# Oliver: Translation Scissors Congruence and Rational Structures (Monday, June 13) :::{.remark} Setup: $X= E^n$ where $n\da \dim(X)$ is fixed. Noting that $\Isom(E^n) \cong \RR^n\semidirect \Orth_n$, consider $P(X, \Isom(E^n))$. We can realize this as iterated coinvariants: \[ \RR^n\semidirect \Orth_n &\cong H_0(\Orth_n; P(X, \RR^n))\\ &\cong H_0\qty{ \Orth_n; H_0\qty{ \RR^n; {\complex{C}(X) \over \complex{C}(X)^{n-1}} }} ,\] where all Lie groups in sight are discrete. Note that - $C_q(X) = \ZZ\adjoin{(q+1)\dash\text{tuples of points in } X}$, - $C_q(X)^{n-1} = \ZZ\adjoin{(q+1)\dash\text{tuples of points in a proper linear subspace of } X}$, - $C_q(X) = C_q(X)$ when $q\leq n-1$ ::: :::{.remark} By left-exactness we can commute homologies: \[ H_0\qty{ \Orth_n; H_0\qty{ \RR^n; {\complex{C}(X) \over \complex{C}(X)^{n-1}} } } \cong H_n\qty{ \complex{C}(X)/\RR^n \over \complex{C}(X)^{n-1}/\RR^n} .\] ::: :::{.definition title="Translation scissors congruence"} Let $\FF$ be a characteristic zero field and $V\in \Vect\slice\FF^{\dim =n}$, the **translational scissors congruence group of $V$** is \[ P_T(V) \da H_n\qty{ \complex{C}(V)/V \over \complex{C}(V)^{n-1}/V } .\] ::: :::{.question} What is the structure of $P+T(V)$? ::: :::{.remark} Recall that $C_q(G) \da \ZZ\adjoin{G^{q+1}}$ defines a complex resolving $\ZZ[G]$. Note that $G\actson \ZZ[G^{q}]$ diagonally, so define \[ H_*(G; \ZZ) = H_*(G) \da H_*(\complex{C}(G)/G) .\] ::: :::{.definition title="Eilenberg-Zilber map"} Consider the following bar notation: \[ g[g_1 | g_2 | \cdots | g_q] \da \qty{ g, g g_1, g g_1 g_2,\cdots, g \prod_{1\leq i\leq q} g_i} .\] With this, we define the **Eilenberg-Zilber map** as follows: \[ \EZ: \complex{C}(G)\tensorpower{\ZZ}{2} &\to \complex{C}(G\cartpower{2}) \\ g[g_1| \cdots | g_q] \tensor g'[g'_1 | \cdots | g'_p] &\mapsto \sum_{\text{shuffles }\sigma} \sign(\sigma) (g, g') [h_{\sigma(1)} | \cdots | h_{\sigma(p+q)} ] .\] ::: :::{.example title="?"} Let $G = \RR$, then \[ 0[1] \tensor 0[1] \mapsto (0,0)[(1,0), (0, 1)] - (0,0)[(0, 1), (1,0)] .\] ::: :::{.slogan} $\EZ$ triangulates products. \todo{Missing simplicial interpretation!} ::: :::{.remark} If $G$ is abelian then addition is a group morphism. Composing with $\EZ$ yields the Pontryagin product, making $H_*(G)$ into a graded commutative ring: \begin{tikzcd} {H_*(G)\tensorpower{\ZZ}{2}} && {H_*(G\cartpower{2})} && {H_*(G)} \arrow["\EZ", from=1-1, to=1-3] \arrow["{+_{\scriptscriptstyle G}}", from=1-3, to=1-5] \arrow["\Lambda", curve={height=-30pt}, from=1-1, to=1-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMCwwLCJIXyooRylcXHRlbnNvcnBvd2Vye1xcWlp9ezJ9Il0sWzIsMCwiSF8qKEdcXGNhcnRwb3dlcnsyfSkiXSxbNCwwLCJIXyooRykiXSxbMCwxLCJcXEVaIl0sWzEsMiwiKyJdLFswLDIsIlxcTGFtYmRhIiwwLHsiY3VydmUiOi01fV1d) ::: :::{.observation} Note: - $H_0(G) \cong \ZZ$. - $H_1(G)\cong G$ is $G$ is abelian. - If $\tors(G) = 0$ then there is an isomorphism $\Extalg_\ZZ H_1(G) \to H_*(G)$. - If $V\in \qmod$ then there is an isomorphism $\Extalg_\QQ V\to H_*(V)$. ::: :::{.remark} The main takeaway: for $U\in \qmod$, $H_*(\complex{C}(U)/U) \cong \Extalg_\QQ U$. ::: :::{.remark} There is a giant double complex $\bicomplex{A}$; taking homology one way yields \[ H_k(\bicomplex{A}) \iso H_{k+1}(\tau(X)) ,\] noting the degree shift. Taking homology the other way yields \[ E_{p, q}^2 = \tilde H_p\qty{ \tau(V); \Extprod_\QQ^2\lieg} \quad q = ?, \qquad 0 \text{ otherwise} ,\] where the coefficients are in a local system. > Todo: what is this local system? ::: :::{.remark} Consider the dilation operator $\mu_a: V \mapsvia{\cdot a} V$, multiplication by an integer $a > 1$ on $V$. For any $U \subseteq V$, this induces a chain endomorphism \( \complex{C}(U)/U \selfmap \) and thus a morphism of spectral sequences. On $E^1_{p, q} = \bigoplus \Extalg^q U_p$, this induces $x\mapsto xa^q$. Suppose for $r>1$ this produces a diagram commuting with the differentials which forces $d^r = 0$. ::: :::{.remark} Summary: - \(H_*( \complex{C}/V / \complex{C}^{n-1}/V )\) is in $\qmod$ and thus so is $P_T(V)$. - There is a splitting \[ P_T(V) \cong \bigoplus _{1\leq q\leq n} \tilde H_{n-q-1}\qty{ \tau(V); \Extprod_\QQ^q \lieg} \] into $a^q$ eigenspaces. - These summands are zero when $p+q < n$. ::: :::{.example title="?"} What are these eigenspaces? The unit square is a $a^q$ eigenvector for $a=q=2$: ![](figures/2022-06-13_15-47-56.png) ::: :::{.theorem title="?"} There is a map $\Extalg^q_\QQ \lieg\to \Extalg_F^q \lieg$ which induces an isomorphism \[ \tilde H_{n-q-1}\qty{ \tau(V); \Extprod_\QQ^q } \iso \tilde H_{n-q-1} \qty{ \tau(V); \Extprod^q} .\] This yields a containment $P_T(V) \subseteq \bigoplus F$, and **Hadwiger invariants** $P_T(V) \to F$. ::: \todo[inline]{todo}