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I Introduction and Background (Tuesday, January 11)

1 Introduction and Background (Tuesday,
January 11)

Remark 1.0.1: References: [Jac09].

Remark 1.0.2: Idea: study representation by studying associated geometric objects, and use
homological methods to bridge the two. The representation theory side will mostly be rings/modules,
and the geometric side will involve algebraic geometry and commutative algebra. Throughout the
course, all rings will be unital and all actions on the left.

Example 1.0.3(of categories of modules): Recall the definition of a left R-module. Some
examples:

e k € Field =— k-Mod = Vect;.

e R=7 = Z-Mod = AbGrp.

o A € Alg),, which is a ring (A, +,) where (A, +,.) (using scalar multiplication) is a vector
space.

— E.g. Mat(n x n,C).

— E.g. for G a finite group, the group algebra kG for k € Field.
— E.g. U(g) for g € LieAlg or a super algebra.

Remark 1.0.4: Connecting this to representation theory: for A € Alg,, and M € A-Mod, a

representation of A is a morphism of algebras A 2 gl (k), the algebra of all n x n matrices (not
necessarily invertible). Note that for groups, one instead asks for maps kG — GL,,, the invertible
matrices. There is a correspondence between A-Mod = Rep(A): given M, one can define the action
as

p:A—>E£d(M)

pla)(m) = a.m.

Remark 1.0.5: Recall the definitions of:

o Morphisms of R-modules: f(r.m; + ma) =r.f(m1) + f(m2)
e Submodules: N < M <= r.n € N and N is closed under +.
¢ Quotient modules: M/N = {m+ N}.

e The fundamental homomorphism theorem: for M i> N, there is an induced ¢ : M/ker f — N
where M/ker f = im f.
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Introduction and Background (Tuesday, January 11)

M— N f(m)

m + ker f

Link to Diagram

¢ The fundamental SES
O—>kerffi>Mi>imf—>07

where one generally needs im g = ker f for exactness.

— More generally, need monomorphisms, epimorphisms.
Example 1.0.6(?): Some examples:

e f:Z — Z where f(m) = 4m yields 0 > Z L Z — Z/4 — 0 in Z-Mod.

e In C-Mod, one can take 0 — C M C* - C—0.

Remark 1.0.7: Direct sums, products, and indecomposables. Let I be an index set and { My},

R-modules to define the direct product H M, = {(mk)kej ‘ my € Mk}, the set of all ordered
kel
sequences of elements from the My, with addition defined pointwise. For the direct sum EB My,

kel
to be those sequences with only finitely many nonzero components. For internal direct sums, if

M = My + My then M = My & Ms iff M N My = 0. An irreducible representation is a
simple R-module, and an indecomposable representation is an indecomposable R-module. An
R-module is simple iff its only submodules are 0, M, and indecomposable iff M 2% M; & M, for
any M; 22 M. Note that simple = indecomposable.

Note: is it possible for M = M & M ¢
Example 1.0.8(%): Some examples:

e Simple objects in k-Mod are isomorphic to k, and indecomposables are also isomorphic to k
if we restrict to finite dimensional modules.

o Simple objects in Z-Mod are cyclic groups of prime order, C). Indecomposables are Z, Cx,
using the classification theorem to rule out composites.
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Introduction and Background (Tuesday, January 11)

e For Ae Algf/c,lﬁ, the simple objects in A-Mod are hard to determine in general. The same goes
for indecomposables, and is undecidable in many cases (equivalent to the word problem in
finite groups).

See finite, tame, and wild representation types. P

Remark 1.0.9: Toward homological algebra: free and projective modules. An R-module M is

free iff M = @ R; for some indexing set where R; = R as a left R-module. Equivalently, M has
i€l

a linearly independent spanning set, or there exists an X and a unique ¢ such that the following

diagram commutes:

.. 3peR-Mod
LGRMod){ ~ JpeR-Mo

Link to Diagram

Every M € R-Mod is the image of a free R-module: let X := {m;};.; generate M, so X — M by

inclusion. Define X — @ @ R; sending m; — (0,---,1,---,0) with a 1 in the ith position, then
i€l

since X is a generating set this will lift to a surjection @ R; — M. We can use this to define a

A
free resolution:

ker 61

361 do

Link to Diagram

Remark 1.0.10: Let A € Alg;ﬁc}c and F' = @A be free, and suppose e € A is idempotent, so e? = e
— these are useful because they can split algebras up. There is a Pierce decomposition of 1 given by
1 =e+ (1 —e). Noting that 1 — e is also idempotent, there is a decomposition A = Ae & A(1 —e).
Since Ae is direct summand of A which is free, this yields a way to construct projective modules.

Introduction and Background (Tuesday, January 11) 6
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2 ‘ Thursday, January 13

Remark 2.0.1: Last time:

e R-modules and their morphisms
e Free resolutions F' — R.

Today: projective modules and their resolutions.
See Krull-Schmidt theorem.

Remark 2.0.2: Recall the definition of projective modules P and injective modules I:

VE 0 A B C 0

Link to Diagram

Exercise 2.0.3 (7)
Show that free implies projective using the universal properties, and conclude that every
R-module has a projective cover.

Remark 2.0.4: Forming projective resolutions: take the minimal Fy %, o M — 0 such that
Q! == ker &y has no projective summands. Continue in such a minimal way:

0 0
| |
0? ot
7777777777777777777 +» Pl -t By M 0

Link to Diagram
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Thursday, January 13

Remark 2.0.5: For modules M over an algebra A, if dimy (M) is finite, then each P; can be chosen
to be finite dimensional. Otherwise, define a complexity or rate of growth scs(M) > 0 such
that dim P, < Cn®! for some constant C. A theorem we’ll prove is that s is finite when A = kG
for every finite dimensional G-module. When A = kG, this is a numerical invariant but has a
nice geometric interpretation in terms of support varieties V4 (M), an affine algebraic variety where
dim Vao(M) = ca(M).

Exercise 2.0.6 (7)
Recall the definition of a SES £: 0 — A 4, B %, ¢ 4 0 and show that TFAE:

o ¢ splits
e ¢ admits a right section s, : C' - B
e ¢ admits a left section ;B — A

Hint: for the right section, show that s, is injective.
Get that im f +im h C M, use exactness to write
imd; = kerds and show that ker ds Nim s, = (.

AWarning 2.0.7
It’s not necessarily true that if B = A @ C that ¢ splits: consider

0 02 C4 02 0

Link to Diagram

Exercise 2.0.8 (7)
Show that for P € R-Mod, TFAE:

e P is projective.
e Every SES¢:0— A — B — P — 0 splits.
e There exists a free module F' such that ' = P ® K.

Exercise 2.0.9 (?)
Show that @ P; is projective iff each P; is projective.
el

Example 2.0.10(?): e If R =k € Field, then every M € k-Mod is free and thus projective
since M = @ k with k free in k-Mod.
el

o If R=7,let P € Z-Mod be projective and F' free and consider 0 - K — F — P — 0. Since
F = P® K, P is a submodule of F', making P free since Z is a PID. So projective implies
free.

Thursday, January 13 8
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I Thursday, January 13

e Not every M € Z-Mod is projective: take Cg € Z-Mod, then Cg = Cy ® C3 so Cy, (5 are
projective in Cg-Mod but not free here.

Exercise 2.0.11 (?)
Let Q € R-Mod and show TFAE:

e () is injective
e Every SES¢:0— @ - B — C — 0 splits.

Exercise 2.0.12 (?)

Show that H Q; is injective iff each @); is injective. Note that one needs to use direct products
1€l
instead of direct sums here.

Theorem 2.0.13(?).
The category R-Mod has enough injectives, i.e. for every M € R-Mod there is an injective Q
and a SES 0 - M — Q.

Proof (Sketch).
See Hungerford or Weibel. Prove it first for C = Z-Mod. The idea now is to apply

F(-) = Hom(R, -) : (Z,Z)-biMod — (R, Z)-biMod,

the left-exact contravariant hom. Using that R € (R, R)-biMod < (Z, R)-biMod, one can use
the right action R on itself to define a left action on H%m(R7 M). Then check that

o fis left exact
e f sends injectives to injectives.
o If R € Z-Mod has an R-module structure, then F(R) is again an R-module.

Exercise 2.0.14 (?)
Show that for M € R-Mod that H%m(R, M) = M.

Hint: try f — f(1).

Remark 2.0.15: Next week:

e Tensor products
o Categories
e Tensor and Hom

Thursday, January 13 9
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3 ‘ Tensor Products (Tuesday, January 18)

Remark 3.0.1: Setup: R € Ring, Mp € Mod-R, and g N € R-Mod. Note that R is not necessarily
commutative. The goal is to define M ®p N as an abelian group. 7

Definition 3.0.2 (The Tensor Product)
The balanced product of M and N is a P € AbGrp with a map f: M x N — P such that

® f(l‘+x',y):f(x,y)+f(x',y)
° f($7y+y,):f(xay>+f(xay,)
o« flaz,y) = f(z,ay).

The tensor product (M ®r N,®) of M and N is the initial balanced product, i.e. if P is a
balanced product with M x N i> P then there is a unique map ¥ : M ®r N — P:

M®RN

M x N 7 P

Link to Diagram
Uniqueness follows from the standard argument on universal properties:

(M ® N);

A
/

®1 Fpa1
/ \\

M x N ®2 (M ® N)q|id

A
/

@1 Fh12

\
\
\

(M ® N);

Link to Diagram
Existence: let Free(—) : Set — AbGrp and F' := Free(M x N), then set M @ g N := F'/G where
G is generated by

° (x+xlay)_ ((l’,y)
° (az,y—l—y/)— ((xay)
° (ax,y) - (.’L‘, ay)‘

Then define the map as

Q@:MxN=F
(z,y) »z®y = (2,9) +G.

Tensor Products (Tuesday, January 18) 10
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I Tensor Products (Tuesday, January 18)

Why it satisfies the universal property: use the universal property of free groups to get a map
to F' and check that the following diagram commutes:

M x N

!

O)/c M®RN2:F/G

LU

 4--

Link to Diagram
Morphisms: for f : M — M’ and g : N — N’, form

f®g:M®N - M @ N’
r®y— f(r)®g(y).

AWarning 3.0.3
Note every z € M ®gr N is a simple tensor of the form z = 2 ® y!

Example 3.0.4(?): « For R =k € Field, M ®;, N € (k, k)-biMod. If M = (m;) and N = (n;),
then M ®i n = (m; ® n;) and dimy M ® N = dimy M - dimy N.

e For A€ AbGrp, ARz Z = Asincez®@y =zy® 1.

e M :=C,®zQ=0. It suffices to check on simple tensors:

$®y:x®2y
p

1
on(})s
p

1
oo (1)
p
1
=0® -y
=0.

e More generally, if A € AbGrp is torsion then A ®7 Q = 0.

Definition 3.0.5 (Categories)
A category C is a class of objects A € C and for any pair (A, B), a set of morphism Hgm(A, B)

such that

1. (A,B) # (C,D) = Hom(A, B) and Hom(C, D) are disjoint.
2. Associativity of composition: (hog)o f=ho(go f)
3. Identities: Jlidy € H(():m(A,A) forall A € C.

A subcategory D < C is a subclass of objects and morphisms, and is full if Hgm(A, B) =

Tensor Products (Tuesday, January 18) 11
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I Thursday, January 20

I Hgm(A, B) for all objects in D.

Example 3.0.6(?): Examples of categories:

o C = Set,
e C=Grp,
e C=R-Mod,

e C = Top with continuous maps.

Example 3.0.7(?): Examples of fullness:

e Grp < Set is not a full subcategory, since not all set morphisms are group morphisms.
e AbGrp < Grp is a full subcategory.

Remark 3.0.8: Recall the definition of covariant and contravariant functors, which requires that
F(ida) = idp(a).-

4 ‘ Thursday, January 20

Remark 4.0.1: RIP Brian Parshall and Fred Cohen... ==
Remark 4.0.2: Recall the definition of a covariant functor. Some examples:

e F(R)=U(R)=R* = G(R), the group of units of R.
o The forgetful functor Grp — Set.
. H%m(R, —) for R € (Z, R)-biMod is a functor Z-Mod — R-Mod.

Exercise 4.0.3 (?)
Formulate H%m(—, —) in terms of functors between bimodule categories. How does this “use

up an action” in the way — ®z — does?

Remark 4.0.4: Recall that contravariant functors reverse arrows. Functors with the same variance
can be composed.

Definition 4.0.5 (Full and Faithful Functors)
Let F': C — D and consider the set map

Fap : Hom(A, B) — Hom(F A, FB)
f=F(f).

Thursday, January 20 12
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We say F is full if F4p is injective for all A, B € C, and faithful if F4p is surjective for all
A, B.

Definition 4.0.6 (Natural Transformations)
A morphism of functors n : F' — G for F,G : C — D is a natural transformation: a family
of maps n4 € Hgm(F A, GA) satistfying the following naturality condition:

A FA—" . GA
B FB —— GB

Link to Diagram
If 4 is an isomorphism for all A € C, then 7 is a natural isomorphism.

Exercise 4.0.7 (7)

For C,D = Vectl;f}C finite-dimensional vector spaces, take F = id and G(—) = (—)"". Note
that Hom(FV,GV) = Hom(V, V") = Hom(V, V), so set ny to be the image of idy, under this
chain of isomorphisms. Show that {7y} cc assemble to a natural transformation F' — G.

Definition 4.0.8 (Isomorphisms and Equivalences of categories)

Two categories C, D are isomorphic if there are functors F,G with F' o G = idp,G o F' = id¢
equal to the identities. They are equivalent if /' o G, G o F' are instead naturally isomorphic
to the identity.

Example 4.0.9(%): Some examples:

e C = AbGrp and D = Z-Mod by taking G : D — C the forgetful functor, and for F, using the
same underlying set and defining the Z-module structure by n-m:=m+m+4--- +m.

e C = R-Mod and D = Matpxn(R)-Mod. For k-Mod, the simple objects are k, but for

Matnxn(R)-Mod, the simple objects are k™, so these categories are not isomorphic. How-

ever, it turns out that they are equivalent.

Producing inverse functors can be difficult, so we have the following:

Proposition 4.0.10(A useful criterion for equivalence of categories).
Let F': C — D, then there exists an inverse inducing an equivalence iff

e F'is fully faithful,
o Surjectivity on objects: for every A’ € D, there exists an A € C such that F/(A) = A'.
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Proof (?).
— : Suppose F, G induce an equivalence C ~ D, so F'o G ~ idp and G o F' ~ id¢. To show
f — F(f) is injective, check that

F(f) =F(g)
= GF(f) =GF(9)

id(f) = id(g
= f=y

Exercise 4.0.11 (7)

Show surjectivity.

A hint:

Let A’ € D with FG ~ idp and na € Hgm(A’,FGA’) is an iso. Set A := GA’ € C and use

that

Hgm(A', FGA') .= Hom(A',FA),

So if there is an isomorphism in Hom(A’, FA), there exists an isomorphism in Hom(F A, A")
and thus FA =~ A’
#todo Missed a bit here so this doesn’t make sense
as-is!

Proposition 4.0.12(%).
Let R € Ring and set S := Mat,x,(R), then R-Mod ~ S-Mod.

5 ‘ Tuesday, January 25

Remark 5.0.1: Recall isomorphisms C = D of categories, so F'oG = id, vs equivalences of categories
C~Dso FoG=id. P

Theorem 5.0.2(?).
For F: C — D and G : D — C and write ¢p : H%m(A, B) — Hgm(F(A),F(B)). This pair

induces an equivalence iff

1. F is faithful, i.e. ¥ is injective,
2. Fis full, i.e. 9 is surjective,
3. For any D € D, there exists a C' € C with F'(C) = D.
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Proposition 5.0.3(?).
Let R € Ring and S = Mat,,x,(R), then R-Mod ~ S-Mod.

Proof (?).

Define a functor F': R-Mod — S-Mod by F(M) = H M, regarding this as a column vector
k<n

and letting S act by matrix multiplication. On morphisms, define F/(f)(x) = [f(z1), -+, f(zn)]

forx € H M. Then F(id) = id, and (exercise) F'(f) is a morphism of S-modules and composes

correctly:

F(go f)(x) = lgf(x1), -, 9f(@n)] = F(g)[f(z1),-- -, f(xn)] = (F(g) o F(f)) x.

So this defines a functor.

Claim: F is fully faithful.

o Faithfulness: if F'(f1) = F(f2), then fi(z;) = fa(z;) for all j, making fi = fo.

o Fullness: let g € Hgm(M”,N") for M, N € R-Mod and e;; be the elementary matrix

with a 1 only in the ¢, j position. Check that e;; M"™ = {[m,O, ] ‘ B E M}, et N"™ =
{[y,O, ] ‘ y € N}, and diag(z) be a matrix with only copies of x on the diagonal.
Then g(ennM") C e119(M™) C e11N" and g[x,0,- -] = [y,0,---]. Define f : M — N by
f(x) =y, then on one hand,

g(dlag(a)[az, 07 o ]) = g[aa:, 07 o ] = [f(a’x)v 07 o ']’
but since g is a morphism of S-modules, this also equals diag(a) - g[x,0, - - -] = [ay, 0, - -].

Then f(azx) = ay = af(x), so f is a morphism of R-modules.

Note that ej1x = [0,---,x,---0] with = in the jth position. Check that g(ejix) =
gl0,--+ ,x,---,0]. The LHS is

ejlg(x) = ejl[f(w)aoa e ] = [Oa T 7f(33)a T )O]
with f(x) in the jth position. Hence g(x) = [f(z1),- -, f(xy)], making F' full.
See also Jacobson Basic Algebra Part 1T p.31.

Exercise 5.0.4 (Tensors commute with direct sums)
Show that

(@Ma> ®r N =D (Mo ®r N),

acl ael

and similarly for M ® (&N,).
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Remark 5.0.5: Define functors F, GR-Mod — Z-Mod by F(—) = M ®@g(—) and G(—) == (—)®@r N
on objects, and on morphisms f : N — N’, set F(f) := id®f and similarly for G. Recall the

definition of exactness, left-exactness, and right-exactness.

Example 5.0.6 (Tensoring may not be left exact): Consider

€025 2% 2/p7 0

and apply (—) ®z Z/pZ. Use that pZ = Z in Z-Mod to get

F): o, 2% ¢, 29 o

and

(feid)prey)=prey=r®py =0,

using that f is the inclusion.

Exercise 5.0.7 (7)
Show that M ®g (—) and (—) ®g N are right exact for any M, N € R-Mod.

Solution: y y
LetO—>Ai>B£>C'—>OWhichmapstoM®AﬂM®BﬂC.

e Show id ®g is surjective: write m € M ® C' as m = Z x; ® yj, pull back the y; via g to
get z; with g(z;) = y;. Then

(idog)(d ri®©z) =Y 1:.0g(z) =Y 5 Qy;
o Exactness, im(id ® f) = ker(id ®g¢): Use that gf = 0 by exactness of the original sequence,
and (id®g) o (id®f) =id®(go f) =0, so im(id®f) C ker(id ®g).
— For the reverse containment, use that id®g: M ® B — M ® C and define a map

- M®B
“im(id ®f)
m®n+imid®f) — m® g(n).

- MxC

Then ¢ is an isomorphism iff im(id ® f) = ker(id ®g). Define

MeB
UM MO5
XU = e

(,y) » 2 ®z+im(id®f),

where g(z) =y, so z is a lift of y.

Why is this well-defined? Check g(z1) = y = g(z2) implies z; — 22 € kerg = im f, so
write f(y) = z1 — 22 for some y. Then 2 ® z; +im f = 2 ® 25 + im f.
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Why does this factor through the tensor product? Check that ¥ is a balanced product,

_ M® B
this yields ¥ : M ® C — - ©

m. Now check that ¥, T' are mutually inverse:

TV(zRy) =T(rz®z+imidef) =z0g¢(:z) =y
UMz ®z4+im(id®f)) =(x®@g(2)) =z ® z +im f.

Question 5.0.8
When is M ®p (—) exact?

6 ‘ Thursday, January 27

Remark 6.0.1: Recall that M € R-Mod is flat iff for every N, N’ and f € %’I&I%(N, N'), the induced
=IVIO!
map

idy ®f: M®r N — M &g N’

is a monomorphism. Equivalently, M ®pr (—) is left exact and thus exact.

Proposition 6.0.2(?).
M = EBM& is flat iff M, is flat for all o € 1.
ael

Proof (?).

1

M ®r (=) = (P Ma) @r () = D (Ma @& (-))-

Exercise 6.0.3 (7)
Show that projective —> flat.

Exercise 6.0.4 (7)

Prove that the hom functors Hom (M, —), Hom (—, M) : R-Mod — Z-Mod are left exact.
R-Mod R-Mod

Exercise 6.0.5 (?)
Show that

o P is projective iff Hom (P, —) is exact
R-Mod

Thursday, January 27 17



I Tuesday, February 01

o I is projective iff Hom (—, ) i
I is projective i Hom (—, 1) is exact
Remark 6.0.6: An object Z € C is a zero object iff Hcc)m(A, Z),H(gm(Z, A) are singletons for
all A € C. Write this as 04 € Hcc)m(A, Z). If C has a zero object, define the zero morphism as
Og4p =000y € H(gm(A,B).

-~

7 ‘ Tuesday, February 01
Definition 7.0.1 (Additive categories)
A category C is additive iff

e C has zero object

2
o There exists a binary operation + : Hom(A, B)*" — Hom(A, B) for all A, B € C making
Hom(A, B) an abelian group.
o Distributivity with respect to composition: (g1 + g2)f = g1.f + gof
 For any collection {4y, -, Ay}, there exists an object A, projections p; : A — A; with
sections iy, : Ay — A with p;i; =ida, pjip = 0 for j # k, and Zijpj =idy4.
Definition 7.0.2 (Monomorphisms and epimorphisms)
A morphism: k: K — A is monic iff whenever g1,92 : L — K, kg1 = kgo = g1 = ¢2:
g1
% k
L g2 K—— A
_
Link to Diagram

Define k to be epic by reversing the arrows.
Definition 7.0.3 (Kernel)
Assume C has a zero object. Then for f: A — B, the morphism k : K — A is the kernel of f
iff

e k is monic

e fk=0

o For any g : G — A with fg = 0, there exists a ¢’ with g = kg'.

Example 7.0.4(?): For f € R-Mod(A, B), take k : ker f — A. If g € C(G, A) with f(g(x)) =0
for all z € G, then im g C ker f and we can factor g as G < ker f i> A. e

Tuesday, February 01 18


https://q.uiver.app/?q=WzAsMyxbMCwwLCJMIl0sWzIsMCwiSyJdLFs0LDAsIkEiXSxbMSwyLCJrIl0sWzAsMSwiZ18xIiwwLHsib2Zmc2V0IjotM31dLFswLDEsImdfMiIsMCx7Im9mZnNldCI6M31dXQ==

I Tuesday, February 01

Definition 7.0.5 (Cokernel)
For f: A — B, a morphism ¢ : B — C is a cokernel of f iff

e c is epic,
] Cf:O
o For any h € C(B, H) with hf = 0, there is a lift »’ : C — G with h = K'c.

Example 7.0.6(?): For C = R-Mod and f € R-Mod(A, B), set ¢: B— B/im f.

Exercise 7.0.7 (7)
Show that kernels are unique. Sketch:

e Setk:K— A K : K — A
e Factor k = kK'uy and k' = kus.
o Then kid = k(ugu1) = id = ugu, similarly ujue = id.

Definition 7.0.8 (Abelian categories)
C is abelian iff C is additive and

e A5: Every morphism admits kernels and cokernels.
e A6: Every monic is the kernel of its cokernel, and every epic is the cokernel of its kernel.
e AT7: Every morphism f factors as f = me with m monic and e epic.

Example 7.0.9(%): For f € R-Mod(A4, B),

o A5: Take k:ker f — Aand ¢: B— B/im f

e A6: For m : A — B monic, consider the composition A — B cokerm, - p /A and check
A = ker(coker m).
e AT: Use the 1st isomorphism theorem:

A/ ker f 1st iso im f

Link to Diagram
Remark 7.0.10: Some notes:

 Recall the definition the category of chain complexes Ch(C) over an abelian category: d;d;+1 =
0, soimd; C kerd;4.
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I Thursday, February 03

o Every exact sequence is an acyclic complex.

e C—Ch(CO)by M+ ---—0— M — 0— ---. Note that this isn’t an acyclic complex.

e Morphisms between complexes: chain maps, just levelwise maps forming commutative squares,
i.e. maps commuting with the differentials.

o Ch(C) is additive: given o, Ss € ChC((A,d), (B,0)), check that (a;—1 + Bi—1)d; = di(ci + Bi).

o There are direct sums: (A @ B); .= A; ® B; with d := d4 + dp.

o Define cycles as Z; := ker (CZ- i, C’il) for Co € Ch(C), and boundaries B; := im (Cz‘+1 ﬁf% Ci> C

ker d;.
o Define H;(C,) := Z;/B,;.

e Show that chain morphisms induce morphisms on homology:

Let a € Ch(C)(C, "), then o;(Z;) C Z].

Check dg(ai(Zi)) = ai,ldi(Zi) =0.

Factor Z; ~% Z! — Z!/B.

— Show that z € B; maps lands in B} to get well-defined map on H;.
— Use a(B;) C Z., so pull back x € B; to y € Ciy1.

Check di11(y) = x, so a(di+1(y)) = a(x).

The LHS is dj | (ai+1(y)), so a;(x)inimdj,, = Bj,,

« Chain homotopies: for a, 8 € Ch(C)(C,C"), write o ~ f iff there exists {s; : C; = Cj} with
o — B = d;+13i + s;_1d;.

dit1 dit1

L

- Cip1

Link to Diagram 4

8 ‘ Thursday, February 03

— 8.1 Projective Resolutions and Chain Maps ~

Remark 8.1.1: Also check that ~ is an equivalence relation, i.e. it is symmetric, transitive, and
reflexive. For transitivity: given

a; = Bi = diy18i + si-1d;
Bi — i = diygti + tiad;,

Thursday, February 03 20
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one can write

o — i = diq(si +ti) + (i1 + tio1)ds.

Theorem 8.1.2(7). R
Let o, B € ChC(A, B) with induced maps &, f € ChC(H*A, H* B) on homology. If a ~ 3, then
a=p.

Proof (?).
A computation:
a1( 21+ B;) = a1 (%) + B;
= B (2i) + ;4151 (2) + s5-16; (%) + B;
= B (z:) + B;
= Bi (2 + B;)

Remark 8.1.3: Roadmap:

e Homological algebra

e Commutative rings

e Support theory

e Tensor triangular geometry

Definition 8.1.4 (7)
Let M € R-Mod. A projective complex for M is a chain complex (Cj,d;);ecz, indexed
homologically:

d d do:=
'~-—>02—2>01—1>C()0—8>0.

In particular, d> = 0, but this complex need not be exact. A projective resolution of M is
an ezact projective complex in the following sense:

e Hi>1(C.)=0
o Hy(C,)=Cp/d(Cy) =Cp/kere = M.

Example 8.1.5(%): Some projective resolutions:

o For M € R-Mod, projective resolutions exist since we can find covers by free modules:

8.1 Projective Resolutions and Chain Maps 21
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AT

ker dy ker e

Link to Diagram

e For M € Z-Mod, every module has a 2-stage resolution:

0 — > kere 27" — 578" S5y M 0

Link to Diagram

Theorem 8.1.6(7).
For p € C(M,M") and C := (C,,d) - M,C" == (C,’,d') - M’, there is an induced chain map
a € ChC(C,C"). Moreover, any other chain map 3 is chain homotopic to a.
Note that C can in fact be any projective complex
over M, not necessarily a resolution.

Proof (?).
Using that Cy is projective, there is a lift of the following form:
Co ———> M
dag i w
&
C)— s M

Link to Diagram
Now inductively, we want to construct the following lift:

dn dn—l

Cn Cn—l Cn—?

|

3} Qp—1 Qn—2
L

¢ c Cly

Link to Diagram
STS im o,—1d,, C kerd,,_,, which follows from

n—1>
d,_jon_1dn(z) = apn_1dy_1dn ().
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!
n?

So there is a map C), — imd
argument as in the case case:

and using projectivity produces the desired lift by the same

dn dn—l
Cn-1 —— Ch

Ch -

|
1 AN
4 by orotectivity |
y projectivity Sy On—1 Qn—2
i \\3
!

v \

! \ ! !/
_—

\ d,h‘ / dilil

imd,, = kerd,,_,

Link to Diagram
To see that any two such maps are chain homotopic, set v := a — 3, then

e'(v0) = €'(os — Bs) = pe — pe =0,
and
d;z('Vn) - d;z(an — Bn)
= dizan - d;zﬁn
= anfldn - anldn
= 'Yn—ldn,

so v yields a well-defined chain map.
We’ll now construct the chain homotopy inductively. There is a lift sg of the following form:

Co
359/ - Yo
/ K -y /
C] Cy M 0
di\ /
<y
im dy

Link to Diagram
This follows because im d} = ker&’ and €'y = 0 by the previous calculation.
Assuming all s;<,_1 are constructed, set v; = d;Hsi + s;_1d;. Setting v, — sp—1dyn : Cp, — C’,’l,
then
d (Yo — Sp—1dy) = dyn — d) sp_1dp,
= Yn—1dn — dySn—1dy
= (’Yn—l - désn—l)dn
= Sn_gdn_ldn
=0,

using d> = 0. Now there is a lift s,, of the following form:
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I Tuesday, February 08

imd,, 41 = kerd,,

Link to Diagram
Thus follows from the fact that im~, — s,_1d, C kerd,, and projectivity of C,,.

Remark 8.1.7: Dually one can construct injective resolutions 0 — M N D,

" 8.2 Derived Functors ~

Remark 8.2.1: Setup: F : R-Mod — Z-Mod is an additive covariant functor, e.g. (—) ® g N or
M ®pg (=), and C, =+ M a complex over M. We define the left-derived functors as (L, F)(M) =
H,(F(C,)).

9 ‘ Tuesday, February 08

Remark 9.0.1: Defining derived functors: for F' an additive functor and M € R-Mod, take a
projective resolution and apply F':

%Cgﬁ)cl&CUEE%M%OWF(CQ)%F(C&)%,

soC, = F.
Define the left-derived functor

LFM = H,FC,.

Remark 9.0.2: Any y € R-Mod(M, M') induces a chain map & € ChR-Mod(H,.FC,, H.FC,'),

where « is any lift of u to their resolutions.

8.2 Derived Functors 24
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Tuesday, February 08

C. :€> M
ah hﬂ
C., :/} M,
&
Link to Diagram

Exercise 9.0.3 (7)
Show that any two lifts o, o’ induce the same map on homology.

Remark 9.0.4: Similarly, LF (M) does not depend on the choice of resolution:

c.—c N FC, —— F(M)
o id s F(a)
M| O = M - “idpo, FC, —— 5 F(M)
B id s \E\(B)

Link to Diagram

Definition 9.0.5 (Projective resolution of a SES)
For 0 - M’ — M — M"” — 0 in C, a projective resolution is a collection of chain maps

forming projective resolutions of each of the constituent modules:

0 c. C. c.” 0

0 M’ M M" 0

Link to Diagram

Exercise 9.0.6 (7)
Show that such resolutions exist. This involves constructing ¢ : Cy — M:

25
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/ Lo / 1" Po "

O >Co' CgCO@CO /CO O
i L
i 3ex T

2 = E/// e’
: -
R
k
0 — M« i M g » M" 0

Link to Diagram
The claim is that e(x,2") == v&'(2’) + *(2”) works. To prove surjectivity, use the following:

Proposition 9.0.7 (Short Five Lemma).
Given a commutative diagram of the following form

0 A b B 1 C 0
f g h
0 A s B’ ¢ ' 0

Link to Diagram
If g, h are mono (resp. epi, resp. iso) then f is mono (resp. epi, resp. iso).

.

Proof (of surjectivity, alternative by diagram chase).

o Letz e M

o Sety=o(x)

o Find z € Cp such that £"py(z) = y.

o Consider £(z) — = and apply o:

o(e(z) —x) = oe(z) — o(x)

=e"py(x) — o(z)
=y-y
= 0.

e Soe(z) —x € kero =im~y

o Pull back to w € Cf such that v¢'(w) = e(z) —

o Check gig(w) = v&¢'(w) = &(2) — z, so e(ip(w) — 2) = —=.
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Tuesday, February 08

Proof (of existence).

The setup:
0 0 0
0 ker &’ f kere —2 s kere! ———5 0
0 C) 0 Ch P cl 0
el 3e i Elaj/// el
! Y - L// o 1/
0 M M M 0

Link to Diagram
This is exact and commutative by a diagram chase:

o f =10 |yerer shows g(kere) C kere”
e g = po lrere shows f(kere’) C kere.

To show exactness along the top line:

e f is injective, since it’s the restriction of an injective map.
e g is surjective:

— Let x € kere”, so &’ (x) = 0.

— Jy € Cp with po(y) = = by surjectivity of po.

Check €”(po(y)) = e(z) = 0 in M”, so oe(y) =0

Thus e(y) € kero = im~

— By surjectivity there exists w € C{, such that v(¢'(w)) = e(y).
— Use commutativity to verify

e(io(w) — y) = e(io(w)) — e(y)
= 7€' (w) — e(y)
=e(y) —e(y)
= 0.

— Then

g(io(w) —y) = po(io(w)) — g(y)
= —g(y)
= —po(y)

o Exactness at the middle, i.e. im f = ker g:

Tuesday, February 08
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— im f C ker g by exactness of the second row, so it STS kerg C im f.

— Let y € kerg, then by commutativity y € kerpg = imig. Note that y € kere by
definition.

Write y = io(z) for some z € C|,

Note v&'(z) = gip(z) = e(y) = 0 since y € kere.

— Since 7' is mono, £'(z) = 0, so y = ig(x) = f(z).

Proposition 9.0.8(?).
For F' : R-Mod — Z-Mod additive and a SES

€0 M LmE m —o,
note that there are morphisms
LFM" - LFM — LFM'.
There is a connecting morphism
A:LFM" - S 'LFM,
which in components looks like

0 LoF(M") «———— LoF(M) «—— LoF(M)
L F(M") ¢« L F(M) «————— L F(M)

LoF(M") ¢

Link to Diagram

10 ‘ Thursday, February 10

Missed! Please send me notes. :)
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]_ 1 Tuesday, February 15

12 Tuesday, February 22

— 12.1 Prime ldeals

Remark 12.1.1: Plan: commutative ring theory, aiming toward tensor triangular geometry.

Remark 12.1.2:

e Recall the definition of prime ideals.

o Show p € Spec R <= R/p is an integral domain.

o Recall m € mSpec R <= R/m is a field.

e Recall the definition of a monoid

o Note that R\ p > 1 and R\ p is a submonoid of (R,-).
e Examples of primes:

— (p) € Spec R and if p # 0 then (p) € mSpec R.
— R =k[z] is a PID and (f) € Spec R <= f is irreducible.

¢ Recall the set of nilpotent elements and the nilradical v/0g.

— Show 0z € Id(R).
— Show that Ryeq := R/+/0pg is reduced (no nonzero nilpotents).

Lemma 12.1.3 (Prime Avoidance).
Let A, I; € Id(R) where at most two of the I; are not prime and A C UIJ" Then A C I; for

J
some j.

Proof (of lemma).
The case n = 1 is clear. Forn > 1,if AC I, =L UL U- fk U---UI, then the result holds
by the IH. So suppose A Z I, and pick some aj, & Ij;. Since A C UIj, we must have ay € I.
Case 1: n =2. If a1 +ay € A with ay € I \ Is and ag € Iz \ I1, then a1 +ay € Iy U Iy —
otherwise a1 +as € Iy = a9 € I1, and similarly if a1 +as € Isr. So A C I U Is.
Case 2: n > 2. At least one [; is prime, without loss of generality I;. However, a1+aza3 - - ay, €
A\ U I;. Since a; € I;, we have ay - - - a, € I;, contradicting ay ¢ I; for j # 1.

i>1

= ]

Proposition 12.1.4(?).
Let S < (R,-) be a submonoid and P € Id(R) proper with P NS = () and P is maximal with
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respect to this property, so if P’ O P and P'NS = () then P’ = P. Then P € Spec R is prime.

Proof (?).

By contrapositive, we’ll show a,b¢ P = ab¢ P. If a,b & P, then P C aR+ P,bR+ P is a
proper subset. By maximality, (aR + P) NS # () and (bR + P) N S # . Pick s1,s2 € S with
s1 = x16 + p1, S2 = x2b + p2. Then s1s9 € S and thus

5152 = w1w2ab + T10pP2 + T2bp1 + P1P2 € T1T20b + P+ P + P,

hence ab € P — otherwise SN P # (). ¢

Proposition 12.1.5(%).
Let S < R be a monoid and let I € Id(R) with I NS = (). Then there exists some p € Spec R
such that

e ICp
e« pNS=10

Proof (?).
Set B = {I’ oI ’ I'nsS = (Z)}, then B # (). Apply Zorn’s lemma to get a maximal element p,
which is prime by the previous proposition.

|
Theorem 12.1.6 (Krull).
VOR = Npespec RD-
Exercise 12.1.7 (7)
Prove this!
" 12.2 Localization ™~

Remark 12.2.1: Recall the definition of Q as Z[1] where S = Z \ {0} using the arithmetic of
fractions. More generally, for D an integral domain, there is a field of fractions F' with D — F
satisfying a universal property and thus uniqueness. Recall the definition of localization and the
universal property: if n: R — R’ with n(S) C (R')* then 37 : R[s-1] — R'.

Remark 12.2.2: Next time:
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« Existence of R[s!]
e Localization for R-Mod.
e Localization using tensor products. P

13 ‘ Tuesday, March 01

Remark 13.0.1: Recall the definition of the localization of an R € CRing"™*! at a submonoid
S < (M,-), written R[s-']. Similarly for M € R-Mod, one can form M [s-1], and (—)[s~'] is a

functor where the induced map on M I N s fs(m/s) = f(m)/s. s

Proposition 13.0.2(?).
For I € Id(R), let j(I) = {a €ER ‘ a/s € I for some s € S} which is again an ideal in R.
Then

L j(Ds =1,
2. I = Rg <= I contains an element of S.

Proof (of 2).
«=: Ig C Rg is clear. Letx/teRSandselﬂS,then%:%EIS.
= : Write 1 =i/s to produce t € s with t(s —i) = 0. Tbirlenz:tSESandz:itGIso
zelINnS.
|

Proposition 13.0.3(?).
Let P € Spec R with SN p =0, then j(Ps) = P.

Proof (?).
D: Clear.
C: Let a € j(Ps), so a/s = p/t for s,t € S,p € P and Ju € S such that u(at — sp) =0 € P,
so uat —usp € P where usp € P. Thus uat € P — a(ut) € P = a € P, since ut € S and
ut &€ P.

|

Proposition 13.0.4(%).
There is an order-preserving correspondence
{p € Spec R ‘ pNS = (7)} = Spec R [571]

P+ P[s571]
Jj(P') « P
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Proof (?).
We need to show

1. P[s~'] € Spec R [s1] is actually prime.
2. If P' € Spec R [s~!] then j(P') € Spec R with j(P')n S = .

For one:
Yy xry
—-,2€Py — —€P
S st Y
= xy € j(Ps) =P
— x€PoryecP
— z/se€ Pory/seP.
For two:

zyejP) = Yep

S
— e p
1s
= %GP'OIQEP'
S

= zcPorycP

t
If:vej(P’)ﬂSthen%eP’ 50 —%GP’. s

x
One can then check that these two maps compose to the identity.

Exercise 13.0.5 (7)
Show that if p € Spec R then R, € LocRing is local. Use that the image of p in R, is
8= I8 R;, making it maximal and unique.

Exercise 13.0.6 (?)

Show that
1. M =0 < Mg =0 for all S,
2. M =0 <= M, =0Vp € mSpecR,
3. M =0 <= M, =0Vp € Spec R, noting that this is a stronger condition than maximal.

For (2), use that Anng(z) is a proper ideal and thus contained in a maximal, and show by
contradiction that z/1 # 0 € M,,.

Exercise 13.0.7 (7)
Show that if f € R-Mod(M, N) then

Tuesday, March 01 32



I Tuesday, March 15

f injective (resp. surjective) = fg injective (resp. surjective)

o If f, is injective for all p € Spec R, then f is injective (resp. surjective)
e If M is flat then My is flat

o If M, is flat for all p then M is flat.

Remark 13.0.8: Recall that for A C R, V(A) = {p € Spec R ’ p 2 A}. Letting I(A) be the ideal
generated by A, then check that V(I(A)) = V(A) and V(I) = V(V1).

Exercise 13.0.9 (?)
Check that defining closed sets as {V(A) ‘ AC R} forms the basis for a topology on Spec R,
and V(p) N V(q) =V (pq).

Remark 13.0.10: Next time: generic points, idempotents, irreducible sets.

14 ‘ Tuesday, March 15

See https: //www. math. ucla. edu/ ~balmer/
Pubfile/ TTG. pdf

Remark 14.0.1: Recall that V(B) = {p € Spec R ‘ p D B} are the closed sets for the Zariski
topology, and V(B) = V((B)). Write I(A) = ﬂ p for the vanishing ideal of A, and note V(I(A)) =
peEA

clspec RA. Recall VI = ﬂ = {x €ER ’ dn such that 2™ € J}, so V0 is the nilradical, i.e. all
p2J

nilpotent elements. An ideal J is radical iff VI =J.

Theorem 14.0.2(7?).
For X = SpecR, I(V(J)) = V/J, and there is a bijection between closed subsets of X and
radical ideals in R.

Proof (?).

and
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Remark 14.0.3: Recall that X is reducible iff X = X; U Xs with X; nonempty proper and closed.

Theorem 14.0.4(%).
For R € CRing, a closed subset A C X is irreducible iff I(A) is a prime ideal.

Proof (?).

= : Suppose A is irreducible, let fg € I(4) = ﬂ p. Then fg € p = [ € [ without loss
peEA

of generality for all p € A, and A= (ANV(f))U(ANV(g)) so ACV(f)or ACV(g). Thus

fer(f)=IV(f)) C I(A) (similarly for g).

<= Suppose I(A) is a prime ideal and A = A; U Ay with A; closed, so I(A) C I(A;). Then

I(A) = I(Al U Ag) = I(Al) N I(AQ)

If I(A;) C I(A) are proper containments, then one reaches a contradiction: if x € I(A;) and
y € I(Az), use that xy € I(A) to conclude z € I(A) or y € I(A).
|

Theorem 14.0.5(?).
Let X € Top; TFAE:

1. X is irreducible.
2. Any two open nonempty sets intersect.
3. Any nonempty open is dense in X.

Proposition 14.0.6(7?).

1. Any irreducible subset of X is entirely contained in a single irreducible component.

2. Any space is a union of its irreducible components.

Remark 14.0.7: e A space is Noetherian iff any descending chain of closed sets stabilizes, and
if R is a Noetherian ring then X = Spec R is a Noetherian space. Note that the converse may
not hold in general!
¢ A Noetherian space has a unique decomposition into irreducibles.
e Any irreducible component is the closure of a point.
o Any nonempty irreducible closed subset A C Spec R contains a unique generic point p = I(A).

Remark 14.0.8: Coming up:

¢ Group cohomology, the Hopf algebra structure on kG

o Cohomology using minimal resolutions

o R= H'G;k) = Exts(k, k) which is a Noetherian ring

o Use minimal resolutions to define ¢y (M), the rate of growth of a minimal projective resolution
of M (1977)
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o Support varieties: R = Extio(k, k) ~ M = Exty(M, M), let J = Anng(M) and Vg(M) =
Spec(R/J).

e An equality of numerical invariants: cyg(M) = dim Vg(M).

o Paul Balmer’s tensor triangular geometry.

15 ‘ Tuesday, March 22
— 15.1 Hilbert-Serre ~

Remark 15.1.1: Setup: V € grzk-Mod a graded vector space, so V = @ Vi with dimg V, < oc.
r>0
Define the Poincare series

p(V,t) =) dimV,t".
r>0

Theorem 15.1.2 (Hilbert-Serre).
Let R € gr;CRing be of finite type over A for A € k-Alg and suppose R is finitely generated
over Ag by homogeneous elements of degrees ki, --- , ks. Supposing V' € A-Mod'®,

f(t)

p(V7 t) = = 1 .
Migjcal =%

£(t) € Z[t].

Proposition 15.1.3(%).
Suppose that

p(V,t) = L}g = Zartr, f(t) € Z[t], ar € Z>o.
[hejes 1=t 55

Let v be the order of the pole of p(t) at ¢ = 1. Then

1. There exists K > 0 such that a,, < Kn?~! for n > 0

2. There does not exist k > 0 such that a, < kn?~2.

Definition 15.1.4 (?)
Let V be a graded vector space of finite type over k. The rate of growth ~(V') of V is the
smallest v such that dim V;, < Cn?~! for all n > 0 for some constant C.

Remark 15.1.5: Compare this to the complexity Cq(M) = v(Py) where P° = M is a minimal
projective resolution.
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— 15.2 Finite Generation of Cohomology ~

Remark 15.2.1: Fix G € FinGrp. Recall that H*(G; k)Ext®¢(k, k) has an algebra structure given
by concatenation of LESs:

Ve 0 k M, M, s k 0 € Ext%(k, k)

N 0 ke Ny Np, k 0 € Ext(k, k)

Link to Diagram

Recall that Extg(k, k) = Hkon(Pn, k), providing the additive structure. Moreover, Extyqg (M, M)

is a ring, and if N € kG-Mod, then Extpg N, M € Extyg(M,M)-Mod. Similarly Extgc(N, M) €
Ext*(k,k)-Mod by tensoring LESs. o

Remark 15.2.2: There is a coproduct

kG 25 kG @y kG
g—g®g.

There is a cup product:

D Extiq(k,N) @y Extho(k, M) +— Ext o (k ®x N,k @ M)

s+t=m
(a,b)—a—b
Ext{ly(N, M)
Link to Diagram
It is a theorem that this coincides with the Yoneda product. A

Theorem 15.2.3(7).

« H(G, k) is a graded commutative ring, so zy = (—1)=!¥lyz
o The even part H**V*"(G; k) is a (usual) commutative ring.
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I Tuesday, March 29

Theorem 15.2.4 (Evans- Venkov, 61).

o H°(G;k) is a finitely generated in Alg
« If M € kG-Mod then Ext0(k, M) € H*(G; k)-Mod.

Remark 15.2.5: Quillen described mSpec H*(G, k)™ in the 70s. Idea: look at E < G the

elementary abelian subgroups, so E = C,*" where p = ch k, and consider Vg(k) = U Ve(k)/ ~
E<@

the union of all elementary abelian subgroups, where Vg (k) := mSpec H*(G; k). Note that in

characteristic zero, this is semisimple and only H" = k survives.

Example 15.2.6(%):
e For A= C), with chk = p > 0, then

B, y)/ (?) 2l = 2,1yl =1 p>3

, mSpec R = Al .
Ko, o] = 1 p=2. /’“

R:=H"(Cp; k) = {

o Dan’s favorite: A = u(g) for g = sly with chk = p > 3 for u the small enveloping algebra.
Friedlander-Parshall show mSpec R = k[N] for N := {M [(CZ _ba] ’ M is nilpotent}. This

can be presented as

K] = Ko,y 21/ (2 + ay)  fal,lol 2] = 2

and we’ll see how finite generation is used in this setting.

16 ‘ Tuesday, March 29

Remark 16.0.1: Setup: for G € FinGrp,k € Field with chk = p | §G. For M € kG-Mod,
we associate V(M) C mSpec(R) for R := H°(G;k). There is a ring morphism ®,; : R —
Ext?q (M, M), we set Ig(M) = {:L' €ER ‘ Dp(x) = O} and define the support variety as V(M) =
mSpec(R/Ig(M)).

Example 16.0.2(?): Let G = C,*", then

o H*(G;k) = k[, -+ ,z,] for chk =p > 3.
e mSpec R=A" D Vg(M)
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" 16.1 Rank Varieties ~

Definition 16.1.1 (Rank varieties)
For kG = k[z1,-- ,2n]/ (2], -+, 2E), let xp == Zaizi for a; € k. Define the rank variety

kG
V(M) = {a Res is not free} u{0}.

(za)
Theorem 16.1.2(Carlson).
V(M) = Vg (M).

Remark 16.1.3: Note that Ext®(M, M) ~ Ext®(M’, M) by splicing, so we can define I(M', M) =
Annp Ext}.o(M’', M) and the relative support variety Vg(M', M) = mSpec(R/Ig(M', M)). This
recovers the previous notion by Vg(M, M) = Vg(M).

Remark 16.1.4: Since Ig(M', M) D Ig(M) + Ig(M"),
Va(M', M) C Vg(M) N Va(M'),

which relates relative support varieties to the usual support varieties.

Remark 16.1.5: If 0 4 A — B — C' — 0 is a SES, there is a LES in Extyg and by considering
annihilators we have

Ig(A,M)-Ig(B,M) C Ig(C,M) = Vg(C,M) C Vg(A, M) U Vg(C,M).

Proposition 16.1.6(7).
Let M € kG-Mod, then

Ve(M)S |J  Va(S M).
S<M simple

Proof (?).
Take the SES 0 — S - M — M/S; — 0, then Vg(M) = Va(M,M) C Vg(S1,M) U
V(M /S1, M). Continuing this way yields a union of V (T, M) over all composition factors 7.
Conversely, by the intersection formula above, this union is contained in Vz(M), so these are
all equal.

[ |
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Theorem 16.1.7(?).
Let M € kG-Mod, then

1. cg(M) = dim V(M)
2. V(M) = {0} (as a conical varieties) iff M is projective.

Proof (?).

Note (2) follows from (1), since complexity zero modules are precisely projectives. Consider
®yr: R — BExte (M, M), which induces R/Ig(M) < Ext), (M, M) which is finitely generated
over R/Iz(M). A computation shows

ca(M) = y(Extig(M, M))
=v(R/Ia(M))
= krulldim(R/I¢(M))
= dim Vg(M).

Remark 16.1.8: Consider a LES 0 - M — M; — -+ — M, - M — 0 € Extpo(M,M).
Apply Q"(—), which arises from projective covers P* = M and truncating to get 0 — Q" —
Pl & ... 5 Py — M — 0. Similarly define Q7" in terms of injective resolutions. There is
an isomorphism Exty (M, M) = Exty,(Q°M, Q°M) which is compatible with the R action. Thus
Va(M) = Vg(Q°M) for any s. Since kG is a Hopf algebra, dualizing yields Extj,(M, M) =
Extio (MY, M") and thus Vg(M) = Vg(MY). e

— 16.2 Properties of support varieties ~

Proposition 16.2.1(7).
Ve (M1 @D Ms) = Vg (My) U Vg (Ma).

Proof (?).
Distribute:

Ext{q (M1 ® My, My ® Ms) = ExtQo(My, My) ® Extdq(My, My) @ Extdq (Mo, My) @ Extdo(Ms, My).

Now Ig(My @D M;) C Ia(My) & Ia(Ms), so Vg(My) U Vg(Ms) C Va(My @ Ms). Applying
the 2 out of 3 property, Vg (M & Ms) C Vg(M;y) U Vg(Ms) since there is a SES 0 — M; —
M, & My — My — 0.

|
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Theorem 16.2.2 (Tensor product property).
Let M, N € kG-Mod, then

Va(M @ N) = V(M) N Vg(N).

Remark 16.2.3: Conjectured by Carlson, proved by Arvrunin-Scott (82). Prove for elementary
abelians, piece together using the Quillen stratification. A

Theorem 16.2.4(Carlson).
Let X = mSpec R, which is a conical variety, and let W C X be a closed conical subvariety
(e.g. a line through the origin). Then there exists an M € kG-Mod such that V(M) = W.

Remark 16.2.5: Take ¢ : Q"k — k, so ( € R/Ig(M), and define certain L¢ modules and set

Theorem 16.2.6 (Carlson).
Let M € kG-Mod be indecomposable. Then the projectivization Proj V(M) is connected.

— 16.3 Supports using primes ~

Remark 16.3.1: As before, set R = H**"(G; k), X = Spec R, and now define
Va(M) = {p e X | Bxtfg(M, M), #0}.

All of the theorems mentioned today go through with this new definition. Ve

Exercise 16.3.2 (7)
Let Ig(M) = Anng Ext(M, M) < R, and show

Va(M) = {p€ X | p 2 Is(M)} = V(Ic(M))

is a closed set.

Remark 16.3.3: Let g € LieAlg, with chk =p > 0, e.g. g = gl,,(k). Then there is a pth power

operation z/P! = z -z - .- 2. The pair (g, [p]) forms a restricted Lie algebra. Consider the enveloping
algebra U(g), and define

u(g) = U(g)/ (a¥ — 2%k

r€g),

which is a finite-dimensional Hopf algebra:

o The counit is (g) =0 for g € g
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o The antipode is 6(g) = —g
o The comultiplication is A(g) =g® 1+ 1®g.

The dimension is given by dimu(g) = pd™9.

17 ‘ Tuesday, April 05

— 17.1 Lie Theory ~

Remark 17.1.1: Setup: k = k, chk = p > 0, g a restricted Lie algebra (e.g. g = Lie(G) for
G € AffAlgGrp ;). Write APl = AA..- A and set A = u(g) = U(g)/J where J = <ZL‘®Z — zlP]
which is an ideal generated by central elements. Note that A is a finite-dimensional Hopf algebra.

Proved last time: H O(A; k) € Alg /kfg, using a spectral sequence argument. From the spectral
sequence, there is a finite morphism

®:S(gh)M — HO(Ask),
making H°(A; k) an integral extension of im ®. This induces a map

® : mSpec HY(A; k) — g.
Theorem 17.1.2(Jantzen).
mSpec HY(A; k) 2N, = {a: €g ‘ xm}.

Example 17.1.3(?): For g = gl,, NV, < N is a subvariety of the nilpotent cone. Moreover N,
is stable under G = GL,, and there are only finitely many orbits. There is a decomposition into
finitely many irreducible orbit closures

N, = JGa.
i
This corresponds to Jordan decompositions with blocks of size at most p.

Remark 17.1.4: Using spectral sequences one can show that if M, N € A-Mod then Ext%(M ,N)
is finitely-generated as a module over R := H"(A;k). So one can define support varieties V(M) =
mSpec R/Jy; where In; = Anng Ext% (M, M). Some facts:

« Vi(M)CN,Cyg
o If M is a G-module in addition to being a g-module, then V(M) is a G-stable closed subvariety
of Nj.
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Theorem 17.1.5 (Friedlander-Parshall (Inventiones 86)).
Given M € u(g)-Mod,

Vo(M) = {1: €g ’ a2l =0, M lu(@y) is not free over u((z)) < u(g)} U {0},

which is similar to the rank variety for finite groups, concretely realize the support variety.

Remark 17.1.6: Here (z) = kz is a 1-dimensional Lie algebra, and if z/P! = 0 then u((z)) =
klz]/ (zP) is a PID. We know how to classify modules over a PID: there are only finitely many
indecomposable such modules. A~

s 17.2 Reductive algebraic groups ~

Example 17.2.1(?): For type A, ~ GLp11, ag = &, = Z o; and h = n+ 1. For Go,
1<i<n
Gy = 31 + 20 and h = 6. e

Fact 17.2.2
If p > h then N,(g) = N.

Definition 17.2.3 (Good and bad primes)
A prime is bad if it divides any coefficient of the highest weight. By type:

Type Bad primes

A, None
B, 2

Chn 2

D, 2

FEg 2,3
Er 2,3
Eg 2,3,5
Fy 2,3
G 2,3

Theorem 17.2.4(Carlson-Lin-Nakano-Parshall (good primes), UGA VIGRE (bad

primes)).
N, = O is an orbit closure, where O is a G-orbit in /. Hence N, (g) is an irreducible variety.
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Remark 17.2.5: Let X = X (T') be the weight lattice and let A € X, then

Dy = {ae@ ‘ A+ p, o) EpZ}.
Under the action of the affine Weyl group, this is empty when A is on a wall (non-regular) and
otherwise contains some roots for regular weights. When p is a good prime, there exists a w € W with

w(Py) = &y for J C A a subsystem of simple roots. In this case, there is a Levi decomposition

QZUJ@KJ@U}_.

Remark 17.2.6: On Levis: consider type As ~ GLg with simple roots «;.

U

D\ - N
/k. @ " 4 o L / g
X e | ols | sa | e |\

C

Remark 17.2.7: Consider induced/costandard modules H’(\) = Ind§ A = V()), which are
nonzero only when A € X, is a dominant weight. Their characters are given by Weyl’s char-
acter formula, and their duals are essentially Weyl modules which admit Weyl filtrations. What are
their support varieties?

17.2 Reductive algebraic groups 43



Tuesday, April 05

Theorem 17.2.8 (Nakano-Parshall-Vella, 2008).

Let A € X and let p be a good prime, and let w € W such that w(®,) = ®; for J C A. Then

VeH'\) =G -u;=0

is the closure of a “Richardson orbit”.

Remark 17.2.9:

e This theorem was conjectured by Jantzen in 87, proved for type A.
« For bad primes, H°()) is computed in one of seven VIGRE papers (2007). These still yield
orbit closures that are irreducible, but need not be Richardson orbits.

Natural progression: what about tilting modules (good filtrations with costandard sections and
good + Weyl filtrations)? We're aiming for the Humphreys conjecture.

Remark 17.2.10: Let T'()\) be a tilting module for A € X;. A conjecture of Humphreys: V;T'(X)
arises from considering 2-sided cells of the affine Weyl group, which biject with nilpotent orbits.

Example 17.2.11(?): In type As:

N

/

T
N

17.2 Reductive algebraic groups
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There are three nilpotent orbits corresponding to Jordan blocks of type X« : (1,0) and Xyeg : (1,1)

in gl5. Three cases:

o VL-,T()\) =N = G Xreg
« ViT(N) = {0}

/

Remark 17.2.12: The computation of VgT'(M) is still open. Some recent work:

e p=2 A,: done by B. Cooper,
e p>n+1,A, by W. Hardesty,
e p> 1, Achar, Hardesty, Riche.

Remark 17.2.13: What about simple G-modules? Recall L(\) = Sgc V(A) € V(A) — computing

Ve L()) is open.

I Theorem 17.2.14 (Drupieski-N-Parshall).
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Let p > h and w(®,) = &, then
qu(g)L()\) = GUJ,

i.e. the support varieties in the quantum case are known. This uses that the Lusztig character
formula is know for u4(g).

18 ‘ Tuesday, April 12

— 18.1 Tensor triangular geometry ~

Remark 18.1.1: Last time: tensor categories and triangulated categories. Idea due to Balmer:
treat categories like rings.

Definition 18.1.2 (Tensor triangulated categories)
A tensor triangulated category (TTC) is a triple (K, ®,1) where

e K is a triangulated category
o (K,®) is a symmetric monoidal category
e lisaunit,so X®1 X 51® X for all X in K.

Remark 18.1.3: We’'ll have notions of ideals, thick ideals, and prime ideals in K. Define Spc K
to be the set of prime ideals with the following topology: for a collection C' C Spec K, define
Z(C) = {p € Spc K ‘ Cnp= (Z)}. Note that there is a universal categorical construction of Spc K
which we won’t discuss here.

Remark 18.1.4: TTC philosophy: let K be a compactly generated TTC with a generating set
K*€. Note that K can include “infinitely generated” objects, while K¢ should thought of as “finite-
dimensional” objects. Problems:

e What is the homeomorphism type of Spc K7
o What are the thick ideals in K7

Although not all objects can be classified, there is a classification of thick tensor ideals. Idea: use
the algebraic topology philosophy of passing to infinitely generated objects to simplify classification.

Remark 18.1.5: We'll need a candidate space X =v,, Spc(K€), e.g. a Zariski space: Noetherian,
and every irreducible contains a generic point. We’ll also need an assignment V' : K¢ ~» X (the
closed sets of X) satisfying certain properties, which is called a support datum. For I a thick tensor
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ideal, define

(D)= | V(M) € Xg,
Mel

a union of closed sets which is called specialization closed. Conversely, for W a specialized closed
set, define a thick tensor ideal

(W) = {M € K*

V(M) C W}.

One can check that a tensor product property holds: if M € K¢ and N € O(W), check V(M ®N) =
V(M)NV(N) C W. Under suitable conditions, a deep result is that ' 0 © = id and © o I' = id.
This yields a bijection

{Thick tensor ideals of KC} = {Specialization closed sets of X}
I—T(I)
OW) W

Remark 18.1.6: Define
f:X — SpcK°

mHPI:—{MEKC

. //V(M)}.

This is a prime ideal: if M @ N € Py, then x ¢ V(M @ N) =V (M)NV(N),so M € Pyor N € P,. =

) 18.2 Zariski spaces ~

Definition 18.2.1 (Zariski spaces)
A space X € Top is a Zariski space iff

1. X is a Noetherian space, and
2. Every irreducible closed set has a unique generic point.

Note that since X is Noetherian, it admits a decomposition into irreducible components

X=|J w.

1<i<t

Example 18.2.2(?): The basic examples:

e For R a unital Noetherian commutative ring, X = Spec R is Zariski.
e For R a graded unital Noetherian ring, taking homogeneous prime ideals Proj R.
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o For G € AffAlgGrp with G ~ R a graded ring by automorphisms (permuting the graded
pieces), the stack X := Proj(R) (which is not Proj of the fixed points) is the set of G-invariant
G

homogeneous prime ideals. There’s a map p : Proj R — Proj R where P +— NyeqgP which
G
gives Proj R the quotient topology: W & Proj R is closed iff p € R is close din Proj R. This
G G

topologizes orbit closures. P

Remark 18.2.3: Notation:

X = 2% for the powerset of X,

X the closed sets,

Xy the irreducible closed sets,

Xsp the specialization-closed sets. P

— 18.3 Support data ~

Remark 18.3.1: Recall

« M = kG-Mod
° R — HeVeIl(G; k)
e Vo(M) = {p € Proj R ‘ Extye (M, M), # o}.

Note that Vg (P) = 0 for any projective and Vg (k) = (. In general, we’ll similarly want V(0) =0
and Vg(1) = X. g

Definition 18.3.2 (Support data)
A support datum is an assignment V : K — X’ such that

1. V(0) =0 and V(1) = X.

2. V (EB M; = V(Mi)>
i€l icl

3. V(¥M) =V (M) (similar to Q)

For any distinguished triangle M — N — Q — XM, V(N) C V(M) U V(Q).

5. VIM@N)=V(M)NV(N).

=

We’ll need two more properties for the Balmer classification:

6. Faithfulness: V(M) =0 < M =0.
7. Realization: for any W € X, there exists a compact M € K¢ with V(M) = W.

Remark 18.3.3: Note that (6) holds for group cohomology, and (7) is Carlson’s realization theorem. "
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Lemma 18.3.4(?).

Let K be a TTC which is closed under set-indexed coproducts and let V : K — X be a
support datum. Let C' be a collection of objects in K and suppose W C X with V(M) C W
for all M € C. Then V(M) C W for all M in Loc(C).

Proof (?).
Note that Loc(C) is closed under
e Applying ¥ or X7,
o 2-out-of-3: if two objects in a distinguished triangle are in Loc(C'), the third is in Loc(C),

e Taking direct summands,
o Taking set-indexed coproducts.

These follow directly from the properties of support data and properties of Loc(C').

— 18.4 Extension of support data ~

Remark 18.4.1: Let X be a Zariski space and let K O K¢ be a compactly generated TTC. Let
V: K¢ — X be a support data on compact objects, we then seek an extension: a support datum
VY on K forming a commutative diagram:

K———X

Ke— YV L x,

Link to Diagram

Definition 18.4.2 (7)
Let K be a compactly generated TTC and V' : K¢ — X, be a support datum. Then V : K — X
extends V iff

 V satisfies properties (1) — (5) above,

o V(M)=V(M)for any M € K°.
o If V is faithful then V is faithful.

Remark 18.4.3: We’ll need Hopkins’ theorem to analyze such extensions.
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- 19.1 Hopkins’ Theorem ~

Remark 19.1.1: Let K be a compactly generated tensor triangulated category with K¢ a subcat-
egory of compact objects. Goal: classify SpcK°. A candidate for its homeomorphism type: we’ll
build a Zariski space X and a homeomorphism Spc K¢ — X. We’ll use support data V : K¢ — X
which satisfies the faithfulness and realization properties. We’'ll extend this to V : K — X. So we
need

e A Zariski space X,
e Support data V,
e An extension V.

" 19.2 Localization functors ~

Remark 19.2.1: Let C < K be a thick subcategory for K € triangCat. A mysterious sequence:

To(M) — M — L.(M).

Suppose W € Xj,; is nonempty and let Z = {x e X ‘ w < cly {:1:}} Define a functor Vi =I'r,, L1,
and V(M) = {z € X | V(3 (M) = 0}.

Theorem 19.2.2 (Hopkins-Neeman).

Let K be a compactly generated tensor triangulated category, X a Zariski space, and X
the closed sets. Given a compact object M € K, let (M)y. be the thick tensor ideal in K¢
generated by M. Let V : K = X be support data satisfying the faithfulness condition and

suppose V : K — X is an extension. Set W = V(M) and Iyy = {N e K| V(N) C W} Then

IW = <M>KB7

i.e. this is generated by a single object.

Proof (?).

Let [ :== Iy and I' :== (M) ..

I' CI: If N € I, then N is obtained by taking direct sums, direct summands, distinguished
triangles, shifts, etc. These all preserve support containment, so V(N) C W and N € I = Iyy.
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I CI': Let N € K. Apply the functorial triangle I';s — id — Ly to T';(IN) to obtain
F[/F[N — F[(N) — L]/F[N.

From above, I’ C I so the first term is in Loc(I). Since the second term is as well, the
2-out-of-3 property guarantees that the third term satisfies Ly I';N € Loc(I). By the lemma,
V(LpTyN) C W. There are no nonzero maps I’ — VLpT'[N, therefore for S € K, noting
that S M € I',

0= H%m(S ® M,LpT M) = H&m(s, MY ® LpT[N),

and since S is an arbitrary compact object, this forces MV ® LpT'tN = 0. By faithfulness,
and the tensor product property,

0 =V(MY®LpTIN)
V(IMY)NV(LpTiN)
V(M)NV(LpTN)
W NV(LpTN)

V(LpTN),

so by faithfulness (again) LpT'tN = 0. Thus by the localization triangle, T')I'yN = T’/ N.
Now specialize to N € I; the localization triangle yields

I''N >N L(N) = I'/NN.
Now replacing I with I’ yields TN & N since LpN = LpT'yN = 0 by the previous part.

Thus N € Loc(I’) by applying a result of Neeman, implying N € I’ and I C I'.
|

Remark 19.2.3: Many different takes on classification of thick tensor ideals:

o Benson, Carlson, Rickard at UGA in the late 90s, for finite group representations (now

extended).
e Benson, Iyengar, Krause: axiomatic approach and description of supports.
e Dell’Ambrogio
e Boe, Kujawa, Nakano

Theorem 19.2.4(7%).
Let

e K be a compactly generated tensor triangulated category,

e X be a Zariski space,

e V : K° = X, be a support datum satisfying both the faithfulness and realization
properties,

e V:K — C be an extension of V.

Let Id(K®) be the set of thick tensor ideals in K, then there is a bijection
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1d(K®) = &

I—T) =] V()
Mel

OW) = I = {N e K

V(N) S W} W

Exercise 19.2.5 (7)
Show that Iy € Id(K®) is in fact a thick tensor ideal.

Proof (?).
I' o ©® = id: Check that

rew =I'(Ilw)= |J V(M
Melwy

For the reverse inclusion, let W = U W; where W; € X,. By the realization property,

JEW
there exist N; € K° such that V(N;) = Wj, so N; € Iy. Now W C ] V(M
Mely
w= J V(M
Melwy
© ol =id: For I € Id(K®), set W =T'(1 U V (M), then

Mel
oIl =O(W)=1Iy 2 I.

For the reverse inclusion Iy C I: let N € Iy,. Since X is a Zariski space, X is Noetherian and
there is an irreducible component decomposition V(N U W; with each W; irreducible with

a unique generic point, so W; = cly, {x;}. Since each W; Q W, each x; e W = UV ), so
there exist M; with x; € V(M;). Since supports are closed, W; = cly, {x;} C V(). Setting
M =P M; € I yields V(N) C|JV(M;) = V(M) C W.

i

Claim:
N € (M)

Proving the claim will complete the proof, since I is a thick ideal containing M, so (M) C I
and N € I.

Proof (of claim).
By Hopkins’ theorem, (M)xe = Iz where Z = V(M). Since V(N) C V(M) = Z, we
have N € Iz = (M)«.

|
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Remark 19.2.6: Next time:

o Showing Spc K¢ _I_% X
op
o Examples: kG-stMod, u(g)-stMod, and DR-Mod.

20 ‘ Thursday, April 21

" 20.1 Classification theorem ~

Theorem 20.1.1(?).
Let K be a compactly generated tensor-triangulated category and let X be a Zariski space.
Suppose that

1. V:K®— X, is a support datum,
2. 'V satisfies the faithfulness property,
3. V:K— X extends V.

Then there exists a bijective correspondence

AN
1K) = X

L
—

where T(I) := | J V(M) and ©(W) := {N € K* | V(N) c W}.
Mel
Remark 20.1.2: This relies on Hopkins’ theorem.
- 20.2 Balmer spectrum ~

Theorem 20.2.1(7).
Let K and X be as in the previous theorem, satisfying the same assumptions. Then there
exists a homeomorphism f : X — SpcK€.

Proof (?).
Since V : K¢ — X, is a support datum, Balmer shows there exists a continuous map

f: X — SpcK¢
xHPx::{M’mgéV(M)}.
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Note that P, is a prime ideal:

M®NeP, = z¢V(M®N)
= ¢ V(M)NV(N)
= ¢ V(M)orxz¢gV(N)
== MeP,or Nckh,.

Applying the classification theorem, this yields a bijection.

Remark 20.2.2: Examples of classification:

For G € FinGrp,chk = p | G, take K = kG-stMod, R = H®"(G;k), and X = ProjR =
Proj(Spec R). Checking that this satisfies the 4 properties in the theorem:

1. For M € K¢ we take V(M) = {p €eX ‘ Ext*ra (M, M) [p'] # O}. This yields a support

datum.

2. The tensor product property holds because Vg(M) = V(M) (the rank variety), and we
showed that V satisfies faithfulness and (Carlson) realization properties.

3. We can use localization functors to define V : K — X which satisfies the same support data
properties. For this to be an extension, one should check that

e V(M) =V(M) for every compact M € K°.
« V(M ®N)=V(M)NV(N) for all M,N € K
o If V(M) is empty then M = 0.

Remark 20.2.3: To prove these properties, Benson-Carlson-Rickard start with E elementary
abelian, so £ = (x1,--- ,xy,) = Cpxn with o(z;) = p for all i. Set y; =, — 1 € kE, so y¥ =0, and

define cyclic subgroups o = [av, -+ ,ap] € L™ where L/k is a field of large transcendence degree.
Define y,, = Z «;; and define a rank variety
1<i<n

V(M) = {a erL” ‘ L ®g M |, is not free }U {0}.

Theorem 20.2.4(?).
Let E be as above and suppose trdeg(L/k) > n. Then if M € K, Vg(M) = V(M), and the
three properties for (3) above hold for E.

Theorem 20.2.5(7).
Let A = kG for G a finite group scheme, and let R = H**"(G; k) and X = Proj(R). Then
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o There is a bijective correspondence

r
kG-stMod T X,
e

o Spc(kG-stMod) _I_% X.
op

Remark 20.2.6: Some remarks:

e This theorem is an indication of why cohomology is central in understanding the tensor
structure of representation categories. If G' € FinGrpSch ;, then the coordinate ring k[G] is a
commutative Hopf algebra, so A = kG = k[G]" is a finite dimensional cocommutative Hopf
algebra. So there is an equivalence of categories between RepG and RepA for A such a Hopf
algebra. By a result of Friedlander-Suslin, R is finitely generated.

o The realization of V and V for a general group scheme involve so-called 7-points developed
be Friedlander-Pevtsovz and the construction of explicit rank varieties.

Remark 20.2.7: A special case: let g = LieG for G € AlgGrp ;. reductive and k positive character-
istic. Let A = u(g), which is a finite-dimensional cocommutative Hopf algebra. If p > h for h the
Coxeter number,

N, = {ZL‘ €g ’ 2Pl = 0} = N, the nilpotent cone,

R = H"(u(g); k) = k[N], and X = Proj(k[N]), then applying the theorem,

e There is a correspondence

u(g)-stMod —— Xp.

e There is a homeomorphism

Spc (u(g)-stMod) T%p Proj(k[N]).

Theorem 20.2.8 (Arkhipov-Bezrukavikov-Ginzburg).
Let NV — N be the Springer resolution. There is an equivalence of derived categories

DPu¢(g)o-Mod = DPCoh®*C* k[N] = DPPerv(QGr).

where Perv(—) is the category of perverse sheaves and QGr is the loop Grassmannian.

Remark 20.2.9: For M a u¢(g)-module and R = H"*"(u¢(g); M) = C[N] = C[N]. There is
an action of R on H*®(u¢(g); M). Next time: examples for Lie superalgebras and Thomason’s
reconstruction theorem for rings.
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See Boe-Kujawa-Nakano, Adv. Math 2017.

Remark 21.0.1: Setup: K¢ < K € TTC, X a Zariski space, V : K — X, with an extension
V:K— X. Let g = go @ g1 be a Lie superalgebra with a Cy grading over k = C where go ™~ g1,
g0 91
g1 8o
that Gy is reductive. Let F(g, go) be the category of finite-dimensional g-supermodules which are
completely reducible over go. Take K® = F(g, go)-stMod < K = C(g, go)-stMod, where for C' we
drop the finite-dimensional condition.

e.g. gl,, , = gl,, X gl,, with matrices with the bracket action. Write LieGy = go, and note

Set R = H%g1,90;C) = Ext(C,C) = S(go¥)“°. By a theorem of Hilbert, Ext(M, M) is finitely
generated over R. Write Vj4,(M) = specR/Jy — for Kac modules K()\) = U(g) ®y(poy Lo(A),
V = 0 but not every K (\) is projective. s

Remark 21.0.2: Idea: use detecting subalgebras. For g = gl,, ,,, let f1 be the “torus™

Then define fo = [f1, fi]. &

Remark 21.0.3: Let X = N Proj(S*(f1")) where S*(f1") & Exty, ,(C,C) = R and N = Ng,(f1),
which is a reductive algebraic group. Define a support datum by V(M) = {p €eX ‘ Exty (M, M), = O}.
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The goal is to construct V : K — & using localization functors — one needs to show the tensor
product formula, and the faithfulness and realization properties, which follows from Dede’s lemma.
It turns out that f; = sl(1,1)*" and it suffices to define the rank variety on fi. Define

Vflank(M) = {577 =K®gfi | K®c M | (T) is not projective}

where K O C is an extension with trdege K > dim f;. A theorem shows V(M) = foﬂk(M) for
M € K. This yields a classification for gl,,, ,, of thick tensor ideals in K in terms of Xgp,.

Remark 21.0.4: What is the classification of other Lie superalgebras? This is an open problem.

— 21.1 Noncommutative theory ~

Remark 21.1.1: How does one extend this theory to noncommutative TTCs? See Nakano-Vashaw-
Yakomov, to appear in Amer J. Math.

Remark 21.1.2: Let K be a compactly generated monoidal triangulated category, not necessarily
symmetric. One approaches this via noncommutative ring theory, where e.g. even the definition of
prime ideals differs. We’ll only consider 2-sided ideals.

Definition 21.1.3 ((Noncommutative) prime ideals)

A thick triangulated subcategory P is a completely prime ideal iff M @ N e P — M € P
or N € P. Theideal P is primeiff I J C P = [ C Por J C P, where I, J are themselves
ideals. Define spcK to be prime ideals and CP Spc K to be completely prime ideals.

Example 21.1.4(%): Let A € HopfAIg/kfd where the coproduct A : A — A®E is not necessarily
commutative, e.g. in the setting of quantum groups. Some remarks:

e Note that M @ N 2 N ® M in general.

e Here spcK° is not known, but there is a conjectural answer.

o In general spcK° 2 Proj R for R = H(A; k).

e R is not known to be finitely-generated. Etingof-Ostrik conjecture this in the setting of finite
tensor categories.

e The definition of prime ideals is due to Buan-Krause-Solberg in 2007.

o A weird example: there are nilpotents where M # 0 (is not projective) but M =0 (is
projective).

e Being a prime ideal P is equivalent to AQ C®@ Be€ PforallC = A€ Por Be P.

Definition 21.1.5 ((Noncommutative) support data)
Let K be a monoidal triangulated category, X a Zariski space, and X = 2% the subsets of X.
A map o : K — X is a weak support datum iff

e 0(0)=0and o(1) =X
e 0(A®B)=0(A)Uoc(B)
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e 0(X2A)=0(A)
o If A— B — C is exact then 0(A) C o(B)U o (C).

Set @, (1) := U o(I); Then o is a support datum if additionally
Mel

. U c(A®C®B)=0(A)No(B) and

CeK
o O (IRJ) =D, (1)ND,(J).

Remark 21.1.6: Next time:

e (lassification theorems

e The NVY conjecture for finite-dimensional Hopf algebras.
e Tensor product theorems.

o Examples of applications.

ToDos
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