ m since the images of
the si generateMq/qMq as a vector space over Aq/qMq = k(q). Taking D(f)
as our open neighborhood completes the proof.

(b) Choose n so that some section of F has rank n. Let U be the union
of all open sets W such that F|W ∼= On

X |W . Then U is nonempty. Let V be
the union of all open sets W such that F|W ∼= Om

X |W , m ̸= n. Since F is
locally free, U ∪ V = X. Suppose x ∈ U ∩ V , then Fx has rank n and rank
m ̸= n (since rank is preserved under localization), a contradiction. Thus
U ∩ V = ∅. Since U is nonempty and open, X − U = V is open and X
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is connected, thus we conclude that V = X − U = ∅. Thus every point is
contained in an open set W such that F|W ∼= On

X |W .
Let x ∈ X and let U = Spec(A) be an affine open set containing x such

that F|U ∼= M̃ . By the above argument, M is a free A-module of rank n.
Thus φ(x) = dimkMx ⊗Ax Ax/mx = dimkA

n
x ⊗k Ax/mx = dimk(Ax/mx)

n =
dimkk

n = n, as desired.
(c) Let x ∈ X. By exercise 5.7b it suffices to show that the stalk Fx

is free. Since F is coherent we can find an affine open set U = Spec(A)
such that F|U = M̃ for some finitely generated A-module, x ∈ U , and Af is
reduced for each f ∈ A. Let ℘ be the prime of A corresponding to x. We
must show that M℘ is free over A℘. Let s1, . . . , sn ∈ M be preimages of a
basis of M℘/℘M℘ over k(x) = A℘/℘A℘ (find these as in part (a)). Then, by
Nakayama’s lemma, the si generate M℘ over A℘.

We must show that the si are linearly independent over A℘. It will then
follow that M℘ is free of rank n over A℘. So suppose

a1
b1
s1 + · · ·+ an

bn
sn = 0

in M℘ with ai
bi

∈ A℘. Then for each i, bi ̸∈ ℘ and ai ∈ A. Since the si are
linearly independent over A℘/℘A℘, for each i there exists ci ̸∈ ℘ such that
ciai
bi

∈ ℘. Thus ciai ∈ ℘ so ai ∈ ℘. Let r be as in part (a) so that q ∈ D(r)
implies the si generate at least M over Aq. By definition there exists c ∈ A
such that

c(b2 · · · bna1s1 + · · ·+ b1 · · · bn−1ansn) = 0

in A. Let f = rc
∏
bi, then if q ∈ D(f), then s1, . . . , sn generate Mq/qMq

over Aq and, since Mq/qMq has dimension n (since φ is constant), the si are
actually a basis for Mq/qMq over Aq/qAq.

Since c|f , c ̸∈ q so, as above, a1
b1
s1 + · · · + an

bn
sn = 0 in Mq, so, as above,

ai ∈ q for each i. Thus, for all q ∈ D(f), ai ∈ q, so ai lies in the nilradical
of Af which, since Af is reduced, means that ai = 0 in Af . So ai maps to 0
under the map Af → A℘. Thus s1, . . . , sn are linearly independent over A℘

so M℘ is free of rank n over A℘. Applying exercise (5.7b) then completes the
proof.
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Homework 2, MAT256B
Chapter III, 4.8, 4.9, 5.6

William A. Stein

April 4, 1996

1 Homework

Exercise 1.1. (4.8) Cohomological Dimension. Let X be a neotherian separated scheme.
We define the cohomological dimension of X, denoted cd(X), to be the least integer n such
that H i(X,F) = 0 for all quasi-coherent sheaves F and all i > n. Thus for example, Serre’s
theorem (3.7) says that cd(X) = 0 if and only if X is affine. Grothendieck’s theorem (2.7)
implies that cd(X) ≤ dimX.

(a) In the definition of cd(X), show that it is sufficient to consider only coherent sheaves
on X.

(b) If X is quasi-projective over a field k, then it is even sufficient to consider only locally
free coherent sheaves on X.

(c) Suppose X has a covering by r+1 open affine subsets. Use Čech cohomology to show
that cd(X) ≤ r.

(d) If X is a quasi-projective variety of dimension r over a field k, then X can be covered
by r + 1 open affine subsets. Conclude that cd(X) ≤ dimX.

(e) Let Y be a set-theoretic complete intersection of codimension r in X = Pn
k . Show

that cd(X − Y ) ≤ r − 1.

Proof. (a) It suffices to show that if, for some i, H i(X,F) = 0 for all coherent sheaves F ,
then H i(X,F) = 0 for all quasi-coherent sheaves F . Thus suppose the ith cohomology of
all coherent sheaves on X vanishes and let F be quasi-coherent. Let (Fα) be the collection
of coherent subsheaves of F , ordered by inclusion. Then by (II, Ex. 5.15e) lim−→Fα = F , so
by (2.9)

H i(X,F) = H i(X, lim−→Fα) = lim−→H i(X,Fα) = 0.

(b) Suppose n is an integer and H i(X,F) = 0 for all coherent locally free sheaves F and
integers i > n. We must show H i(X,F) = 0 for all coherent F and all i > n, then applying
(a) gives the desired result. Since X is quasiprojective there is an open immersion

i : X ↪→ Y ⊂ Pn
k

with Y a closed subscheme of Pn
k and i(X) open in Y . By (II, Ex. 5.5c) the sheaf F on X

pushes forward to a coherent sheaf on F ′ = i∗F on Y . By (II, 5.18) we may write F ′ as a
quotient of a locally free coherent sheaf E ′ on Y . Letting R′ be the kernel gives an exact
sequence

0 → R′ → E ′ → F ′ → 0
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with R′ coherent (it’s the quotient of coherent sheaves). Pulling back via i to X gives an
exact sequence

0 → R → E → F → 0

of coherent sheaves on X with E locally free. The long exact sequence of cohomology shows
that for i > n, there is an exact sequence

0 = H i(X, E) → H i(X,F) → H i+1(X,R) → H i+1(X, E) = 0.

H i(X, E) = H i+1(X, E) = 0 because we have assumed that, for i > n, cohomology vanishes
on locally free coherent sheaves. Thus H i(X,F) ∼= H i+1(X,R). But if k = dimX, then
Grothendieck vanishing (2.7) implies that Hk+1(X,R) = 0 whence Hk(X,F) = 0. But
then applying the above argument with F replaced by R shows that Hk(X,R) = 0 which
implies Hk−1(X,F) = 0 (so long as k − 1 > n). Again, apply the entire argument with F
replaced by R to see that Hk−1(X,R) = 0. We can continue this descent and hence show
that H i(X,F) = 0 for all i > n.

(c) By (4.5) we can compute cohomology by using the Čech complex resulting from the
cover U of X by r + 1 open affines. By definition Cp = 0 for all p > r since there are no
intersections of p + 1 ≥ r + 2 distinct open sets in our collection of r + 1 open sets. The
Čech complex is

C0 → C1 → · · · → Cr → Cr+1 = 0 → 0 → 0 → · · · .

Thus if F is quasicoherent then Ȟ
p
(U,F) = 0 for any p > r which implies that cd(X) ≤ r.

(d) I will first present my solution in the special case that X is projective. The more
general case when X is quasi-projective is similiar, but more complicated, and will be pre-
sented next. Suppose X ⊂ Pn is a projective variety of dimension r. We must cover X
with r+1 open affines. Let U be nonempty open affine subset of X. Since X is irreducible,
the irreducible components of X − U all have codimension at least one in X. Now pick a
hyperplane H which doesn’t completely contain any irreducible component of X − U . We
can do this by choosing one point Pi in each of the finitely many irreducible components of
X − U and choosing a hyperplane which avoids all the Pi. This can be done because the
field is infinite (varieties are only defined over algebraically closed fields) so we can always
choose a vector not orthogonal to any of a finite set of vectors. Since X is closed in Pn and
Pn − H is affine, (Pn − H) ∩ X is an open affine subset of X. Because of our choice of
H, U ∪ ((Pn −H) ∩X) is only missing codimension two closed subsets of X. Let H1 = H
and choose another hyperplane H2 so it doesn’t completely contain any of the (codimension
two) irreducible components of X −U − (Pn −H1). Then (Pn −H2)∩X is open affine and
U ∪ ((Pn −H1)∩X)∪ ((Pn −H2)∩X) is only missing codimension three closed subsets of
X. Repeating this process a few more times yields hyperplanes H1, · · · , Hr so that

U, (Pn −H1) ∩X, . . . , (Pn −Hr) ∩X

form an open affine cover of X, as desired.
Now for the quasi-projective case. Suppose X ⊂ Pn is quasi-projective. From (I, Ex.

3.5) we know that Pn minus a hypersurface H is affine. Note that the same proof works even
if H is a union of hypersurfaces. We now proceed with the same sort of construction as in
the projective case, but we must choose H more cleverly to insure that (Pn−H)∩X is affine.
Let U be a nonempty affine open subset of X. As before pick a hyperplane which doesn’t
completey contain any irreducible component of X − U . Since X is only quasi-projective
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we can’t conclude that (Pn−H)∩X is affine. But we do know that (Pn−H)∩X is affine.
Our strategy is to add some hypersurfaces to H to get a union of hypersurfaces S so that

(Pn − S) ∩X = (Pn − S) ∩X.

But, we must be careful to add these hypersurfaces in such a way that ((Pn − S) ∩X) ∪ U
is missing only codimension two or greater subsets of X. We do this as follows. For each
irreducible component Y of X − X choose a hypersurface H ′ which completely contains
Y but which does not completely contain any irreducible component of X − U . That this
can be done is the content of a lemma which will be proved later (just pick a point in each
irreducible component and avoid it). Let S by the union of all of the H ′ along with H. Then
Pn − S is affine and so

(Pn − S) ∩X = (Pn − S) ∩X
is affine. Furthermore, S properly intersects all irreducible components of X −U , so ((Pn−
S)∩X)∪U is missing only codimension two or greater subsets of X. Repeating this process
as above several times yields the desired result because after each repetition the codimension
of the resulting pieces is reduced by 1.

Lemma 1.2. If Y is a projective variety and p1, . . . , pn is a finite collection of points not on
Y , then there exists a (possibly reducible) hypersurface H containing Y but not containing
any of the pi.

By a possibly reducible hypersurface I mean a union of irreducible hypersurfaces, not a
hypersurface union higher codimension varieties.

Proof. This is obviously true and I have a proof, but I think there is probably a more
algebraic proof. Note that k is infinite since we only talk about varieties over algebraically
closed fields. Let f1, · · · , fm be defining equations for Y . Thus Y is the common zero locus
of the fi and not all fi vanish on any pi. I claim that we can find a linear combination

∑
aifi

of the fi which doesn’t vanish on any pi. Since k is infinite and not all fi vanish on p1, we
can easily find ai so that

∑
aifi(p1) ̸= 0 and all the ai ̸= 0. If

∑
aifi(p2) = 0 then, once

again since k is infinite, we can easily “jiggle” the ai so that
∑
aifi(p2) ̸= 0 and

∑
aifi(p1)

is still nonzero. Repeating this same argument for each of the finitely many points pi gives
a polynomial f =

∑
aifi which doesn’t vanish on any pi. Of course I want to use f to

define our hypersurface, but I can’t because f might not be homogeneous. Fortunately,
this is easily dealt with by suitably multiplying the various fi by the defining equation of a
hyperplane not passing through any pi, then repeating the above argument. Now let H be
the hypersurface defined by f =

∑
aifi. Then by construction H contains Y and H doesn’t

contain any pi.

(e) Suppose Y is a set-theoretic complete intersection of codimension r in X = Pn
k . Then

Y is the intersection of r hypersurfaces, so we can write Y = H1 ∩ · · · ∩Hr where each Hi

is a hypersurface. By (I, Ex. 3.5) X −Hi is affine for each i, thus

X − Y = (X −H1) ∪ · · · ∪ (X −Hr)

can be covered by r open affine subsets. By (c) this implies cd(X − Y ) ≤ r − 1 which
completes the proof.

Exercise 1.3. (4.9) Let X = Spec k[x1, x2, x3, x4] be affine four-space over a field k. Let Y1
be the plane x1 = x2 = 0 and let Y2 be the plane x3 = x4 = 0. Show that Y = Y1 ∪ Y2 is
not a set-theoretic complete intersection in X. Therefore the projective closure Y in P4

k is
not a set-theoretic complete intersection.
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Proof. By (Ex. 4.8e) it suffices to show that H2(X − Y,OX−Y ) ̸= 0. Suppose Z is a closed
subset of X, then by (Ex. 2.3d), for any i ≥ 1, there is an exact sequence

H i(X,OX) → H i(X − Z,OX−Z) → H i+1
Z (X,OX) → H i+1(X,OX).

By (3.8), H i(X,OX) = H i+1(X,OX) = 0 so H i(X − Z,OX−Z) = H i+1
Z (X,OX). Applying

this with Z = Y and i = 2 shows that

H2(X − Y,OX−Y ) = H3
Y (X,OX).

Thus we just need to show that H3
Y (X,OX) ̸= 0.

Mayer-Vietoris (Ex. 2.4) yields an exact sequence

H3
Y1
(X,OX)⊕H3

Y2
(X,OX) → H3

Y (X,OX) →
H4

Y1∩Y2
(X,OX) → H4

Y1
(X,OX)⊕H4

Y2
(X,OX)

As above, H3
Y1
(X,OX) = H2(X − Y1,OX−Y1). But X − Y1 is a set-theoretic complete

intersection of codimension 2 so cd(X−Y1) ≤ 1, whence H2(X−Y1,OX−Y1) = 0. Similiarly

H2(X − Y2,OX−Y2) = H3(X − Y1,OX−Y1) = H3(X − Y2,OX−Y2) = 0.

Thus from the above exact sequence we see that H3
Y (X,OX) = H4

Y1∩Y2
(X,OX).

Let P = Y1 ∩ Y2 = {(0, 0, 0, 0)}. We have reduced to showing that H4
P (X,OX) is

nonzero. Since H4
P (X,OX) = H3(X − P,OX−P ) we can do this by a direct computation of

H3(X−P,OX−P ) using Čech cohomology. CoverX−P by the affine open sets Ui = {xi ̸= 0}.
Then the Čech complex is

k[x1, x2, x3, x4, x
−1
1 ]⊕ · · · ⊕ k[x1, x2, x3, x4, x

−1
4 ]

d0−→
k[x1, x2, x3, x4, x

−1
1 , x−1

2 ]⊕ · · · ⊕ k[x1, x2, x3, x4, x
−1
3 , x−1

4 ]
d1−→

k[x1, x2, x3, x4, x
−1
1 , x−1

2 , x−1
3 ]⊕ · · · ⊕ k[x1, x2, x3, x4, x

−1
2 , x−1

3 , x−1
4 ]

d2−→
k[x1, x2, x3, x4, x

−1
1 , x−1

2 , x−1
3 , x−1

4 ]

Thus
H3(X − P,OX−P ) = {xi1x

j
2x

k
3x

ℓ
4 : i, j, k, ℓ < 0} ̸= 0.

Exercise 1.4. (5.6) Curves on a Nonsingular Quadric Surface. Let Q be the nonsingular
quadric surface xy = zw in X = P3

k over a field k. We will consider locally principal closed
subschemes Y of Q. These correspond to Cartier divisors on Q by (II, 6.17.1). On the other
hand, we know that PicQ ∼= Z ⊕ Z, so we can talk about the type (a,b) of Y (II, 6.16)
and (II, 6.6.1). Let us denote the invertible sheaf L(Y ) by OQ(a, b). Thus for any n ∈ Z,
OQ(n) = OQ(n, n).

[Comment! In my solution, a subscheme Y of type (a, b) corresponds to the invertible
sheaf OQ(−a,−b). I think this is reasonable since then OQ(−a,−b) = L(−Y ) = IY . The
correspondence is not clearly stated in the problem, but this choice works.]
(a) Use the special case (q, 0) and (0, q), with q > 0, when Y is a disjoint union of q lines
P1 in Q, to show:

1. if |a− b| ≤ 1, then H1(Q,OQ(a, b)) = 0;

2. if a, b < 0, then H1(Q,OQ(a, b)) = 0;
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3. if a ≤ −2, then H1(Q,OQ(a, 0)) ̸= 0).

Solution. First I will prove a big lemma in which I explicitely calculateH1(Q,OQ(0,−q)) and
some other things which will come in useful later. Next I give an independent computation
of the other cohomology groups (1), (2).

Lemma 1.5. Let q > 0, then

dimkH
1(Q,OQ(−q, 0)) = H1(Q,OQ(0,−q)) = q − 1.

Furthermore, we know all terms in the long exact sequence of cohomology associated with
the short exact sequence

0 → OQ(−q, 0) → OQ → OY → 0.

Proof. We prove the lemma only for OQ(−q, 0), since the argument for OQ(0,−q) is exactly
the same. Suppose Y is the disjoint union of q lines P1 in Q so IY = OQ(−q, 0). The
sequence

0 → OQ(−q, 0) → OQ → OY → 0

is exact. The associated long exact sequence of cohomology is

0 →Γ(Q,OQ(−q, 0)) → Γ(Q,OQ) → Γ(Q,OY )

→H1(Q,OQ(−q, 0)) → H1(Q,OQ) → H1(Q,OY )

→H2(Q,OQ(−q, 0)) → H2(Q,OQ) → H2(Q,OY ) → 0

We can compute all of the terms in this long exact sequence. For the purposes at hand it
suffices to view the summands as k-vector spaces so we systematically do this throughout.
Since OQ(−q, 0) = IY is the ideal sheaf of Y , its global sections must vanish on Y . But IY

is a subsheaf of OQ whose global sections are the constants. Since the only constant which
vanish on Y is 0, Γ(Q,OQ(−q, 0)) = 0. By (I, 3.4), Γ(Q,OQ) = k. Since Y is the disjoint
union of q copies of P1 and each copy has global sections k, Γ(Q,OY ) = k⊕q. Since Q is
a complete intersection of dimension 2, (Ex. 5.5 b) implies H1(Q,OQ) = 0. Because Y is
isomorphic to several copies of P1, the general result (proved in class, but not in the book)
that Hn

∗ (OPn) = {
∑
aIXI : entries in I negative} implies H1(Q,OY ) = H1(Y,OY ) = 0.

Since Q is a hypersurface of degree 2 in P3, (I, Ex. 7.2(c)) implies pa(Q) = 0. Thus by
(Ex. 5.5c) we see that H2(Q,OQ) = 0. Putting together the above facts and some basic
properties of exact sequences show that H1(Q,OQ(−q, 0)) = k⊕(q−1), H2(Q,OQ(−q, 0)) = 0
and H2(Q,OY ) = 0. Our long exact sequence is now

0 →Γ(Q,OQ(−q, 0)) = 0 → Γ(Q,OQ) = k → Γ(Q,OY ) = k⊕q

→H1(Q,OQ(−q, 0)) = k⊕(q−1) → H1(Q,OQ) = 0 → H1(Q,OY ) = 0

→H2(Q,OQ(−q, 0)) = 0 → H2(Q,OQ) = 0 → H2(Q,OY ) = 0 → 0

Number (3) now follows immediately from the lemma because

H1(Q,OQ(a, 0)) = k⊕(−a−1) ̸= 0

for a ≤ −2.

5



Now we compute (1) and (2). Let a be an arbitrary integer. First we show that
OQ(a, a) = 0. We have an exact sequence

0 → OP3(−2) → OP3 → OQ → 0

where the first map is multiplication by xy − zw. Twisting by a gives an exact sequence

0 → OP3(−2 + a) → OP3(a) → OQ(a) → 0.

The long exact sequence of cohomology yields an exact sequence

· · · → H1(OP3(a)) → H1(OQ(a)) → H2(OP3(−2 + a)) → · · ·

But from the explicit computations of projective space (5.1) it follows that H1(OP3(a)) = 0
and H2(OP3(−2 + a)) = 0 from which we conclude that H1(OQ(a)) = 0.

Next we show that OQ(a− 1, a) = 0. Let Y be a single copy of P1 sitting in Q so that
Y has type (1, 0). Then we have an exact sequence

0 → IY → OQ → OY → 0.

But IY = OQ(−1, 0) so this becomes

0 → OQ(−1, 0) → OQ → OY → 0.

Now twisting by a yields the exact sequence

0 → OQ(a− 1, a) → OQ(a) → OY (a) → 0.

The long exact sequence of cohomology gives an exact sequence

· · · → Γ(OQ(a)) → Γ(OY (a)) → H1(OQ(a− 1, a)) → H1(OQ(a)) → · · ·

We just showed that H1(OQ(a)) = 0, so to see that H1(OQ(a − 1, a)) = 0 it suffices
to note that the map Γ(OQ(a)) → Γ(OY (a)) is surjective. This can be seen by writing
Q = Proj(k[x, y, z, w]/(xy − zw)) and (w.l.o.g.) Y = Proj(k[x, y, z, w]/(xy − zw, x, z)) and
noting that the degree a part of k[x, y, z, w]/(xy − zw) surjects onto the degree a part of
k[x, y, z, w]/(xy − zw, x, z). Thus H1(OQ(a − 1, a)) = 0 and exactly the same argument
shows H1(OQ(a, a− 1)) = 0. This gives (1).

For (2) it suffices to show that for a > 0,

H1(OQ(−a,−a− n)) = H1(OQ(−a− n,−a)) = 0

for all n > 0. Thus let n > 0 and suppose Y is a disjoint union of n copies of P1 in such a
way that IY = OQ(0,−n). Then we have an exact sequence

0 → OQ(0,−n) → OQ → OY → 0.

Twisting by −a yields the exact sequence

0 → OQ(−a,−a− n) → OQ(−a) → OY (−a) → 0.

The long exact sequence of cohomology then gives an exact sequence

· · · → Γ(OY (−a)) → H1(OQ(−a,−a− n)) → H1(OQ(−a)) → · · ·

As everyone knows, since Y is just several copies of P1 and −a < 0, Γ(OY (−a)) = 0.
Because of our computations above, H1(OQ(−a)) = 0. Thus H1(OQ(−a,−a − n)) = 0, as
desired. Showing that H1(OQ(−a− n,−a)) = 0 is exactly the same.
(b) Now use these results to show:
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1. If Y is a locally principal closed subscheme of type (a, b) with a, b > 0, then Y is
connected.

Proof. Computing the long exact sequence associated to the short exact sequence

0 → IY → OQ → OY → 0

gives the exact sequence

0 → Γ(Q, IY ) → Γ(Q,OQ) → Γ(Q,OY ) → H1(Q, IY ) → · · ·

But, Γ(IY ) = 0, Γ(Q,OQ) = k, and by (a)2 above H1(Q, IY ) = H1(Q,OQ(−a,−b)) =
0. Thus we have an exact sequence

0 → 0 → k → Γ(OY ) → 0 → · · ·

from which we conclude that Γ(OY ) = k which implies Y is connected.

2. now assume k is algebraically closed. Then for any a, b > 0, there exists an irreducible
nonsingular curve Y of type (a, b). Use (II, 7.6.2) and (II, 8.18).

Proof. Given (a, b), (II, 7.6.2) gives a closed immersion

Q = P1 ×P1 → Pa ×Pb → Pn

which corresponds to the invertible sheaf OQ(−a,−b) of type (a, b). By Bertini’s
theorem (II, 8.18) there is a hyperplane H in Pn such that the hyperplane section
of the (a, b) embedding of Q in Pn is nonsingular. Pull this hyperplane section back
to a nonsingular curve Y of type (a, b) on Q in P3. By the previous problem, Y is
connected. Since Y comes from a hyperplane section this implies Y is irreducible (see
the remark in the statement of Bertini’s theorem).

3. an irreducible nonsingular curve Y of type (a, b), a, b > 0 on Q is projectively normal
(II, Ex. 5.14) if and only if |a − b| ≤ 1. In particular, this gives lots of examples of
nonsingular, but not projectively normal curves in P3. The simplest is the one of type
(1, 3) which is just the rational quartic curve (I, Ex. 3.18).

Proof. Let Y be an irreducible nonsingular curve of type (a, b). The criterion we apply
comes from (II, Ex 5.14d) which asserts that the maps

Γ(P3,OP3(n)) → Γ(Y,OY (n))

are surjective for all n ≥ 0 if and only if Y is projectively normal. To determine when
this occurs we have to replace Γ(P3,OP3(n)) with Γ(Q,OQ(n)). It is easy to see that
the above criterion implies we can make this replacement if Q is projectively normal.
Since Q ∼= P1 × P1 is locally isomorphic to A1 × A1 ∼= A2 which is normal, we see
that Q is normal. Then since Q is a complete intersection which is normal, (II, 8.4b)
implies Q is projectively normal.

Consider the exact sequence

0 → IY → OQ → OY .
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Twisting by n gives an exact sequence

0 → IY (n) → OQ(n) → OY (n).

Taking cohomology yields the exact sequence

· · · → Γ(Q,OQ(n)) → Γ(Q,OY (n)) → H1(Q, IY (n)) → · · ·

Thus Y is projectively normal precisely if H1(Q, IY (n)) = 0 for all n ≥ 0. When can
this happen? We apply our computations from part (a). Since OQ(n) = OQ(n, n),

IY (n) = OQ(−a,−b)(n) = OQ(−a,−b)⊗OQ
OQ(n, n) = OQ(n− a, n− b)

If |a− b| ≤ 1 then |(n− a)− (n− b)| ≤ 1 for all n so

H1(Q,OQ(−a,−b)(n)) = 0

for all n which implies Y is projectively normal. On the other hand, if |a− b| > 1 let
n be the minimum of a and b, without loss assume b is the minimum, so n = b. Then
from (a) we see that

OQ(−a,−b)(n) = OQ(−a,−b)(b) = OQ(−a+ b, 0) ̸= 0

since −a+ b ≤ −2.

(c) If Y is a locally principal subscheme of type (a, b) inQ, show that pa(Y ) = ab−a−b+1.
[Hint: Calculate the Hilbert polynomials of suitable sheaves, and again use the special case
(q,0) which is a disjoint union of q copies of P1.]

Proof. The sequence
0 → OQ(−a,−b) → OQ → OY → 0

is exact so
χ(OY ) = χ(OQ)− χ(OQ(−a,−b)) = 1− χ(OQ(−a,−b)).

Thus
pa(Y ) = 1− χ(OY ) = χ(OQ(−a,−b)).

The problem is thus reduced to computing χ(OQ(−a,−b)).
Assume first that a, b < 0. To compute χ(OQ(−a,−b)) assume Y = Y1 ∪ Y2 where

IY1 = OQ(−a, 0) and IY2 = OQ(0,−b). Thus we could take Y1 to be a copies of P1 in one
family of lines and Y2 to be b copies of P1 in the other family. Tensoring the exact sequence

0 → IY1 → OQ → OY1 → 0

by the flat module IY2 yields an exact sequence

0 → IY1 ⊗ IY2 → IY2 → OY1 ⊗ IY2

[Note: I use the fact that IY2 is flat. This follows from a proposition in section 9 which
we haven’t yet reached, but I’m going to use it anyways. Since Y2 is locally principal, IY2

is generated locally by a single element and since Q is a variety it is integral. Thus IY2 is
locally free so by (9.2) IY2 is flat.] This exact sequence can also be written as

0 → OQ(−a,−b) → OQ(0,−b) → OY ⊗OQ(0,−b) → 0.
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The associated long exact sequence of cohomology is

0 →Γ(Q,OQ(−a,−b)) → Γ(Q,OQ(0,−b)) → Γ(Q,OY1 ⊗OQ(0,−b))
→H1(Q,OQ(−a,−b)) → H1(Q,OQ(0,−b)) → H1(Q,OY1 ⊗OQ(0,−b))
→H2(Q,OQ(−a,−b)) → H2(Q,OQ(0,−b)) → H2(Q,OY1 ⊗OQ(0,−b)) → 0

The first three groups of global sections are 0. Since a, b < 0, (a) impliesH1(Q,OQ(−a,−b)) =
0. From the lemma we know that H1(Q,OQ(0,−b)) = k⊕(b−1). Also by the lemma we know
that H2(Q,OQ(0,−b)) = 0. Since OY1 ⊗OQ(0,−b) is isomorphic to the ideal sheaf of b− 1
points in each line of Y1, a similiar proof as that used in the lemma shows that

H1(Q,OY ⊗OQ(0,−b)) = k⊕a(b−1).

Plugging all of this information back in yields the exact sequence

0 →Γ(Q,OQ(−a,−b)) = 0 → Γ(Q,OQ(0,−b)) = 0 → Γ(Q,OY1 ⊗OQ(0,−b)) = 0

→H1(Q,OQ(−a,−b)) = 0 → H1(Q,OQ(0,−b)) = k⊕(b−1)

→ H1(Q,OY1 ⊗OQ(0,−b)) = k⊕a(b−1)

→H2(Q,OQ(−a,−b)) → H2(Q,OQ(0,−b)) = 0

→ H2(Q,OY1 ⊗OQ(0,−b)) = 0 → 0

From this we conclude that

χ(OQ(−a,−b)) = 0 + 0 + h2(Q,OQ(−a,−b)) = a(b− 1)− (b− 1) = ab− a− b+ 1

which is the desired result.
Now we deal with the remaining case, when Y is a disjoint copies of P1. We have

pa(Y ) = 1− χ(OY ) = 1− χ(O⊕a
P1 ) = 1− aχ(OP1) = 1− a

which completes the proof.
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Homework 2, MAT256B
II.8.4, III.6.8, III.7.1, III.7.3

William A. Stein

April 2, 1996

1 Exercise II.8.4

Complete Intersections in Pn. A closed subscheme Y of Pn
k is called a (strict, global)

complete intersection if the homogenous ideal I of Y in S = k[x0, . . . , xn] can be generated
by r elements where r = codim(Y,Pn).

(a) Let Y be a closed subscheme of codimension r in Pn. Then Y is a complete in-
tersection iff there are hypersurfaces (i.e., locally principal subschemes of codimension 1)
H1, . . . , Hr, such that Y = H1 ∩ · · · ∩Hr as schemes, i.e., IY = IH1 + · · ·+ IHr .

(⇒) By (II, Ex 5.14) I is defined to be Γ∗(IY ). By (II, 5.15), Ĩ ∼= IY . Write I =
(f1, . . . , fr), then since localization commutes with taking sums,

IY = (f1, . . . , fr )̃ = ((f1) + · · ·+ (fr))̃ = (f1)̃ + · · ·+ (fr )̃.

Let Hi be the locally principal closed subscheme of codimension 1 determined by the ideal
sheaf (fi)̃. Then Y is the intersection of the Hi.

(⇐) Someone suggested I should apply unmixedness and primary decomposition to some
ideal somewhere and use the fact that a saturated ideal doesn’t have primary components
corresponding to the irrelevant ideal or something like that. NOT DONE.

(b) If Y is a complete intersection of dimension ≥ 1 in Pn, and if Y is normal, then Y
is projectively normal (Ex. 5.14).

Let Z be the cone over Y , then A(Z) = S/I(Y ). By (I, Ex. 3.17d), A(Z) is integrally
closed iff Z is normal. By definition A(Z) is integrally closed iff Y is projectively normal.
Thus we must show that Z is normal. Since Y is a complete intersection, I(Y ) = (f1, . . . , fr)
so Z is a complete intersection subscheme of An+1. By (II, 8.23) Z is normal iff Z is regular
in codimension 1. Also by (II, 8.23) Y is regular in codimension 1 because we have assumed
Y is normal. But Y regular in codimension 1 implies Z regular in codimension 1. [We used
this last semester in (II, Ex. 6.3d). Intuitively, the only singularity in Z not in Y is the
cone point which has codimension > 1. This is because Z is locally Ui ×A1.]

(c) With the same hypothesis as in (b), conclude that for all ℓ ≥ 0, the natural map
Γ(Pn,OPn(ℓ)) → Γ(Y,OY (ℓ)) is surjective. In particular, taking ℓ = 0, show that Y is
connected.

That the map Γ(Pn,OPn(ℓ)) → Γ(Y,OY (ℓ)) is surjective is just the statement of (II,
Ex. 5.14d). When ℓ = 0 this says that k = Γ(Pn,OPn(ℓ)) surjects onto Γ(Y,OY (ℓ)) so
dimΓ(Y,OY ) ≤ 1 and hence Y is connected. [If Y were not connected then Γ(Y,OY ) =
k ⊕ · · · ⊕ k where the number of direct summands equals the number of components of Y .]

(d) Now suppose given integers d1, . . . , dr ≥ 1, with r < n. Use Bertini’s theorem (8.18)
to show that there exists nonsingular hypersurfaces H1, . . . , Hr in Pn, with degHi = di, such
that the scheme Y = H1 ∩ · · · ∩Hr is irreducible and nonsingular in codimension r in Pn.
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[To apply Bertini’s theorem we must assume k is algebraically closed. I’m going to make
this assumption now. Maybe there is a way around this?]

Let Pn
k ↪→ Pd1-uple

k be the d1-uple embedding of Pn
k . Use Bertini’s theorem to choose a

hyperplane in Pd1-uple
k which has nonsingular intersection with the image of Pn

k . It pulls back
to a degree d1 nonsingular hypersurface H1 in Pn

k . If r > 1 consider the d2-uple embedding
Pn

k ↪→ Pd2-uple
k . The image of H1 is a nonsingular variety in Pd2-uple

k of dimension ≥ 2. By

Bertinni’s theorem there is a hyperplane in Pd2−uple
k whose intersection with the image of

H1 is nonsingular and of dimension one less than H1. Pulling back we obtain a hypersurface
H2 such that H1 ∩H2 is nonsingular and H2 has degree d2. Continuing inductively in this
way and noting that dimH1 ∩ · · · ∩Hr−1 ≥ 2 (since r < n) completes the proof.

(e) If Y is a nonsingular complete intersection as in (d) show that ωY
∼= OY (

∑
di−n−1).

By (III, 8.20) ωH1
∼= ωPn ⊗L(H1)⊗OH1 . By the explicit computation of ClPn (II, 6.17)

we know that L(H1) ∼= OPn(d1). Thus

ωH1
∼= OPn(−n− 1)⊗OPn(d1)⊗OH1

∼= OH1(d1 − n− 1).

By (8.20) we have that

ωH1∩H2
∼= ωH1 ⊗ L(H2.H1)⊗OH1∩H2 .

We know that H2 ∼ d2P
n−1 (linear equivalence) so by (II, 6.2b) this implies H2.H1 ∼

d2P
n−1.H1. But d2P

n−1.H1 corresponds to the invertible sheaf (see (II, Ex 6.8c) OH1(d2).
Thus

ωH1∩H2
∼= OH1(d1 − n− 1)⊗OH1(d2)⊗OH1∩H2

∼= OH1∩H2(d1 + d2 − n− 1).

Repeating this argument inductively yields the desired isomorphism.
(f) If Y is a nonsingular hypersurface of degree d in Pn, use (c) and (e) above to show

that pg(Y ) =
(
d−1
n

)
. Thus pg(Y ) = pa(Y ) (I, Ex. 7.2).

By definition pg(Y ) = dimk Γ(Y, ωY ). By (e), ωY
∼= O(d− n− 1) and by (c) the natural

map
Γ(X,OX(d− n− 1)) → Γ(Y,OY (d− n− 1))

is surjective. We show that it is also injective. By (III, 5.5a) an element f ∈ Γ(X,OX(d−
n − 1)) can be represented as a homogeneous polynomial of degree d − n − 1. Now f
maps to 0 in Γ(Y,OY (d − n − 1)) iff f vanishes on Y , that is to say, Y ⊂ Z(f). But
deg Y = d > d− n− 1 = deg f so Y can not be contained in the hypersurface Z(f) unless
f = 0. [Proof: Y = Z(g) ⊂ Z(f) implies (f) ⊂ (g) so f is a multiple of g, but g has degree
strictly greater than f so must be 0.] Thus

dimk Γ(Y,OY (d− n− 1)) = dimk Γ(X,OX(d− n− 1)) =

(
d− 1

n

)
since the number of monomoials in k[x0, . . . , xn] of degree d− n− 1 is

(
d−1
n

)
as desired.

(g) If Y is a nonsingular curve in P3, which is a complete intersection of nonsingular
surfaces of degrees d, e, then pg(Y ) = 1

2
de(d+ e− 4) + 1. Again the geometric genus is the

same as the arithmetic genus (I, Ex. 7.2).
Let H be the hypersurface of degree d. There is an exact sequence

0 → OPn(−d) → OPn → OH → 0.
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Twisting by a and computing dimensions we see that

dimOH(a) = dimOPn(a)− dimOPn(a− d) =

(
3 + a

3

)
−

(
3 + a− d

3

)
.

Using reasoning like that in (e) we obtain an exact sequence

0 → OH(−e) → OH → OY → 0.

Twisting by e+ d− 4 yields the exact sequence

0 → OH(d− 4) → OH(e+ d− 4) → OY (e+ d− 4) → 0.

Applying the above explicit computation of dimOH(a) we see that

dimOY (e+ d− 4) =

(
e+ d− 1

3

)
−
(
e− 1

3

)
−
(
d− 1

3

)
+ chose−13.

After some algebra the latter expression becomes 1
2
ed(e+ d− 4) + 1, as desired.

[Comment 1: We could have also solved (f) using this method.]
[Comment 2: Serre duality gives another solution. By (III, 7.12.4) pg(Y ) = dimH0(Y, ωY ) =

dimH1(Y,OY ) = pa(Y ). But by (I, Ex. 7.2d) pa(Y ) = 1
2
de(d+ e− 4) + 1.]

2 Exercise III.6.8

Prove the following theorem of Kleiman: if X is a noetherian, integral, seperated, locally
factorial scheme, then every coherent sheaf on X is a quotient of a locally free sheaf (of
finite rank).

(a) First show that open sets of the form Xs, for various s ∈ Γ(X,L) and various
invertible sheaves L on X, form a base for the topology of X.

Let x ∈ U ⊂ X with U open.
Case 1. W = X − U is irreducible. Since x ̸∈ W , Ox ̸⊂ OW . [This assertion is a matter

of some difficulty among the others working on this problem. It is not hard to see when X
is a variety in the classical sense. But in the more general situation it isn’t at all clear and
may use the hypothesis that X is seperated in an essential way. For example, the affine line
with a doubled origin has two different local rings which are equal. I’m not sure how to
resolve this but there was some talk of using the valuative criterion for seperatedness. PUT
CORRECT SOLUTION HERE AFTERWARDS.] Thus let h ∈ K be a rational function
such that h ̸∈ OW but h ∈ Ox. Let (h) = D1 −D2 with D1=zeros of h and D2=poles of h.
Since h ∈ Ox, we have x ̸∈ Var(D2)=the underlying scheme of the effective divisor D2. (This
is because h can’t have a pole at x.) Furthermore y ∈ W implies Oy ⊂ OW so h ̸∈ Oy thus
y ∈ Var(D2) (this is because X is factorial so Oy is integrally closed so vy(h) < 0 iff h ̸∈ Oy.)
ThusW ⊂ Var(D2). Since X is factorial and D2 is effective (II, 6.11) implies D2 corresponds
to an effective Cartier divisor and hence there exists an open cover U = (Ui) ofX and rational
functions hi ∈ K such that hi|Ui ∈ OUi

and (hi) = D2 on Ui. Since hi

hj
∈ Ox(Ui ∩ Uj)

∗ and

X is normal, ( hi

hj
) = 0. Let L be the locally free invertible sheaf represented by the Cartier

divisor (Ui, hi) (so L is locally generated by 1/hi on Ui), and let ui : L|Ui → Ox|Ui be the
isomorphism given by multiplication by hi. Define s(y) = u−1

i (hi(y)) for y ∈ Ui. By this we
mean u−1

i of the map y 7→ hi(y), i.e., s is the glueing of the inverse images of the hi ∈ Ox(ui).
Thus s is a section of L such that Xs ∩ Ui = Ui − Var(D2). Thus Xs = X − Var(D2) ⊂ U .
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Case 2. W = X − U is reducible. Using the fact that X is noetherian write W =
Z1 ∪ · · · ∪ Zn. From case 1 we know that there exists invertible sheaves L1, . . . ,Ln and
sections si ∈ Γ(X,Li), i = 1, . . . , n such that x ∈ Xsi ⊂ X − Zi. Let s = s1 ⊗ · · · ⊗ sn ∈
Γ(X,L1 ⊗ · · · ⊗ Ln). Then Xs = ∩n

i=1Xsi hence x ∈ Xs ⊂ U .
[[This proof was copied from Borelli’s paper with little modification. One danger is that

the corresponding theorem in Borelli’s paper assumes X to be a factorial variety, not a more
general scheme as above. Part (b) below was not in Borelli.]]

(b) Now use (II, 5.14) to show that any coherent sheaf is a quotient of a direct sum ⊕Lni
i

for various invertible sheaves Li and various integers ni.
Let F be a coherent sheaf on X. Let U be an open set on which F|U ∼= M̃ . Suppose

Xf ⊂ U where f is a global section of some invertible sheaf L. Our strategy is to construct
an appropriate map ⊕Lni

i → F which is surjective when restricted to Xf , then use the fact
that X is noetherian and that the Xf form a basis for the topology on X to cover X which
such Xf and then take the sum of all the resulting maps.

Let m1, . . . ,mr generate M . Let t1, . . . , tr be the restrictions of the mi to Xf . By (II,
5.14b) there exists n so that

t1f
n, . . . , trf

n ∈ Γ(Xfn ,F ⊗ L⊗n)

extend to global sections s1, . . . , sn of Γ(X,F ⊗ L⊗n). Define a map

⊕n
i=1OX → F ⊗L⊗n

by sending (0, . . . , 0, 1, 0, . . . , 0) (1 in the ith position only) to si. Then tensoring with
(L⊗n)−1 = (L−1)⊗n we obtain a map

Θ : ⊕n
i=1(L−1)⊗n → F .

The map Θ is surjective when restricted to Xf . To see this let p be a point of Xf . The stalk
of F at p is generated by the stalks of m1, . . . ,mn at p. Since the ti are all in the image of
the map Θ and the stalks of the ti at p are the same as the stalks of the mi at p it follows
that the stalks of the mi are all in the image under Θ of the stalk of ⊕n

i=1(L−1)⊗n at p.
Take the direct sum of all such maps over a suitable open cover (U) of X and suitable

open covers (Xf ) of each U . Since X is noetherian we can arrange it so this sum is finite.

3 Exercise III.7.1

Let X be an integral projective scheme of dimension ≥ 1 over a field k, and let L be an
ample invertible sheaf X. Then H0(X,L−1) = 0.

Lemma 3.1. If M ̸= OX is an invertible sheaf which is generated by its global sections then
H0(X,M−1) = 0.

Proof. By the proof of (II 6.12) M−1 = M∨ = Hom(M,OX). Thus we must show that
Γ(X,Hom(M,OX)) = 0, i.e., that homOX

(M,OX) = 0. Since M is generated by global
sections (mi) to give a morphism f : M → OX is the same as to give the images αi =
f(mi) ∈ Γ(X,OX) of the mi. Since X is integral and projective Γ(X,OX) = k so the αi all
lie in k. Thus if f is nonzero then some αi ̸= 0 so 1

αi
mi 7→ 1. Let t = 1

αi
mi ∈ Γ(X,M).

Let p be any point of X. The map fp : Mp → OX,p sends tp to 1 so it is surjective being
a map of free OX,p-modules (and since OX,p is generated by 1 as an OX,p-module). On
the other hand Mp is free of rank 1 over the integral domain OX,p so f must be injective.
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Indeed, if Mp
∼= OX,p · g for some g and ag 7→ 0 then af(g) = 0 so since OX,p is a domain,

a = 0 or f(g) = 0. But f(g) ̸= 0 since f is surjective so a = 0 and so ag = 0 whence
f is injective. Therefore f is an isomorphism since it is an isomorphism on stalks. Thus
M ∼= OX contrary to our assumption that M ̸∼= OX so there can be no nonzero f in
homOX

(M,OX) = Γ(X,M−1), as desired.

Suppose that L is ample. If L = OX then L can not be ample, for if OX is ample then
since O⊗n

X = OX for any n ≥ 1 it follows by (II.7.5) that OX is very ample. This means that
there is an immersion i : X ↪→ Pn

k where n = dimΓ(X,OX) − 1 = 0 which is impossible
because X has dimension at least 1.

Thus we may assume L ̸∼= OX and apply the above lemma. There is an n so that
L⊗n is generated by its global sections. By the above lemma H0(X, (L⊗n)∨) = 0. Since
the collection of invertible sheaves forms a group and ∨ is the inverse operation it follows
trivially that (L⊗n)∨ ∼= (L∨)⊗n and hence Γ(X, (L∨)⊗n) = 0. Suppose L∨ has a nonzero
global section s. Let p ∈ X be a point so that sp ̸= 0. It follows that s ⊗ · · · ⊗ s ̸= 0 in
(L∨

p )
⊗n. Thus s defines a nonzero global section s⊗ · · · ⊗ s of (L∨)⊗n. [This last statement

is a bit subtle because the tensor product is the sheaf associated to a certain presheaf so
we don’t know, a priori, that s ⊗ · · · ⊗ s maps to something nonzero under the θ of (II,
Defn 1.2). But if θ(s ⊗ · · · ⊗ s) = 0 then 0 = θ(s ⊗ · · · ⊗ s)p = (s ⊗ · · · ⊗ s)p so θ is not
injective on stalks contradicting the comment after (II, Defn 1.2).] Thus if H0(X,L∨) ̸= 0
then H0(X, (L⊗n)∨) ̸= 0, a contradiction. It follows that H0(X,L∨) = 0, as desired.

4 Exercise III.7.3

Let X = Pn
k . Show that Hq(X,Ωp

X) = 0 for p ̸= q, k for p = q, 0 ≤ p, q ≤ n.
Our strategy is to use the exact sequence

0 → ΩX → OX(−1)⊕n+1 → OX → 0

of (II, 8.13) along with (II, Ex 5.16 d) to reduce the computation of the cohomology of Ωp
X

to the computation of the cohomology of ΛpOX(−1)⊕n+1. We then show inductively that
the cohomology of ΛpOX(−1)⊕n+1 vanishes for p ≥ 1 thus completing the proof.

We compute the cohomology of Ωr inductively on r.
Step 1, r = 0. Suppose r = 0 so Ωr = OX . Then by (III, 5.5) H0(X,OX) = k and

H i(X,OX) = 0 for i ≥ 1. [Part (a) of (III, 5.5) gives H0(X,OX) = k, part (b) gives
H i(X,OX) = 0 for 0 < i < n and part (d) gives Hn(X,OX) ∼= H0(X,OX(−n− 1))∨ = 0.]

Step 2 Show that
H i(ΛrOX(−1)⊕n+1) = 0

for r ≥ 1.
[Matt Baker pointed out to me that

ΛrOX(−1)⊕n+1 ∼= OX(−1)⊕(
n+1
r ).

This is reasonable since it is true on stalks. It immediately implies the vanishing of the
cohomology groups. My original more complicated proof of step 2 is included next anyways.]

Step 2a, r = 1. We treat r = 1 as a special case. We must show thatH i(X,OX(−1)⊕n+1 =
0 or equivalently thatH i(X,OX(−1)) = 0. This is immediate from the explicit computations
of (III, 5.5). The argument proceeds exactly as in step 1.
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Step 2b, r ≥ 2. We now assume r ≥ 2 and proceed inductively on n. Since r ≥ 2 there
is an exact sequence

0 → Λr−1OX(−1)⊕n → ΛrOX(−1)⊕n+1 → ΛrOX(−1)⊕n → 0.

I obtained the map
ΛrOX(−1)⊗n+1 → ΛrOX(−1)⊗n

by carefully applying (II, Ex 5.16d) to the map OX(−1)⊕n+1 → OX(−1)⊕n. But this map
just turns out to be locally defined by xn 7→ 0 where x0, . . . , xn are local coordinates for
OX(−1). Then xi0 ∧ · · · ∧ xir maps to 0 if some ik = n and itself otherwise. The map

Λr−1OX(−1)⊕n → ΛrOX(−1)⊕n+1

identifies Λr−1OX(−1)⊕n with the kernel of the next map. The kernel of the next map is
locally generated by all “monomials” which contain an xn. Since r ≥ 2 we can identify
Λr−1OX(−1)⊕n with this kernel by just removing the xn off of the wedge product. [This is
not rigorous enough!]

By induction on n we have that

H i(Λr−1OX(−1)⊕n) = H i(ΛrOX(−1)⊕n) = 0

for all i (we will do the base case n = 1 in just a moment). Thus, by the long exact sequence
of cohomology we see that H i(ΛrOX(−1)⊕n+1) = 0 for all i. For n = 1, since r ≥ 2 it
follows that Λr−1OX(−1) = OX(−1) or 0 and ΛrOX(−1) = 0 and these both have trivial
cohomology as computed above.

Step 3. The final step is to obtain the long exact sequence

· · ·H i(Ωr) → H i(ΛrOX(−1)⊕n+1) → H i(Ωr−1) → · · ·

then apply step 2 and the induction hypothesis (we are inducting on r, the base case was
established in step 1) to calculate H i(Ωr) for all i.

Suppose r ≥ 1, then by (II, 8.13) we have an exact sequence

0 → ΩX → OX(−1)⊕n+1 → OX → 0.

By (II, Ex. 5.16d), ΛrOX(−1)⊕n+1 has a filtration

ΛrOX(−1)⊕n+1 = F 0 ⊇ F 1 ⊇ · · · ⊇ F r ⊇ F r+1 = 0

with quotients

F p/F p+1 ∼= Ωp ⊗ Λr−pOX =

{
0 if r − p ≥ 2

Ωp if r − p is 0 or 1

Thus
ΛrOX(−1)⊕n+1 = F 0 = · · · = F r−1

and the filtration becomes

ΛrOX(−1)⊕n+1 ⊃ F r ⊃ F r+1 = 0

with ΛrOX(−1)⊕n+1/F r ∼= Ωr−1 and F r ∼= Ωr. This gives an exact sequence

0 → Ωr → ΛrOX(−1)⊕n+1 → Ωr−1 → 0.
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The associated long exact sequence of cohomology gives for each i an exact sequence

H i(ΛrOX(−1)⊕n+1) → H i(Ωr−1) → H i+1(Ωr) → H i+1(ΛrOX(−1)⊕n+1).

But by step 2 the groups H i(ΛrOX(−1)⊕n+1) all vanish. Thus H i(Ωr−1) ∼= H i+1(Ωr). By
induction on r this shows that

H i(Ωr) =

{
0 if i ̸= r

k if i = r
.

This completes the proof.
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