@misc{Cohen2019, author = {Cohen, Ralph L.}, publisher = {arXiv}, url = {https://arxiv.org/abs/1901.08694}, date = {2019}, doi = {10.48550/ARXIV.1901.08694}, keywords = {Algebraic Topology (math.AT),Geometric Topology (math.GT),Symplectic Geometry (math.SG),FOS: Mathematics,FOS: Mathematics,53D12,53D40,55P35,55P42,57Q15,57R58}, title = {Floer homotopy theory, revisited}, } @misc{AbouzBlum2021, author = {Abouzaid, Mohammed and Blumberg, Andrew J.}, publisher = {arXiv}, url = {https://arxiv.org/abs/2103.01507}, date = {2021}, doi = {10.48550/ARXIV.2103.01507}, keywords = {Symplectic Geometry (math.SG),Algebraic Topology (math.AT),FOS: Mathematics,FOS: Mathematics}, title = {Arnold Conjecture and Morava K-theory}, } @misc{LurTan2018, doi = {10.48550/ARXIV.1805.09587}, url = {https://arxiv.org/abs/1805.09587}, author = {Lurie, Jacob and Tanaka, Hiro Lee}, keywords = {Algebraic Topology (math.AT), FOS: Mathematics, FOS: Mathematics}, title = {Associative algebras and broken lines}, publisher = {arXiv}, year = {2018}, copyright = {arXiv.org perpetual, non-exclusive license} } @MISC {MOQuasiEquiv, TITLE = {Is quasi-isomorphism an equivalence relation?}, AUTHOR = {Mariano Suárez-Álvarez (https://math.stackexchange.com/users/274/mariano-su%c3%a1rez-%c3%81lvarez)}, HOWPUBLISHED = {Mathematics Stack Exchange}, NOTE = {URL:https://math.stackexchange.com/q/93284 (version: 2011-12-21)}, EPRINT = {https://math.stackexchange.com/q/93284}, URL = {https://math.stackexchange.com/q/93284} } @Inbook{Cohen95, author="Cohen, R. L. and Jones, J. D. S. and Segal, G. B.", editor="Hofer, Helmut and Taubes, Clifford H. and Weinstein, Alan and Zehnder, Eduard", title="Floer's infinite dimensional Morse theory and homotopy theory", bookTitle="The Floer Memorial Volume", year="1995", publisher="Birkh{\"a}user Basel", address="Basel", pages="297--325", abstract="This paper is a progress report on our efforts to understand the homotopy theory underlying Floer homology. Its objectives are as follows:(A)to describe some of our ideas concerning what exactly the Floer homology groups compute;(B)to explain what kind of an object we think the «Floer homotopy type» of an infinite dimensional manifold should be;(C)to work out, in detail, the Floer homotopy type in some examples.", isbn="978-3-0348-9217-9", doi="10.1007/978-3-0348-9217-9_13", url="https://doi.org/10.1007/978-3-0348-9217-9_13" }