# Diego: (Friday, June 17) ## Goncharov's Conjecture :::{.remark} Goncharov's conjectures: let $V^n = \EE^n, \SS^n, \HH^n$ denote a geometry, and recall that the Dehn invariant is defined by \[ P(V^n)&\to \oplus _{1\leq i\leq n-2} P(V^i) \tensor P(S^{n-i-1})\\ [P] &\mapsto \sum_{1\leq i\leq n-2} \sum_{i\dash\text{dimensional }faces} [A] \tensor [s(A)] \] where $S(A) \da s(A\perp) \intersect P$. > Todo: missing some stuff ::: :::{.theorem title="Goncharov"} There exists a map \[ \qty{ \ker \ro{ D_{\HH}^{2n-1} }{P(\HH^{2n-1}; \QQbar)} }_\QQ\to \qty{ \K_{2n-1}(\QQbar) \tensor \eps(n) }^- .\] and the LHS maps by volume to $\RR$ and the RHS to $\RR$ by the Borel regulator. ::: :::{.remark} Borel's theorem says the Borel regulator is injective up to torsion. Note that this may not be true for spherical geometries, since the volume is not well-defined. Note that we are working over $\QQbar$ and not just a number field; this is still open for $\CC$. ::: :::{.remark} Define the Dehn complex: \[ D^*_V(n) = \bigoplus_{n\geq 1} \bigoplus_{\lambda \partition n} \bigotimes_{\lambda_i}P(V^{\lambda_i}) \] where all $\lambda_i > 0$. ::: :::{.conjecture} There exists a map \[ H^i(D^*(n))_\QQ \to \qty{ \gr_n^\gamma \K_{2n-i}(\CC)_\QQ \tensor \eps(n) }^- \] which is an isomorphism. ::: :::{.remark} Today we'll nook at $H^n$ and $H^{n-1}$. ::: ## Cohomology of Dehn Complexes :::{.remark} Let $E = \RR^n$ and $T(n)$ be the Tits building. Then \[ H_{n-2}(T(n); \QQ) = \St(n) ,\] and $P(S^{n-1}) = H_0(\Orth_n; \St(n)^t)$. Consider $[p] \mapsto \mcl_p(n)$, the $\qmod$ generated by $(E_1,\cdots, E_p)$ with $E_i\neq 0$ and $E = \bigoplus E_i$. This yields a semisimplicial set $\vector E \mapsto (E_1,\cdots, E_i \oplus E_{i+1}, \cdots, E_p)$. Then $H_n(\mcl_*(n)) = \St(n)$. ::: :::{.remark} Let $\AA = \bigoplus _{n, i} H_i(\Orth(n), \QQ^t)$. Using Eilenberg-Zilber and Kunneth yields \[ H_i(\Orth_n; \QQ^t) \tensor H_j(\Orth_m, \QQ^t)\to \cdots \to H_{i+j}(\Orth_n \times \Orth_m; \QQ^t\times \QQ^t) .\] ::: :::{.remark} Coalgebra of homology of Steinberg modules: \[ \HH\St = \bigoplus_{n, q} H_q(\Orth_n; \St(n)^t) .\] Define a map \[ \mcl_p(n) &\to \bigoplus_{n_1 + n_2=n, p_1+p_2=n} \mcl_{p_1}(n_1) \tensor \mcl_{p_2}(n_2) \\ \vector E &\mapsto \sum \vector (E_1,\cdots, E_{p_1}) \tensor (E_{p_1+1},\cdots, E_{p}) ,\] which induces a map of complexes $\mcl_*(n) \to \bigoplus _{n_1+n_2} \mcl_*(n_1) \tensor \mcl_*(n_2)$. Take homology on both sides; the LHS is $\St(n)$, and since the homology of the Tits building is only supported in one degree, the RHS is \[ \bigoplus _{n_1+n_2=n} \St(n_1) \tensor \St(n_2) .\] Use these as coefficients and apply Shapiro's lemma to obtain \[ H_1(\Orth_n; \St(n)^t) \to \bigoplus _{n_1+n_2=n} H_q(\Orth_n; \bigoplus _{V_1 \oplus V_2 = V} \St(V_1)^t \tensor St(V_2^t)) \\ \cong \bigoplus _{n_1+n_2=n} H_q(\Orth_{n_1} \times \Orth_{n_2}; \St(n_1)^t \tensor \St(n_2)^t ) .\] Thus $\HH \St$ is a coalgebra. We're interested in \[ \HH_0 \St = \bigoplus _n H_0(\Orth_n, \St(n)^t) \cong \bigoplus _n P(S^{n-1}) .\] A not-at-all obvious fact: this is an isomorphism of coalgebras. ::: :::{.theorem title="Caithelineau"} For every $n$, there exists a spectral sequence \[ E^2_{p, q} = H_1^p(\HH \St; \QQ) \abuts H_{-p+q+n}(\Orth_n; \QQ^t) ,\] where $n$ means the $n$th degree part in the cobar complex. ::: :::{.proof title="Sketch"} Consider the following tri-complex \[ C_\alpha(\Orth_n, \qty{ \Omega_{\beta, \gamma} \mcl_*(n)}^t ) ,\] where we've used that $\mcl_*(n)$ has a comultiplication to take a cobar complex: \[ \Omega_{\beta, -\gamma} \mcl_*(n) = \bigoplus _{n_i \partition n, \beta_{\gamma_i}\partition \beta} H_{p_1}(\Orth_{n_1}; \mcl_{p_1}(n_1)^t) \tensor \cdots .\] > Todo: laptop died. :-( :::