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2 Talk 1: Tyler Kelly, Open Saito-Givental Invariants and Mirror Symmetry (Tuesday, July 19)

1 Preface

These are some (extremely sketchy) notes I’ve taken while attending the last part of the program
on K-theory, algebraic cycles and motivic homotopy theory at the Isaac Newton Institute (INI) in
Cambridge. I don’t expect these will be even remotely useful to anyone else, but perhaps this will
have some value to those who just want some vague idea of what topics were discussed in talks. If
you find yourself perplexed by anything here, the fault is almost surely entirely my own, since I was
likely perplexed myself when I wrote it in the first place. Moreover, if anything appears incorrect,
that too is surely my fault, either due to my own misunderstandings, typesetting errors, or just not
hearing things correctly. The moral of the story: abandon all hope, all ye who continue reading!

2
Talk 1: Tyler Kelly, Open Saito-Givental
Invariants and Mirror Symmetry (Tuesday,
July 19)

Remark 2.0.1: Realizations of cycles and motives play a role in the physics of amplitudes in string
theory and the study of Feynman integrals. Today’s focus: mirror symmetry, with a focus on certain
integrals over cycles. Goal of mirror symmetry: link

• Enumerative data for a symplectic manifold, algebraic variety, or complex function, or
• Periods of a so-called mirror

The ur-example is a quintic threefold.

Remark 2.0.2: How this example works: count degree d rational curves in X ⊂ P4 a quintic
threefold. The mirror is a crepant resolution of

Z(
∑

x5
i − 5ψ

∏
xi) ⊆ P4/(C5)3,

a 1-parameter deformation of the quintic. Compute as some integral
∫
γ

Ωψ.

Question 2.0.3
How to construct the mirror? And how to distill the enumerative information?

Remark 2.0.4: Today’s goal: answer these questions for Landau-Ginzberg (LG) models (X,G,W )
where X is a quasi-affine variety G↷ X is a finite group, W =?. These give mirrors to Fanos, and
noncommutative symplectic deformations of complete intersections in toric varieties.

Remark 2.0.5: Example LG model: (Cn,
∏

µri ,
∑

xri
i ) ⇌ (Cn, 1,

∑
xri
i ). Answers to these

questions for LG models: the mirror is built via a combinatorial construction, which annoyingly
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2 Talk 1: Tyler Kelly, Open Saito-Givental Invariants and Mirror Symmetry (Tuesday, July 19)

isn’t geometric. For enumerative data: oscillatory integrals associated to the RHS using Saito-
Givental theory the encapsulate FJRW invariants. Issue: deformation must be built perturbatively
term-by-term.

E 2.1 Saito-Givental Theory in dimension 1 e

Remark 2.1.1: Start with W : Cn → C given by
∑

xri
i . Build a twisted de Rham complex where

δ = d+ h−1dW ∨ (−) to get 0→ Ω0 δ−→ · · ·, then take hypercohomology. For e.g. W = xr, a basis
can be computed explicitly for H1. One can cook up a perfect pairing between a certain relative
homology Hn(X,ℜ(W/H)≪ 0,C) and this hypercohomology, roughly

(ψ, ω) 7→
∫
ξ
e

W
h ω

where ℜ(W/h) ≪ 0 so that the exponential term is small. Now take deformations to distill
enumerative info from this periods. First approximation: take the versal deformation

W s =
∑

xri
i +

∑
sa1,··· ,an

∏
xai
i .

Integrate to get a power series whose coefficients are ψk ∈ C[[sa1,··· ,an ]]. Compute this using a dual
basis and integration by parts.

Can try W = x4 + s2s
2 + s1x+ s0. Problem: lack of linearity! But this can be fixed to obtain flat

coordinates and a primitive form ω.

Remark 2.1.2: Theorem: there is a deformed potential W t which has primitive form ω = dx and
flat coordinates t0, · · · , tr−2 for the Frobenius manifold construction via Saito-Givental theory for
the LG model W = xr. This is a generating function for open enumerative invariants.

Remark 2.1.3: Strategy: start with X, where we want to understand its enumerative geometry.
Build the mirror X̃ using some type of open enumerative geometry, along with a deformation. Look
at integrals of forms over pieces of X̃, and that should recover the enumerative counts.

Remark 2.1.4: Build a moduli of orbidisks M by taking configurations of marked points on P1,
where points off of R come in pairs of complex conjugates. The local picture at marked points:
[C/µr]. Compactify by considering degenerations of configurations – internal nodes, boundary
nodes, contracted boundaries:

2.1 Saito-Givental Theory in dimension 1 5



2 Talk 1: Tyler Kelly, Open Saito-Givental Invariants and Mirror Symmetry (Tuesday, July 19)

The compactified moduli space is a real manifold with corners.

Remark 2.1.5: Take the universal line bundle L → M and define the Witten bundle R1(π∗L)∗.
One needs to specify a canonical multisection scan to control what happens on the boundary in order
to integrate overM. Theorem: in dimension one, the open r-spin invariants exist and don’t depend
on choice of this multisection, enjoy topological recursion, and there are closed form solutions of
certain invariants. Parts of this theorem fail in dimension 2, although analogous statements can be
made.

Theorem 2.1.6(Gross-K-Tessler).
Open FJRW invariants exist for (C2, µr × µs, xr + y2) and do depend on the choice of scan.

E 2.2 Dimension 2 e

Remark 2.2.1: Proceed as before, but run into issues with extra terms involving Gamma functions
in h0, as opposed to terms attached to h−1 previously. A solution: insert a hypergeometric function
to cancel it, as Li-Li-Saito-Shen do.

What’s the picture?

2.2 Dimension 2 6



3 Talk 2: Man Wai Cheung, Cluster dualities and superpotentials for Grassmannian (Tuesday, July
19)

There are some cases with mild singularities (ADE and elliptic type), outside of these things become
unmanageable. Key foothold in the proof: no wall-crossing to deal with, which is advantageous.
Proof uses topological recursion: compute something in two different ways, set them equal, and
play the two formulae off of each other.

3
Talk 2: Man Wai Cheung, Cluster
dualities and superpotentials for
Grassmannian (Tuesday, July 19)

Remark 3.0.1: Goal: Marsh-Rietsch potential write down a potential for Grassmannians. Gross-
Hacking-Keel-Kontsevich do as well, we’ll construct a map P going from the former to the latter.
Makes use of cluster structure on Gr, cluster varieties, and a GHKK construction.

Remark 3.0.2: Cluster algebras: start with a seed s = ({A1, · · · , An} , B = (bij)) where Ai are
variables and B = (bij) is a skew-symmetrizable matrix. Start with an initial seed, allow “mutations”
taking s → s′ where the new Ai are functions of the old, and take all such possible iterations to
generate the algebra.

Example 3.0.3(?): Example: s =
(
{A1, A2} ,

[
0 −1
1 0

])
. Mutate at 1 to get A1A

′
1 = 1 + A2;

write A3 := A′
1 to get A3 = 1 +A2

A1
. The next seed is ({A3, A2} , B′).

Remark 3.0.4: Can express cluster structures in terms of triangulations of (n+ 3)-gons:

Talk 2: Man Wai Cheung, Cluster dualities and superpotentials for Grassmannian (Tuesday, July 19) 7



3 Talk 2: Man Wai Cheung, Cluster dualities and superpotentials for Grassmannian (Tuesday, July
19)

This flip corresponds to the mutation relation A24A13 = A12A34 + A14A23. Since we can not
flip the boundary, some variables are frozen – namely those corresponding to adjacent nodes, so
A12, A23, A34, A41.

Remark 3.0.5: The homogeneous coordinate ring of C[Grk(n)] carries a cluster structure. On the
geometry side, cluster varieties are log Calabi-Yau whose rings of regular functions carry cluster
structures. For seeds, variables correspond to algebraic tori (C×)n, and mutations are birational
maps between tori and defines a gluing between them.

Remark 3.0.6: Formally defining a cluster variety: start with a lattice N and skew-symmetric
form {−,−} on N , and integers di, and a seed given by a basis for N . Take a dual basis M and
scale to M◦ by taking a basis 1

di
e∗
i . Take the corresponding tori A,X and glue by mutations to

get the corresponding cluster variety. The form gives a cluster ensemble lattice map p∗ : N →M◦

where n 7→ {n,−}. Since these commute with mutation, and produce a map of varieties A→ X.

Remark 3.0.7: There is a Langlands dual given by sending B 7→ B−t. A conjecture (Bardwellcot-
Evans-C-Hong-Lin) of mirror symmetry: A⇌ XL and X ⇌ AL. For today, the exchange matrices
are skew-symmetric, so the expectation is that A⇌ X are mirrors.

Remark 3.0.8: Cluster varieties can be described by scattering diagrams: defining NR,MR, this
is a collection of walls with finiteness and consistency conditions. A wall is a pair (d, fd) where
d ⊆MR is the support of walls, a convex rational polyhedral cone of codimension 1.

Talk 2: Man Wai Cheung, Cluster dualities and superpotentials for Grassmannian (Tuesday, July 19) 8



3 Talk 2: Man Wai Cheung, Cluster dualities and superpotentials for Grassmannian (Tuesday, July
19)

Remark 3.0.9: Crossing walls: pγ : zm 7→ zmf
±⟨n0, m⟩
d where n0 is a primitive normal to a

wall and γ is a path between chambers. A motivating example for theta functions: (C×)2 satisfies
H0((C×)2;O) =

⊕
m1,m2∈Z

Czm1
1 zm2

2 . To each nonzero point in M◦ assign a theta function θm, defined

from a collection of broken lines with initial slope m and endpoint Q in the positive chamber. Identify
points in the scattering diagram with tropical points of Langlands dual cluster varieties.

Remark 3.0.10: Cluster structures for Gr: have a distinguished anticanonical divisor Dac =
n∑
i=1

Di

where Dk = D[i+1,i+k] =
{
p[i+1,i+k] = 0

}
. Let Grk(Cn)◦ = Grk(Cn)/D, the positroid. . . something.

Compactify using boundary divisors Dk = D[i+1,i+(n−k)]. Each irreducible component yields a term
in the potential of the mirror (something about LG models). Can somehow get valuations on the
coordinate ring and write the potential directly.

Remark 3.0.11: Marsh-Rietsch define an isomorphism from the Jacobi ring of (Grk(Cn)◦,W ) to
the equivariant quantum cohomology ring of Grn−k(Cn). Rietsch-Williams: there is a Newton-

Talk 2: Man Wai Cheung, Cluster dualities and superpotentials for Grassmannian (Tuesday, July 19) 9



4 Talk 3: Dani Kaufman, Cluster varieties, amplitude symbols, and mutation invariants (Tuesday,
July 19)

Okounkov body on one side ∆(D), identifies points in this as tropical points on functions extending
to the boundary of. . . a potential Γ? Use theta reciprocity to get ∆(D) ∼= Γ via p∗.

4
Talk 3: Dani Kaufman, Cluster varieties,
amplitude symbols, and mutation
invariants (Tuesday, July 19)

E 4.1 Cluster Varieties e

Remark 4.1.1: Recall: cluster varieties are varieties with a toric atlas generated by some extra
combinatorial data. Encodes unexpected coordinate functions, and automorphisms of the cluster
structure encode exotic automorphisms of the variety. Cluster structure for the Grassmannian: uses
Plucker coordinates. New coordinate functions appear as part of a symbol alphabet for scattering
amplitudes for N = 4 SYM (super Yang-Mills) theory.

Remark 4.1.2: Idea: the same function can be obtained from several different constructions,
classifying mutation invariants shows that these must produce the same functions. Examples of
such special functions: traces of monodromy, cluster character, Diophantine equations of Markov
numbers, theta functions, Skein modules elements of closed loops, etc.

Remark 4.1.3: Cluster varieties: varieties built out of seed tori glued along birational morphisms
called mutations.

Talk 3: Dani Kaufman, Cluster varieties, amplitude symbols, and mutation invariants (Tuesday, July 19) 10



4 Talk 3: Dani Kaufman, Cluster varieties, amplitude symbols, and mutation invariants (Tuesday,
July 19)

Geometric type cluster varieties can be tracked with quivers – a quiver is used as the initial seed
and generated a cluster variety after taking mutations. Cluster ensembles associated with a quiver
Q: a pair of cluster varieties (A,X) and a map p : A → X defined on coordinates on the same

4.1 Cluster Varieties 11



4 Talk 3: Dani Kaufman, Cluster varieties, amplitude symbols, and mutation invariants (Tuesday,
July 19)

seed by p∗(xi) =
∏
j

a
eij

j . Introduced by Fock, Goncharov toward an algebraic theory of higher

Teichmüller spaces. Example: Grp(p + q) and Confn(Pk−1) are an (A,X) pair. Interestingly, the
immutable seeds for Gr3(7) look like an E6 diagram! There are “phase transitions” for values of
p, q where there is a jump from finitely many clusters to infinitely many.

E 4.2 Amplitudes e

Remark 4.2.1: Scattering amplitudes in the planar limit N = 4 SYM live in Conf + n(P3), and
the amplitudes for up to two loops can be written in terms of polylogarithms. The arguments of
these polylogarithms come from the X cluster variety structure on this configuration space, and
constitute the symbol of the amplitude which encodes its singularity and branch cut structure. Goal:
understand what happens as cluster ensembles transition from finite type to infinite type.

E 4.3 Cluster modular groups e

Remark 4.3.1: Idea: automorphism group Γ of mutation structures, so similar to a mapping class
group. Can define an action of this on the rational function fields of these varieties. Mutation
invariant functions: those invariant under some subgroup of Γ.

Remark 4.3.2: Example: take the Markov quiver, which is associated to the punctured torus and
the affine root system of type A(1,1)

1 and Γ = PSL2(Z). Similarly a 4-punctured sphere is of type
elliptic D(1,1)

4 . See Somos sequences.

E 4.4 Surface cluster ensembles e

Remark 4.4.1: Look at S associated to a marked surface and take G = PSL2(R), then A corre-
sponds to Penner’s decorated Teichmüller spaces and X with Teichmüller space with Fock coordi-
nates parameterizing hyperbolic somethings with an “opening”.

Remark 4.4.2: Main theorem of their thesis: classification of invariants for the action of Dehn
twists on surface cluster ensembles. The invariant ring R(X)⟨γ⟩ is generated by traces of monodromy
operators of excised closed curves and invariant X coordinates for an excising triangulation of δ a
simple closed curve, where S is a marked surface and γ ∈ ΓS is a Dehn twist about δ. For A, it’s
generated by curves that don’t intersect δ.

Remark 4.4.3: There’s some way to obtain a quiver from a triangulation of a surface. More
generally, each cluster modular group has an element that looks like a Dehn twist (a cluster Dehn
twist), even when the cluster doesn’t come from a surface at all.

4.2 Amplitudes 12



5 Talk 4: Goncalo Tabuada, Noncommutative generalized Riemann hypothesis (Tuesday, July 19)

Question 4.4.4
Some questions:

• What can we say about cluster invariants from higher Teichmüller spaces? Are these related
to higher laminations, tensor webs?

• Are the square root symbols related to polylogarithm relations?

• The collection of invariants for a Dehn twist behave like cluster variables for a limit cluster
ensemble. How is this limit related to compactifications of Teichmüller space?

5
Talk 4: Goncalo Tabuada,
Noncommutative generalized Riemann
hypothesis (Tuesday, July 19)

E 5.1 GRH e

Remark 5.1.1: Recall ζ(s) =
∑
n≥1

1
ns

, which admits an Euler product expansion
∏

p prime

1
1− p−s ,

which converges for ℜ(s) > 1 and has a simple pole at s = 1.

Conjecture 5.1.2(Riemann, 1859).

ζ(s) = 0 =⇒ ℜ(s) = 1
2 .

Remark 5.1.3: Formulating GRH: let

• K be a global field (e.g. K = Q), so for ch(K) = 0 a finite extension of Q and for ch(K) > 0
an extension of Fq(t).

• X be a smooth proper K-scheme.
• 0 ≤ w ≤ 2 dim(X)
• ΣK the infinite set of nonarchimedean places of K
• For v ∈ Σk,

– KV the completion of K at v (e.g. Qp)
– Ov the valuation ring of KV (e.g. Zp̂)
– κv the residue field of Ov (e.g. Z/pZ)
– pv the characteristic of κv (e.g. p)
– Nv the cardinality of κv (e.g. p)

Talk 4: Goncalo Tabuada, Noncommutative generalized Riemann hypothesis (Tuesday, July 19) 13



5 Talk 4: Goncalo Tabuada, Noncommutative generalized Riemann hypothesis (Tuesday, July 19)

There is a SES

1→ Iv → GKv → Gκv
∼= Ẑ→ 1

where Iv is the inertia group. Let the Frobenius be πv, defined as the inverse of λ 7→ λNv ∈ Ẑ.
Choose primes ℓv and field embeddings ιv : Qℓv → C.

Definition 5.1.4 (Serre)

Lw(X; s) =
∏
v∈Σk

Lw,v(X, s),

Lw,v(X; s) := 1

det
(

id−N−s
v (πv ⊗ C)

∣∣∣ Hw
ét(X×

k
Kv×

Kv

Kv;Qℓv )Iv ⊗ C
) .

Theorem 5.1.5(Serre).
Lw(X; s) is a meromorphic function on the half-plane ℜ(s) > w

2 + 1. Some conditions:

• Lw(X; s) admits a meromorphic continuation to C
• Lw(X; s) has no poles in the critical strip w

2 < ℜ(s) < w

2 + 1.

Conjecture 5.1.6(GRH).
Lw(X; s) = 0 and w

2 < ℜ(s) < w

2 + 1 =⇒ ℜ(s) = w + 1
2 .

Example 5.1.7(?): For K = Q, X = SpecQ, w = 0 then L0(X; s) = ζ(s).

For K a number field and X = SpecK, L0(X; s) =
∑

I ⊴ OK

1
N(I)s is the Dedekind-zeta function.

Remark 5.1.8: Status of GRH:

• For ch k = 0, no cases are known. The case of a point SpecQ is already classical RH!

• ch k > 0 follows from Grothendieck-Deligne.

E 5.2 Noncommutative geometry e

Remark 5.2.1: Recall that a DG-category is a category enriched over complexes of K-modules.

5.2 Noncommutative geometry 14



5 Talk 4: Goncalo Tabuada, Noncommutative generalized Riemann hypothesis (Tuesday, July 19)

Example 5.2.2(?): Examples: DG-algebras and Perfdg(X) for X ∈ Sch/K . By Beilinson, X = P1,

Perfdg(P1) is Morita-equivalent to
[
K K ⊕K
0 K

]
.

Definition 5.2.3 (?)
Let A be a DG-category, and say A is a geometric NC scheme if there exists a smooth
proper X ∈ Sch/K such that there is an admissible embedding A ↪→ Perfdg(X).

Example 5.2.4(?): A a finite dimensional k-algebra with finite global dimension where A/K is

K- separable defines a geometric NC scheme. For the quiver Q := (· → ·), KQ =
[
K K
0 K

]
is not

Morita-equivalent to Perfdg(Y ) for any smooth proper Y . So there exist NC schemes which are not
themselves schemes.

Remark 5.2.5: Can GRH be formulated in the NC setting? Attempt to define NC ℓ-adic coho-
mology: let

• K be a field
• ℓ ̸= ch(K) a prime
• A a geometric NC scheme

Define the étale K-theory of A as

Két(A)
ℓ̂

:= hocolim
n≥0

LKUK(A;Z/ℓn).

Define {
Heven,ℓ(A) π0Két((A⊗K K)

ℓ̂
)⊗Z Z[ 1

ℓ
]

Hodd,ℓ(A) π1Két((A⊗K K)
ℓ̂
)⊗Z Z[ 1

ℓ
].

These are Qℓ-linear GK-modules, and can be used to define NC L-functions.

Definition 5.2.6 (Noncommutative L-functions)
Let K be a global field, A a NC geometric K-scheme. Define

Leven(A, s) :=
∏
v∈ΣK

Leven,v(A; s)

Leven,v(A; s) = 1
det

(
id−N−s

v (πv ⊗ C)
∣∣∣ Heven,ℓv (A⊗K Kv)IV ⊗ C

) ,
and Lodd,v similarly.

Theorem 5.2.7(?).
Leven(A; s) is a meromorphic function on ℜ(s) > 1/2, and odd for ℜ(s) > 3/2.

5.2 Noncommutative geometry 15



6 Talk 4: Goncalo Tabuada, Noncommutative generalized Riemann hypothesis (Tuesday, July 19)

Conjecture 5.2.8(NC generalized RH).
The even zeros in the critical strip are on ℜ(s) = 1

2, and the odd ones on ℜ(s) = 1.

Theorem 5.2.9(Tob?).
Let X be a smooth proper K-scheme. Then Reven(Perfdg(X)) ⇐⇒ {Rw(X)}w even, and
similarly for odd, where R denotes the various forms of GRH.

E 5.3 Applications to commutative geometry e

Theorem 5.3.1(?).
Let K be a global field with ch(K) = 0 and let X,Y be smooth proper K-schemes and
assume condition (C2). Suppose Perf(X) ∼= Perf(Y ) is a Fourier-Mukai equivalence, then
{Rw(X)}w ⇐⇒ {Rw(Y )}w. So this version of GRH is invariant under derived equivalence.

Theorem 5.3.2(?).
Suppose X is homologically projectively dual (HPD) to Y , with X → P(V ) and Y → P(V ∨).
For L ⊆ V ∨, write XL := X ×

P(V )
P(L⊥) and YL = Y ×

P(V ∨)
P(L).

Remark 5.3.3: See

• Veronese-Clifford duality
• Grassmannian-Pfaffian duality
• Spinor duality?
• Determinantal duality?

Theorem 5.3.4(?).
Let V1 · · ·Vn be simple A/J-modules and consider End(Vi) which are division K-algebras. Then
K ↪→ Ki ↪→ End(Vi) where the Ki are finite separable extensions, and

{R0(SpecKi)}1≤i≤m =⇒ Reven(A).

Remark 5.3.5: This doesn’t exactly help prove GRH, but does help establish properties of various
conjectures. See paper of Thomason for paper on étale K-theory.

Some analogs: HdR 7→ HP , Hcrys 7→ TP (topological periodic cyclic homology) which comes
equipped with a Frobenius and can be used to define zeta functions.

5.3 Applications to commutative geometry 16



6 Herbert Gangl, The Aomoto polylogarithm via iterated integrals (Wednesday, July 20)

6 Herbert Gangl, The Aomoto polylogarithm
via iterated integrals (Wednesday, July 20)

Remark 6.0.1: The plan:

• Iterated integrals and formal versions, leading to the “algebraic fingerprint” (i.e. symbols).
• Aomoto polylogarithms
• A new choice of coordinates on configuration spaces
• Relating Aomoto polylogarithms to iterated integrals via the symbol

E 6.1 Classical Polylogarithms e

Remark 6.1.1: Recall

Lin(z) =
∑
k≥1

zk

kn
.

Here n is a weight, and the depth is 1 (the number of variables). More generally, for example,
Lim,n(x, y) has weight m+ n and depth 2. This can be written as an iterated integral:

II(a0; a1, · · · , an : an+1) =
∫

∆γ

dt1
t1 − a1

∧ · · · ∧ dtn
tn − an

where γ : [0, 1]→ C \ {a1, · · · , an} with γ(0) = a0, γ(1) = an−1 and ∆γ is a certain simplex. Some
properties:

• Form an algebra under the shuffle product
• Path composition
• Path reversal
• An associated differential equation

Remark 6.1.2: One can encode this formally as an algebra over a field F with generators
I(a0, · · · , an+1) and relations coming from the above properties. A new feature: a “semicircle
coproduct” due to Goncharov, whose terms are indexed by polygons involving any subset of the ai
when arranged along a semicircle:

Herbert Gangl, The Aomoto polylogarithm via iterated integrals (Wednesday, July 20) 17



6 Herbert Gangl, The Aomoto polylogarithm via iterated integrals (Wednesday, July 20)

In general, the symbol for I(· · · ) will take values in (F×)⊗n
? .

E 6.2 Aomoto Polylogarithms e

Remark 6.2.1: Idea: attach a period to any pair of simplices (L,M) in Pn(C) determined by
coordinates (ℓ0, · · · , ℓn;m0, · · · ,mn).

• To L, attach ωL a differential form, dLog
(
z1
z0

)
∧ · · · ∧ dLog

(
zn
z0

)
.

• To M attach an integral cycle.

This gives an assignment (L,M) 7→
∫

∆M

ωL, which generalizes the classical polylogarithm. Some
properties:

• Degeneracies go to zero (?)
• Skew-symmetry: (σL,M) = (L, σM) = sign(σ)(L,M) for any σ ∈ Sn.
• Invariance for g ∈ PGLn+1(C) in the sense that (gL, gM) = (L,M).

• Additivity, a type of scissors congruence property:
n+1∑
i=0

(−1)i(ℓ0, · · · , ℓ̂i, · · · , ℓn+1;M) = 0.

BGSV (’89) formalized this in an F -algebra with generators (L,M) and relations coming from these
new properties, and found a good candidate for the category of mixed Tate motives over a field.
An issue is that the coproduct is only defined on generic such pairs.

6.2 Aomoto Polylogarithms 18



7 Adriana Salerno and Ursula Whitcher, Diagonal pencils and Hasse-Witt invariants (Wednesday,
July 20)

Example 6.2.2(?): Consider n = 1 and (L,M) with (ℓ0, ℓ1,m0,m1), then

A1(L,M) =
∫ m1

m0
dLog

(
z1 − ℓ1
z0 − ℓ0

)
.

One can extract a cross-ratio from this which lives in F×.

Remark 6.2.3: A surprise to BGSV: a certain expression can be written as a combination of
Steinberg elements a⊗ (1−a) which is related to motivic cohomology and the Bloch-Suslin complex.
Goncharov also writes A3(L,M) in terms of polylogarithms, and attaches a symbol to general
An(L,M) in terms of Plucker coordinates.

Theorem 6.2.4(G-Charlton-Radchenko).
The symbol of An(v) can be written as a sum of iterated integrals.

7
Adriana Salerno and Ursula Whitcher,
Diagonal pencils and Hasse-Witt
invariants (Wednesday, July 20)

Remark 7.0.1: Calabi-Yau threefolds generalize elliptic curves, and K3s are somewhere in-between.
Idea: use mirror symmetry to prove arithmetic properties of higher dimensional varieties, generaliz-
ing things we know about elliptic curves.

Remark 7.0.2: Consider the Legendre family Xψ : y2 = x(x − 1)(x − ψ) satisfies Picard-Fuchs,
and over Fp the trace of Frobenius is ap = 1 + p − ♯Xψ(Fp). Igusa noticed that the Picard-Fuchs
equations for the holomorphic form is hypergeometric, and ap satisfies a truncated hypergeometric
formula. Some progress on arithmetic properties of the Fermat quintic.

Remark 7.0.3: What is the mirror of smooth quintics in P4? Start with the Fermat quintic pencil∑
x5
i − ψ

∏
xi = 0, which admits a C3

5 action. Taking the quotient and resolving singularities
yields the mirror Y . For ψ ∈ Z, the point counts agree: ♯X(Fq) ∼= ♯Y (Fq) mod q.

Remark 7.0.4: Generalized hypergeometric functions:

AFV (α, β|z) =
∑
k

α1,k · · ·αA,k
β1,k · · ·βB,k

zk.

Remark 7.0.5: Daqing-Wang: for the Fermat pencil Xψ and its Greene-Plesser mirror Yψ, the
unit roots of their zeta functions coincide, yielding the congruence of point counts. Kadir claims
something similar works for generalize Fermat pencils of CYs in a Gorenstein Fano weighted
projective space and its Greene-Plesser mirror. Recent work by (lots of people) uses BHK mirror
symmetry to generalize to invertible pencils in Pn.

Adriana Salerno and Ursula Whitcher, Diagonal pencils and Hasse-Witt invariants (Wednesday, July 20) 19



8 Daniel Kaplan, Quiver varieties and symplectic resolutions of singularities (Wednesday, July 20)

Remark 7.0.6: Batyrev’s construction: mirror families of CYs using reflexive polytopes. Look
at polar polytopes, lattice polytopes ∆ which contains 0 in its interior. The facet equation can
be normalized to

∑
aixi = −1, and there is an associated polar polytope ∆◦ associated to the

coefficients (ai). The polytope ∆ is reflexive if ∆◦ is again a lattice polytope. Note that there is
no classification of reflexive polytopes in dimensions d ≥ 5.

Remark 7.0.7: Building hypersurfaces: for each lattice point choose a parameter α and define
pα =

∑
M∩

αm
∏

x···. Can use this to somehow cook up mirror pairs of CYs? Using that CYs can be

realized as hypersurfaces in toric varieties.

Remark 7.0.8: Kernel pairs: for ∆,Γ combinatorially equivalent polytopes, put vertices as columns
of matrix and see if they have equal kernels. These are resolutions of quotients of a common toric
variety, and the corresponding vertex pencils satisfy the same Picard-Fuchs equation.

Remark 7.0.9: An alternative to counting points for small primes: for X a smooth variety,
Frobenius induces a p-linear operator Hn(X;OX)⟲, and the matrix for this map in some basis
is the Hasse-Witt matrix HWp. Katz: for CYs, this determines the point counts mod p? A
theorem of Huang-Lian-Yau-Yu shows that HWp for X a Calabi-Yau satisfies a truncated relation
and shows that the period integral has a certain power series expansion. For smooth CYs, we have
a good idea of what HWp is.

Remark 7.0.10: Idea: for mirror kernel pairs, can sometimes replace a very complicated equation
with a much simpler equation for its mirror, e.g. if one wants to do point counts or study the
Picard-Fuchs equation. Can classify K3 surfaces by their HWp.

Remark 7.0.11: Picard-Fuchs for rank 19 lattice-polarized K3s can be written as the symmetric
square of a 2nd order linear Fuchsian differential equation. For hypergeometric functions, can use
Clausen’s formula.

Remark 7.0.12: Let Γ ⊆ PSL2(R), and define a modular curve as Γ⧹H. See Atkin-Lehner map.
Group I in the classification is related to Monstrous Moonshine, and the classification shows it’s
associated to Γ0(3)+ where plus means retaining all Atkin-Lehner involutions.

8
Daniel Kaplan, Quiver varieties and
symplectic resolutions of singularities
(Wednesday, July 20)

Remark 8.0.1: Three main sections:

• Spaces you (yes you!) care about can be realized as quiver varieties,
• These are well-understood with respect to symplectic resolutions,
• (joint work with Travis Schedler) Even more spaces are “locally” quiver varieties.

Daniel Kaplan, Quiver varieties and symplectic resolutions of singularities (Wednesday, July 20) 20
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Example 8.0.2(?): Let C2 ↷ C2 by negation, then C2 ↷ C[C2] = C[x, y] by f(x, y) 7→ f(−x,−y).
The invariants are R := C[x, y]C2 = C[x2, y2, xy] = C[y, v, w]/

〈
uv − w2

〉
which is a type A1

singularity at the origin. Take a blowup Bl0(X)→ X := SpecR.

Example 8.0.3(?): Let’s do the same thing but differently: consider the nilpotent cone Nil(sl2) ={
m =

[
a b
c d

] ∣∣∣ tr(m) = det(m) = 0
}

=
{[
a b
c d

] ∣∣∣ a2 − bc = 0
}

, which is the same equation as

before. Take pairs (m, ℓ ∈ kerm), then the projection map (m, ℓ) 7→ m is the cotangent bundle
T∨P1 → Nil(sl2). Now perhaps it’s clear how to generalize, e.g. by taking other lie algebras.

E 8.1 Quivers e

Remark 8.1.1: A quiver is the data Q = (Q0, Q1, s, t : Q1 → Q0) where Q0 is a vertex set and Q1
is an arrow set, and everything is over a field k = C in our case. Fix d ∈ NQ0 , a tuple d = (di)i∈Q0 ,
then

Rep(Q, d) =
⊕
q∈Q1

Hom
C-Mod

(Cds(q) ,Cdt(q)).

There is an action Gd :=
∏
i∈Q0

GLdi
(C) by conjugation, which we sometimes quotient by.

Remark 8.1.2: The Gd orbits are too big! Let A,B,C be matrices and consider the quiver
C2 A−→ C2⟲B

C−→ C. It’s hard to find Gd-invariant functions, and in fact C[Rep(Q, d)]Gd =
C[{tr(α), α a cycle}]. Note that B is a cycle in this case.

Remark 8.1.3: There is a process of doubling a quiver: add inverse arrows, and duplicate every
loop:

8.1 Quivers 21
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Remark 8.1.4: Note

Rep(Q, d)→ Rep(Q, d)⊕ Rep(Q∗, d) = Rep(Q, d)⊕ Rep(Q, d)∨ → T∨Rep(Q, d),

which yields a cotangent bundle and puts us in the realm of symplectic geometry. The moment
map is

µd : Rep(Q, d)→ gd
∨ ← gd

tr(X(−)) 7→X.

Write ν =
∑
q∈Q1

[q, q∗] where the commutator is aa∗ − a∗a, then p ∈ µ−1
d (0) if p is a module for the

path algebra CQ/ ⟨ν⟩ = Π(Q).

Remark 8.1.5: Let θ ∈ ZQ0 = Hom
AlgGrp

(
∏

GLdi
(C),C×) where θ · dim(ρ) = 0. Say ρ′ ⊆ ρ is

destabilizing if dim(ρ′) · θ > 0, and ρ is θ-semistable if it does not contain any destabilizing ρ′. One
can then define

M(Q, d, θ) = Proj
⊕

C[µ−1
d (0)]kθ?.

This is an important object: the extra θ parameter can be sent to zero, and generically will yield a
smooth space.

8.1 Quivers 22



9 Jonathan Rosenberg, Twisted derived equivalences and string theory dualities with B-field
(Wednesday, July 20)

E 8.2 Local to global obstructions e

Theorem 8.2.1(Bellamy-Schedler).
There is a decomposition into symmetric spaces:

M(Q, d, θ) =
k∏
i=1

SymniM(Q, di, θ)

where d =
∑

nidi and di · θ = 0 for all i. Moreover, this has a symplectic resolution iff each

factor does iff gcd(di) = 1 or (gcd(di), p
(

d

gcd(di)

)
) = (2, 2).

Theorem 8.2.2(K-Schedler).
LetM(A, d, θ) be the moduli space of θ-semisimple A-modules of dimension d, where e.g. A =
kQ/ ⟨R⟩. There is an isomorphism of formal Poisson varieties after completing:

M̂(Λ(Q), d, θ)m
∼−→M̂(Q′, d′, θ)0,

where e.g. Q = Q′ in type Ãn.

Remark 8.2.3: Local to global obstructions: since X is Poisson, it has a stratification into symplec-
tic leaves, X =

∐
iSi. There is an action of π1(Si, xi) on the set of local resolutions

{
Ũsi

π−→ Usi

}
/W

where W is a Nakajima-Weyl group. This action can be nontrivial, and there is a compatibility
with leaf closures: if Si ⊇ Sj then πSi

∣∣∣
Sj

= πSj .

Example 8.2.4(?): In the situation C2 ↷ (C×)2 there are four fixed points (±1,±1) yielding simple
singularities with local resolutions. The theorem implies there is a global symplectic resolution.

9
Jonathan Rosenberg, Twisted derived
equivalences and string theory dualities
with B-field (Wednesday, July 20)

Remark 9.0.1: Type II string theory: spacetime is X = R10−2n ×M where M is compact Kähler
with a Ricci-flat metric and trivial canonical (the Calabi-Yau condition), not necessarily simply
connected. For us: M is smooth projective, X is quasi-projective. The physics is controlled by
D-branes (D for Dirichlet), either complex submanifolds in IIB or isotropic submanifolds for the
symplectic structure in IIA. More generally, IIA branes are coherent sheaves, and IIA branes are
classified by the Fukaya category. In type IIB, there is interest in DbCoh(X), since complexes can
capture joining branes, separating, collapsing into other configurations, etc. There is a coarser
topological classification given by topological K-theory (Minasian-Moore, Witten). The D-branes

8.2 Local to global obstructions 23
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(Wednesday, July 20)

give classes in KU0(M) in IIB and KU−1(M) for IIA.

Remark 9.0.2: Today: orientifold string theories. Classically, strings moving in time yield maps
Σ→ X where Σ is the string worldsheet and X is spacetime. This is a σ-model. Orientifold theory:
ask for strings to be equivariant with respect to involutions ι and worldsheet parity operators – if
ι = idX , this recovers type I string theory (forgetting string orientation). In this theory, D-brane
charges live in real K-theory KR(X, ι), which reduces to KO(X) when ι = idX . 2015: joint work
classifies orientifold string theories associated to (anti)holomorphic involutions on elliptic curves:
there are 10. One case corresponds to Karoubi and Donovan’s twisted K-theory.

Remark 9.0.3: Can view an elliptic curve with antiholomorphic involution as a smooth genus one
curve, possibly with no real points. Karoubi and Weibel (2003) show that KR of the complex curve
is related to KAlg of the real variety. Suggests that duality of orientifold string theories may be
reflected in a equivalence of derived categories for real (rather than complex) curves.

Remark 9.0.4: Derived equivalence: prototypical example is D(X) ∼= D(Y ) for X,Y smooth
varieties over k via Mukai duality. Formulated in terms of the Poincaré sheaf on X × X̂ for X an
abelian variety and X̂ its dual. Integration over the fiber is really derived pushforward, so define
the transform as

φ(F) = Rπ2,∗(L
L
⊗ π∗

1F).

AVs are simple examples of CYs?

Remark 9.0.5: Elliptic curves are self-dual, so it works here, which suggests it may also work
fiberwise for elliptic fibrations. Căldăraru considers elliptic fibrations f : X → Z with no section.
The role of X̂ is the relative Jacobian f̂ : J → Z, the relative module space of semistable sheaves of
rank 1 and degree zero on the fibers of f . Then f̂ is an elliptic fibration with section, but there’s
no universal sheaf to play the role of the Poincaré sheaf L. Two reasons for this:

• J may have singularities. Not so serious, can resolve and replace J by a small resolution
• May exist locally but not globally.

It turns out that L exists as a twisted sheaf: the transition functions may only agree up to a 2-cycle,
defining a class α in the Brauer group H2

ét(J ;Gm). A similar recipe goes through: pull up to X×
Z
J ,

tensor by the α−1-twisted sheaf L, and push down to X.

Theorem 9.0.6(JR 2017).
View a complex elliptic curve E defined over R = C with a free antiholomorphic involution,
regarded as C(C) with its Gal(C/R) action for C a smooth projective curve with g = 1 defined
over R and C(R) = ∅. Think of C → SpecR as an elliptic fibration without a section, and
the relative Jacobian as E → SpecR. There is a Mukai equivalence D(C) ∼−→D(E,α) where
α ∈ Br(E)/Br(R) is the unique nonzero class.

Remark 9.0.7: This is an AG version of T -duality of orientifold theories, and α corresponds to
the B-field.

Jonathan Rosenberg, Twisted derived equivalences and string theory dualities with B-field (Wednesday, July 20) 24



10 Andrew Harder, Hyperelliptic curves and planar 2-loop Feynman graphs (Wednesday, July 20)

E 9.1 Generalizations e

Remark 9.1.1: Generalizing from genus 1 curves to K3s: let E1, E2 be elliptic curves over C
with real j-invariant, so they admit antiholomorphic involutions. Cook up a real structure on
X = (E1 × E2)/µ2 and hence on its blowup X̂ which is a Kummer K3. Projection gives an elliptic
fibration without a section. The relative Jacobian gives a dual K3 fibred over P1 with a canonical
section and the same derived equivalence as in the theorem. Can interpret as duality of orientifold
type IIB string theories on K3s.

Remark 9.1.2: Generalizing to genus 1 curves over general fields: let ch k = 0 and C/k be a smooth
connected projective curve with g = 1 and let E be its Jacobian. Then J is elliptic over k and C
is an E-torsor, so defines a class in δ(C) ∈ H1

ét(Spec k,E(k)). Can how a d2 vanishes in the Leray
spectral sequence

Ep,q2 Hp
ét(Spec k;Rqπ∗Gm)⇒ Hp+q

ét (E;Gm).

Use Tsen’s theorem to get vanishing. Then Br(E) ∼= Br(E,Spec k)⊕ Br(k) where the first term is
the relative Brauer group.

10
Andrew Harder, Hyperelliptic curves and
planar 2-loop Feynman graphs
(Wednesday, July 20)

E 10.1 Introductory e

Remark 10.1.1: Feynman graphs Γ: vertices, edges, and half-edges where (for us) all vertices
has a unique adjacent half-edge. Can attach a Feynman integral: to any internal edge, attach
qe =

∑
δe,ℓke +

∑
δe,vpv where δ ∈ {0,±1} and IΓ = c

∫
R?

dk∏
e(q2

e −m2
e)

for me ∈ C. Can reduce

dimension to write G =
∑

xe(q2
e −m2

e), look at discriminant locus for a family of quadrics? Yields
a locus UF = 0 for two polynomials U and F . Somehow get a parametric form

IΓ = c

∫
σ

U?

F ? Ω0

where σ is a cycle given by
{

[x1 : · · · : xE ]
∣∣∣ xi ∈ R≥0

}
; this is an integral on the complement of

Z(UF ) = 0.

Theorem 10.1.2(?).
After blowing up P|E|−1, the integral IΓ is well-defined and a relative period of the pair
(P \ Z(U bF a), B) where P is a toric variety and B its toric boundary, and a, b ∈ {0, 1}
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depending on the dimension D. Thus the geometry of Z(U) and Z(F ) determine IΓ.

Remark 10.1.3: The U and F are defined combinatorially from the Feynman graph. Let Γ∈ =
(V,E) and let S1 be the set of all spanning trees of Γ∈. Let xT =

∏
e ̸∈T

xe for T any spanning

tree, where we have coordinates {xe}e∈E . This somehow defines U , and F is defined by looking
at spanning 2-trees (subgraphs with 2 connected components, no loops, containing all vertices). It
turns out F is homogeneous, so defines a projective variety.

Example 10.1.4(?): The theta graph yields a smooth elliptic curve in P2. More generally, con-
nected the two vertices with more edges yields Calabi-Yau (n− 1)-folds.

E 10.2 Extensions to 2-loop graphs e

Remark 10.2.1: 2-loop graphs: two trivalent nodes connected by chains of edges:

What does the mixed Hodge structure on cohomology look like? This is an important step toward
understanding periods, and the answer depends heavily on D. Bloch works out kite and double box
graphs.

10.2 Extensions to 2-loop graphs 26



11 Noriko Yui, Modularity of certain Calabi-Yau threefolds over Q (Wednesday, July 20)

Theorem 10.2.2(DHNV).
For (a, 1, 1) hypersurfaces, identifies when certain homology (or some of its weight-filtered
pieces) are Hodge-Tate under conditions on a and D.

Remark 10.2.3: Note that a Tate HS has hi,j = 0 for i ̸= j, and mixed Tate is an iterated extension
of such a Hodge structure. This means it’s as simple as it could reasonably be. Idea of proof: blow
up a linear subspace, remove some singular hyperplanes.

Interestingly, for D = 4 only the cases (3, 1, 1) and (1, 1, 1) yields a non-Hodge-Tate mixed Hodge
structure. These correspond to multiple polylogarithms.

Remark 10.2.4: WIP: can say more in (a, 1, c) case when a, c > 1. Note that the (a, 1, c) case
can’t yield K3s.

See Prym varieties?

11
Noriko Yui, Modularity of certain
Calabi-Yau threefolds over Q (Wednesday,
July 20)

Remark 11.0.1: Definition: smooth projective variety X over C, dimCX = 3, and

• H i(X;OX) = 0 for i = 1, 2, and
• KX

∼= OX .

By conjugation, hi,j = hj,i, and by Serre duality hi,j = h3−i,3−j . Note h1,1, h2,2 > 0 since Calabi-Yau
threefolds are Kähler. The outer edge of the Hodge diamond contains only zeros and ones and
has 7 rows, up to 4 columns. A typical example: quintic threefolds

∑
x5
i = 0, or elliptic curves

are dimension 1 CYs and K3s are dimension 2 CYs. More generally, CYs can be constructed as
intersection threefolds in weighted projective spaces. Other examples:

• Double octics w2 = f8(x, y, z, w)
• E × S/ι where E is an elliptic curve, S is a K3, ι is a non-symplectic involution
• Toric CYs

Remark 11.0.2: Let X/Q be Calabi-Yau iff X ⊗Q C is Calabi-Yau in the usual sense. Suppose it
has defining equations in Z[ 1

m
] for some m, pick a good prime p coprime to m so that X has good

reduction: Xp is smooth over Fp. Define the zeta function Zp(X,T ) ∈ Q[[T ]] as usual, then the
Weil conjectures hold for X. Since P1 = P5 = 1,

Zp(X,T ) = P 3(T )
(1− T )P 2(T )P 2(pT )(1− p3T ) .

Noriko Yui, Modularity of certain Calabi-Yau threefolds over Q (Wednesday, July 20) 27
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There is a compatible system of ℓ-adic Galois representations on étale cohomology. Define an
L-function Li(X, s) =

∏
p ̸=ℓ good

P i(p−s)−1 × (· · · ), where the last factor accounts for when ℓ = p.

Can compute ♯X(Fp) using the Lefschetz trace formula for Frobp ↷ Hét(X;Qℓ). Here ♯X(Fp) =
1 + p3 + (1 + p)t2(p)− t3(p) where t2, t3 are bounded above by h1,1, β? by RH.

Remark 11.0.3: The modularity question: are there global functions or automorphic forms that
determine L(X, s)? This would be the Langlands philosophy.

Say X is rigid if h2,1 = 0 so β3 = 2 and the Hodge diamond only has two unknowns, h1,1, h2,2.
These resemble elliptic curves in terms of the characteristic polynomial.

Theorem 11.0.4(?).
Every rigid Calabi-Yau threefold is modular: there is some modular form f of weight 4 on
some Γ0(N) such that L(f, s) = L(X, s).

Remark 11.0.5: There are 14 one-parameter families of CYs defined over Q of hypergeometric
type, and at conifold points each family as a rigid motive and corresponds to a special cusp form
of weight 4 on some Γ0(N) where only 2, 3, 5

∣∣ N . The next simplest case is when h2,1 = h1,2 = 1
and not zero, so β3 = 4. Constructing such CYs: Nygaard and van Geemen take a certain complete
intersection whose singular locus has 16 ordinary double points and 4 plane conics intersecting in
a square; take its resolution. Van Geemen and Werner/Consani and Scholten construct another
using the affine equation of a skew pentagon, yielding a quintic Calabi-Yau threefold defined over
Q with bad primes 2, 3, 5.

Theorem 11.0.6(?).
For X the Calabi-Yau coming from a complete intersection as above,

L(X, s) = L(χ3, s) · L(χ(−1), s),

where χ is a Hecke character for Q(i)?

Remark 11.0.7: Note that something similar happens for elliptic curves with CM. Idea of proof:
split H3 into two rank 2 motives to decompose the L function.

Remark 11.0.8: Since X is covered by some E3 where E : y2 = 1 + x4 which has CM by Q(i),
so L(X, s)

∣∣ L(E3, s) and we can use this to define when a Calabi-Yau has CM in terms of the
cover. General expectation: if X has CM for an imaginary quadratic number field K, then L splits
into factors involving Hecke characters of K. To avoid Hecke characters, define real multiplication
instead: if X is Calabi-Yau with hp,q = 1 for p+ q = 3 and β3 = 4, set K = Q(

√
d) and say X has

RM with K if

• There is an algebraic correspondence Ψ : X → X defined over K.
• There is an automorphism of H3 preserving the Hodge structure,
• There is an automorphism of H3 preserving Galois representations.

Noriko Yui, Modularity of certain Calabi-Yau threefolds over Q (Wednesday, July 20) 28



12 Johannes Walcher, Rationality of MUMs and 2-functions (Thursday, July 21)

Remark 11.0.9: See Hilbert modular forms, Adrianov L-functions.

12 Johannes Walcher, Rationality of MUMs
and 2-functions (Thursday, July 21)

E 12.1 Rational 2-functions are abelian e

Remark 12.1.1: Motivations: mirror symmetry links enumerative geometry (A model) to variations
of Hodge structure (B model). On the B side, arithmetic properties naturally arise. Do they have
an interpretation on the A side?

Classical mirror symmetry involves maximal unipotent monodromy (MUM) in the moduli space of
CYs. Johannes entered this area by looking at extensions of algebraic cycles.

Remark 12.1.2: 2-functions: for s ∈ Z>0, and s-function is a power series W ∈ zQ[[z]] of
the form

∑
d

ndLis(zd). Motivating examples: g = 0 prepotential expanded around MUM in

flat coordinates. Equates generating functions for GW invariants and that for BPS invariants,∑
adq

d =
∑

ndLi3(qd).

A new feature: framing, where Y ∈ 1 + zZ[[z]] defined an automorphism of zZ[[z]]. See Lagrange
inversion for finding coefficients of power series. Theorem: if W is a rational 3-function, then all
of its framings are 3-functions. Relates to some classical theorems, e.g. the Wolstenholme theorem
and the Jacobsthal-Kazandzidis congruence.

Remark 12.1.3: Over a number field, the s-functions form a finite rank free module. Muller shows
that there can’t be a natural choice of basis for K an arbitrary number field – if W ∈ zK[[z]] is
rational 2-function, so exp(δW ) ∈ K(z), then K/Q must be an abelian extension.

E 12.2 MUM e

Remark 12.2.1: For π : Y → B a smooth family of Calabi-Yau threefolds of mirror quintic
type, there is a ZVHS (pure, weight 3). By analog with p-adic Hodge theory, Kontsevich et al
have a theorem that lets you conclude integrality from rationality in some special cases? Look at
monodromy of Picard-Fuchs equations. See Bogner’s “strange operator”.

Remark 12.2.2: Early 2000s: Almkvist-Zudilin look at Calabi-Yau differential operators, which
are 4th order operators with MUM points, duality, integral fundamental periods, etc so that it
could come from the integral cohomology of a CY.

See Beauville-Apery families of elliptic curves, Hadamard product.

Johannes Walcher, Rationality of MUMs and 2-functions (Thursday, July 21) 29



13 Matt Kerr, K2 and quantum curves (Thursday, July 21)

Remark 12.2.3: Idea: take a family Y → B and C ↪→ Y some 2-cycles (curves) which is also a
nice family over B, this gives an extension of VHSs. Somehow classified by intermediate Jacobian?
By Griffith’s transversality, the extension is fully determined by a piece in a certain Ext1 group.
Extraction of integers appears to depend on finding a good basis for 2-functions. Speculation:
analytic 2-functions with coefficients in a number field arise as solution to inhomogeneous linear
ODEs with algebraic coefficients, and unravelling the enumerative interpretation (e.g. in in open
GW/BPS theory) will involve natural such bases. Maybe K is the trace field of a hyperbolic
3-manifold?

13 Matt Kerr, K2 and quantum curves
(Thursday, July 21)

Holy moly, Matt has a lot of equations and writes
super fast! I was not able to record even half of what
was written.

E 13.1 A miraculous coincidence e

Remark 13.1.1: Suppose f ∈ Mero(C,C) with no poles in the horizontal strip |ℑ(z)| < 2π, then

e±2πi ∂
∂z is a shift operator f(z) 7→ f(z + 2πi). Example: e2πi ∂

∂z zk =
∑
ℓ

(
(2πi)ℓ

ℓ!

)(
∂

∂z

)ℓ
zk =

(z + 2πi)k. Consider

φ̂ := er + e−r + e2π ∂
∂r + e−2πi ∂

∂r ↷ L2(R).

This is some kind of quantum Hamiltonian for a Fermi gas? Note that this is unbounded, but its
inverse is bounded and self-adjoint with spectrum that can be enumerated. This suggests a curve of
the form x+ x−1 + y + y−1 = λ, is there any AG or Hodge theory arising in this spectral problem?

Remark 13.1.2: Consider elliptic curves, pullbacks of the Legendre family y2 = x(x− 1)(x− 16t2).
This has two periods A(t), B(t) given by integrating over the two torus cycles α, β, which are
complicated but annihilated by the Picard-Fuchs operator L = D2

t − 16t2(Dt + 1)2. Solve L(−) = c
a constant using variation of parameters to get

C(t) ≈ B(t)
∫
A(t) dt

t
−A(t)

∫
B(t) dt

t
.

Can choose constant terms such that the monodromy of C lies in Z(2) ⟨A(t), B(t)⟩ where Z(2) =
2πiZ. Set ν(t) = 1

π2 log2(−t) + 7
6 + O(t log(t)) and define tn by ν(tn) = n+ 2. Then − log(−tn) =

π

√
n+ 5

6, which yields a sequence matching the exponents in the eigenvalues of φ̂. Something is
going on!

Matt Kerr, K2 and quantum curves (Thursday, July 21) 30



13 Matt Kerr, K2 and quantum curves (Thursday, July 21)

Remark 13.1.3: Local mirror symmetry conjecture linking inhomogeneous Picard-Fuchs equations
of Hori-Vafa models and enumerative geometry of local CYs: the B model mirror of KP1×P1 is the
VMHS of H3 of Ya = V (x + x−1 + y + y−1 + a + uv) ⊆ (C×)2 × ×C2 with coordinates [x, y] and
[u, v]. See Frobenius duality for differential operators? The Geneva conjectures connected difference
operators and quantum curves to enumerative geometry of CYs.

E 13.2 Beilinson’s Formula e

Remark 13.2.1: Like X/C smooth projective, and note

K2(C(X)) = C(X)× ∧ C(X)×

⟨F ∧ (1− F )⟩
T−→
⊕
p∈?

C×

where T is the tame symbol. We want to compute the regulator

ker(T ) = H2
M (X,Z(2)) RX−−→ H2

D(X,Z(2)) ∼= H1(Xan,C/Z(2)).

Beilinson shows that if {f, g} ∈ ker(T ) and γ ∈ π1(X\?, x0) then

⟨RX {f, g}, [γ]⟩ ≡
∫
γ

log(f)dg
g
− log g(x0)

∫
γ

df

f
.

Remark 13.2.2: Consider X π−→ S a family of smooth curves and z ∈ H2
m(X,Z(2)) we can consider

their fibers z2 ∈ H2
M (Xs,Z(2)). This maps to

R(S) = H1(Xs,C/Z(2)) ∼= Ext1
MHS(Z(2), H1(Xs,Z)).

By Griffiths transversality, ∇R = F 1H1
X/S
⊗ ω1

S . If z lifts to {F,G} (?) then ∇R = dF

F
∧ dG
G

.

E 13.3 Families of elliptic curves e

Remark 13.3.1: Let ∆ ⊆ R× [−1, 1] be a reflexive polytope, e.g. the polytope for Pn, let ∆◦ be is
polar dual. Somehow construct an elliptic surface E out of this! The symbol {−x,−y} ∈ K2(C(E))
lifting to z ∈ H2

M (Σ \ E∞,Z(2)) and take its regulator in H1(E?,C/Z(2)).

Idea: regulators of K2 of curves relate to Hori-Vafa models, so we’ve reduced to relating regulators
to quantum curves:

13.2 Beilinson’s Formula 31



14 Matt Kerr, K2 and quantum curves (Thursday, July 21)

E 13.4 Quantum Curves e

Remark 13.4.1: Theorems:

• For all a ∈ V , there is a ψa ∈ L2(R) \ {0} such that φ̂ψa = aψa.
• Asymptotically, 100% of σ(φ̂) belong to V .

The first primarily uses Beilinson’s formula, the second uses two-variable Fourier transforms. These
establish a link between the spectrum σ(φ̂) (quantum curve side) to the Z-locus of truncated HNFs
(regulator side).

Remark 13.4.2: See Grothendieck period conjecture.

13.4 Quantum Curves 32



15 Chloe Xiaohua Ai, From Feynman Amplitudes to multiple L-values (Thursday, July 21)

14
Chloe Xiaohua Ai, From Feynman
Amplitudes to multiple L-values (Thursday,
July 21)

Question 14.0.1
Recall that the multiple zeta function is defined as

ζ(s) =
∑

n1>n2>···>0
n−s1

1 n−s2
2 · · ·n−sk

k .

The classical zeta generalizes to Dedekind zeta functions ζK(S) =
∑

0̸=n⊂OK

NK/Q(n)−s, is there an

analog for the multiple zeta function?

Remark 14.0.2: The Hecke formula: takes automorphic periods to L-functions by integrating a
well-chosen Eisenstein series with respect to a normalized Haar measure. Can this idea be extended
to multiple variables?

Remark 14.0.3: Goncharov’s theory on Hodge correlators: complex numbers given by integrals
assigned to complex curves or varieties. Can construct integrals all arising from a single object:
Green functions/currents. Many L-functions can be interpreted as Hodge correlators: Rankin-
Selberg integral, polylogarithms, multiple Eisenstein-Kronecker series. Hodge correlators are periods
of motivic correlators. The Green functions in Goncharov’s construction work over C, what about
number fields?

Remark 14.0.4: Plectic conjecture: in the presence of real multiplication by a totally real number
field, motives have canonical functorial additional structure. See Hilbert modular varieties, Hilbert
modular forms. Goal: define higher plectic Green functions, and define multivariate zeta functions
by integrating them. These new multivariate functions will depend on some combinatorial data:
a graph Γ. If Γ is a special tree, then the generalized multiple zeta values ZI,v(Γ, ∂Γ) can be
expressed as finite Z-linear combinations of classical multiple zeta values. In the totally real case,
Z be expanded as sum in values of Lm, a generalized m-logarithm which is a nontrivial iterated
integral.

Chloe Xiaohua Ai, From Feynman Amplitudes to multiple L-values (Thursday, July 21) 33



15 Lawrence Barrott, The Doran-Harder-Thompson conjecture via the Gross-Siebert program?
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15
Lawrence Barrott, The
Doran-Harder-Thompson conjecture via
the Gross-Siebert program? (Thursday,
July 21)

Remark 15.0.1: Goal: understand proportion of period integral via enumerative invariants on
the mirror. For mirror symmetry, start with a family of CYs X f−→ A1 with X smooth and

f−1(0) =
⋃
Di an SNC divisor. Locally this is the map f∗ : t →

n∏
i=1

xi for t a coordinate on A1,

and we ask that X is etale locally isomorphism to Spec k[xi, yi] for yi some free variables. Want to
encode fibers of this family via period integrals; use the dual intersection complex ΣX , the subset
of the cone

⊕
R≥0Di where a ∈ ΣX if the Di with ai > 0 all intersect with nonempty intersection.

Example 15.0.2(?): Take a quartic K3 degenerating to a toric boundary. Resolve 24 singularities
via blowups to get a cone over a standard simplex. Sum coordinates to

∑
Di to get a map

ΣX → R≥0, then ΣX(Z) gives a collection of integer points.

Theorem 15.0.3(Gross-Siebert).
There is a ring structure on formal monomials k[ΣX(Z)] extending the one induced by “conewise
addition”.

Remark 15.0.4: This is a graded ring and the mirror is X̂ = Proj k[ΣX(Z)] where zpzq =
∑

Nrz
r

where Nr is a count of punctured (open) GW invariants. This also works for pairs (Y,D) of
a variety and an anticanonical divisor D ∈ |−KY |. Having a family with a map to A1 yields a
Landau-Ginzburg model. In this case, Proj Σ(Y,D)(Z) has a canonical map to A1, and superpotential
Ŷ

W−→ A1.

Remark 15.0.5: Tyurin degenerations: a family X
f−→ A1 CYs with X smooth and f−1(0) =

Y1 ∪D Y2 glued along a anticanonical divisor D ∈ |−KX |.

E 15.1 DHT Conjecture e

Remark 15.1.1: Let A f−→ A2 be a family of CYs and suppose

• f−1(t, 0) = Y1 ∪D Y2
• f−1(0, t) is an SNC with a maximality condition

Here locally t1 =
∏

xi, t2 =
∏

yi, and X is étale-isomorphic to Spec k[xi, yi, zi] where the zi are
free variables. For some reason, ΣX looks like a Toblerone, and we now get two maps to A1.

Lawrence Barrott, The Doran-Harder-Thompson conjecture via the Gross-Siebert program? (Thursday, July 21) 34



15 Lawrence Barrott, The Doran-Harder-Thompson conjecture via the Gross-Siebert program?
(Thursday, July 21)

Remark 15.1.2: The DHT conjecture: X̂ is a fibred Calabi-Yau and X̂ → P1 with fibers mirror
to D. Topologically, the two maps to A1 can be glued to get the map to P1, and here Ŷ1

W1−−→
A1, Ŷ 2 W2−−→ A1 can be glued to get the fibration. Doran-Kostiuk-You construct examples as complete
intersections on toric varieties of the form Π×P1 and related the periods of the fibres via Hadamard
products of relative I functions. Moral: can glue periods for Ŷ1, Ŷ2 to get periods for all of X.

Remark 15.1.3: The GS program gives a scattering diagram (pairs of walls and functions) on the
Toblerone which gives gluing instructions for the mirror family. Scattering diagrams have canonical
differential forms, i.e. canonical sections of ωX̂, but ω

X̂

∣∣∣
D̂
̸= ω

D̂
– there are correction terms coming

from other parts of the scattering diagram. Ruddat-Seibert give a way to compute period integrals
associated to 1-dimensional balanced subsets of ΣX and form an n-cycle β and integrating the
canonical differential from from the scattering diagram, yielding

∫
β
ω
X̂

. Since β is contained in a

fiber, one gets a relation ∫
β
ω
D̂

(1 +
∑

Nk) =
∫
β
ω
X̂

∣∣∣
D̂
,

and the Nk count curves with k + 1 marked points lying on the fiber, all tangent to Y1, Y2 (and
possible negative or punctured).

Remark 15.1.4: An ideal theorem: any purple curve (DZG: forgot to mark which was purple!)
can be formed by gluing components on ΣX1,D,ΣX2,D:

15.1 DHT Conjecture 35
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16 Amanda Francis, Hanging gardens and
divisors from Adinkras (Thursday, July 21)

Remark 16.0.1: Physics motivations: standard model has 5 bosons and 12 fermions, and super-
symmetry switches and matches these in pairs. Form an algebra from supersymmetry operators
Qi transforming bosons to fermions, where Qiφ = ±(iH)sψ, where H is a Hamiltonian. Visualize
these with Adinkras (etymology: Ghanaian art): a bipartite graph (bosons/fermions), Qi operators
represented by colored edges,

Remark 16.0.2: Chromotopology: bipartite, N -regular with a consistent edge coloring (each
vertex has N incident edges, one of each color), and other conditions.
Remark 16.0.3:

Remark 16.0.4: Somehow get an algebraic (Riemann) surface X from this. Match up with dessin
d’enfants?

If a height function h on a triangular mesh sends adjacent vertices to distinct values, this is a discrete
Morse function. So we can triangulate these graphs by adding new vertices and new fractional
heights to get Morse functions. Build divisors from critical points of h by defining multiplicities
mv; this yields a Morse divisor Dh =

∑
v∈M
−mv[v].

Remark 16.0.5: The Jacobian of X carries interesting data. Neat fact: the Belyi map X → P1

factors through a beach ball BN , and the map X → BN is less ramified. See Carvacho-Hidalgo-

Amanda Francis, Hanging gardens and divisors from Adinkras (Thursday, July 21) 36



17 Elana Kalashnikov, Unwinding the Gelfand—Cetlin toric degeneration on the mirror (Thursday,
July 21)

Quispe: N = 5 hypercube curve is the generalized Fermat curve, a complete intersection X ↪→ P4.
Remainder of talk: discussion of counting height functions on N -hypercubes. The number blows
up very quickly!

17
Elana Kalashnikov, Unwinding the
Gelfand—Cetlin toric degeneration on the
mirror (Thursday, July 21)

Remark 17.0.1: Batyrev mirror symmetry: anticanonical CYs have mirrors which are Fanos in
toric varieties, where Z ⊆ Xp and Z∨ ⊆ Xp∨ for p a polytope and p∨ its dual polytope. How to
extend from mirror hypersurfaces in a Calabi-Yau to mirrors in a Grassmannian? Gelfand-Cetlin
degenerate Grn(m) ⇝ Xp a toric variety and proceed as before (?), how do we leave the toric
world? It turns out that there is a Grassmannian on the mirror, and a natural generalization of the
Greene-Plesser quintic mirror.

Remark 17.0.2: Generalizing Greene-Plesser mirrors: mirror pairs of the form Z ⊂ Pn−1 ⇌
Z∨ ⊆ Pn−1/H for H a finite group constructed as follows. Write Pn−1 = Cn//C× as a GIT
quotient. Think of this as Mat1×n(C)//GL1(C). Define H̃n =

{
(ζ1, · · · , ζn)

∣∣∣ ζni = 1,
∏

ζi = 1
}

,
then H̃n ↷ Mat1×n(C), and finally Hn = H̃n/H̃n ∩GL1(C). Replacing GL1(C) with GLr(C) yields
Grn(r) = Matr×n(C)//GLr(C), and one defines Hn,r.

Theorem 17.0.3(?).
The CYs Z ⊆ Grn(r) and Z̃ ∈ Grn(r)/Hn,r are related.

Remark 17.0.4: Take a toric degeneration Z ⊆ Grn(r)⇝ Zp ⊆ Xp a Fano toric, apply BB mirror
symmetry to get Zp∨ ⊆ Xp∨ , take a “geometric transition” (blow up, change the stability conditions,
variation of GIT) to get Z̃p ⊆ X̃p, and smooth to get Z̃.

Elana Kalashnikov, Unwinding the Gelfand—Cetlin toric degeneration on the mirror (Thursday, July 21) 37



17 Elana Kalashnikov, Unwinding the Gelfand—Cetlin toric degeneration on the mirror (Thursday,
July 21)

Remark 17.0.5: Degenerate toric variety to one associated to a certain reflexive polytope coming
from a quiver moduli spaces Mθ(LQ, (1, 1, · · · , 1)) which is a Fano where θ is a stability condition.
Here LQ is a ladder quiver. There are correspondences between arrows in LQ and coordinates

Elana Kalashnikov, Unwinding the Gelfand—Cetlin toric degeneration on the mirror (Thursday, July 21) 38



17 Elana Kalashnikov, Unwinding the Gelfand—Cetlin toric degeneration on the mirror (Thursday,
July 21)

on XPn,r , paths 0 → 1 and partitions λ ⊢ r × (n − r), subsets of [n] of size r, and sections of a
very ample line bundle O(D) where Sλ =

∏
a∈λ

xa yielding XPn,r ↪→ P(n
r)−1 with Plucker coordinates

pλ. What equations cut out XPn,r in this projective space? Can define operations σ ∧ λ, σ ∨ λ for
two “incomparable” grid paths (pairs of paths which cross) through an r × (n− r) grid by taking
maximal or minimal parts of each, and these generate the correct equations. This yields the toric
degeneration described as step 1 in the image above.

Remark 17.0.6: Step 2: use a new version of polytope duality. Let P ⊆ NR be a reflexive polytope,
let Q denote the primitive dual of P . For fixed P,Q, BB mirror symmetry looks like XP ⇌ XQ/G
and XQ ⇌ XP /G, where G = M/M ∼= M∨/N . See Gelfand-Cetlin polytope, toric variation of
GIT. What geometric transition means in this context:

Elana Kalashnikov, Unwinding the Gelfand—Cetlin toric degeneration on the mirror (Thursday, July 21) 39
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E 17.1 Toric un-degenerating e

Remark 17.1.1: We get Hn,r from mirror symmetry and G from the Gelfand-Cetlin polytope, and
it turns out that Hn,r ≤ G is the maximal subgroup for which Grn(r) is an equivariant subvariety.
Constructing the toric degeneration as an equivariant family: let Z ⊆ X := P(n

r)−1 × Ck be the
family cut out by Plucker relations with extra parameters tracked by the Ck part. Extend the
action of G to Ck so that Z is G-equivariant. Then Z/G ⊆ X/G→ Ck/G is a family with special
fiber XPn,r/G and general fiber Grn(r)/Hn,r, so XPn,r/G smooths to the Grassmannian analogy of
Greene-Plesser. This more or less comes from the orbit-stabilizer theorem and carefully tracking
the stabilizer.

Theorem 17.1.2(?).
The family of hypersurfaces

∑
λ

pnλ +ψ
∏
λ

pλ = 0 in Bl Grn(r)/Hn,r is a Calabi-Yau compactifi-

cation of a Laurent polynomial mirror for Grn(r). This is a candidate mirror to Z ⊆ Grn(r).

17.1 Toric un-degenerating 41
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