\input{"preamble.tex"} \addbibresource{CohomologyRepTheory.bib} \let\Begin\begin \let\End\end \newcommand\wrapenv[1]{#1} \makeatletter \def\ScaleWidthIfNeeded{% \ifdim\Gin@nat@width>\linewidth \linewidth \else \Gin@nat@width \fi } \def\ScaleHeightIfNeeded{% \ifdim\Gin@nat@height>0.9\textheight 0.9\textheight \else \Gin@nat@width \fi } \makeatother \setkeys{Gin}{width=\ScaleWidthIfNeeded,height=\ScaleHeightIfNeeded,keepaspectratio}% \title{ \rule{\linewidth}{1pt} \\ \textbf{ Cohomology in Representation Theory } \\ {\normalsize Lectures by Dan Nakano. University of Georgia, Spring 2022} \\ \rule{\linewidth}{2pt} } \titlehead{ \begin{center} \includegraphics[width=\linewidth,height=0.45\textheight,keepaspectratio]{figures/cover.png} \end{center} \begin{minipage}{.35\linewidth} \begin{flushleft} \vspace{2em} {\fontsize{6pt}{2pt} \textit{Notes: These are notes live-tex'd from a graduate course in Cohomology in Representation Theory taught by Dan Nakano at the University of Georgia in Spring 2022. As such, any errors or inaccuracies are almost certainly my own. } } \\ \end{flushleft} \end{minipage} \hfill \begin{minipage}{.65\linewidth} \end{minipage} } \begin{document} \date{} \maketitle \begin{flushleft} \textit{D. Zack Garza} \\ \textit{University of Georgia} \\ \textit{\href{mailto: dzackgarza@gmail.com}{dzackgarza@gmail.com}} \\ {\tiny \textit{Last updated:} 2022-05-29 } \end{flushleft} \newpage % Note: addsec only in KomaScript \addsec{Table of Contents} \tableofcontents \newpage \hypertarget{introduction-and-background-tuesday-january-11}{% \section{Introduction and Background (Tuesday, January 11)}\label{introduction-and-background-tuesday-january-11}} \begin{remark} References: \autocite{jacobson_2009}. \end{remark} \begin{remark} Idea: study representation by studying associated geometric objects, and use homological methods to bridge the two. The representation theory side will mostly be rings/modules, and the geometric side will involve algebraic geometry and commutative algebra. Throughout the course, all rings will be unital and all actions on the left. \end{remark} \begin{example}[of categories of modules] Recall the definition of a left \(R{\hbox{-}}\)module. Some examples: \begin{itemize} \tightlist \item \(k\in \mathsf{Field}\implies {\mathsf{k}{\hbox{-}}\mathsf{Mod}} = { \mathsf{Vect} }_k\) \item \(R={\mathbb{Z}}\implies {\mathsf{{\mathbb{Z}}}{\hbox{-}}\mathsf{Mod}} = {\mathsf{Ab}}{\mathsf{Grp}}\). \item \(A\in{\mathsf{Alg}}_{/ {k}}\), which is a ring \((A, +, \cdot)\) where \((A, +, .)\) (using scalar multiplication) is a vector space. \begin{itemize} \tightlist \item E.g. \(\operatorname{Mat}(n\times n, {\mathbb{C}})\). \item E.g. for \(G\) a finite group, the group algebra \(kG\) for \(k\in \mathsf{Field}\). \item E.g. \(U({\mathfrak{g}})\) for \({\mathfrak{g}}\in \mathsf{Lie}{\mathsf{Alg}}\) or a super algebra. \end{itemize} \end{itemize} \end{example} \begin{remark} Connecting this to representation theory: for \(A\in {\mathsf{Alg}}_{/ {k}}\) and \(M\in {\mathsf{A}{\hbox{-}}\mathsf{Mod}}\), a representation of \(A\) is a morphism of algebras \(A \xrightarrow{\rho} {\mathfrak{gl}}_n(k)\), the algebra of all \(n\times n\) matrices (not necessarily invertible). Note that for groups, one instead asks for maps \(kG\to \operatorname{GL}_n\), the invertible matrices. There is a correspondence between \({\mathsf{A}{\hbox{-}}\mathsf{Mod}} \rightleftharpoons{\mathsf{Rep}}(A)\): given \(M\), one can define the action as \begin{align*} \rho: A &\to \mathop{\mathrm{End}}_k(M) \\ \rho(a)(m) &= a.m .\end{align*} \end{remark} \begin{remark} Recall the definitions of: \begin{itemize} \tightlist \item Morphisms of \(R{\hbox{-}}\)modules: \(f(r.m_1 + m_2) = r.f(m_1) + f(m_2)\) \item Submodules: \(N\leq M \iff r.n \in N\) and \(N\) is closed under \(+\). \item Quotient modules: \(M/N = \left\{{m + N}\right\}\). \item The fundamental homomorphism theorem: for \(M \xrightarrow{f} N\), there is an induced \(\psi: M/\ker f\to N\) where \(M/\ker f\cong \operatorname{im}f\). \end{itemize} \begin{center} \begin{tikzcd} M && N & \textcolor{rgb,255:red,92;green,92;blue,214}{f(m)} \\ \\ {M/\ker f} \\ \textcolor{rgb,255:red,92;green,92;blue,214}{m + \ker f} \arrow["\eta"', from=1-1, to=3-1] \arrow["f", from=1-1, to=1-3] \arrow["{\exists \psi}"', dashed, from=3-1, to=1-3] \arrow[color={rgb,255:red,92;green,92;blue,214}, maps to, from=4-1, to=1-4] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsNSxbMCwwLCJNIl0sWzIsMCwiTiJdLFswLDIsIk0vXFxrZXIgZiJdLFswLDMsIm0gKyBcXGtlciBmIixbMjQwLDYwLDYwLDFdXSxbMywwLCJmKG0pIixbMjQwLDYwLDYwLDFdXSxbMCwyLCJcXGV0YSIsMl0sWzAsMSwiZiJdLFsyLDEsIlxcZXhpc3RzIFxccHNpIiwyLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzMsNCwiIiwyLHsiY29sb3VyIjpbMjQwLDYwLDYwXSwic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoibWFwcyB0byJ9fX1dXQ==}{Link to Diagram} \end{quote} \begin{itemize} \tightlist \item The fundamental SES \begin{align*} 0\to \ker f \xhookrightarrow{g} M \xrightarrow{f} \operatorname{im}f \to 0 ,\end{align*} where one generally needs \(\operatorname{im}g = \ker f\) for exactness. \begin{itemize} \tightlist \item More generally, need monomorphisms, epimorphisms. \end{itemize} \end{itemize} \end{remark} \begin{example}[?] Some examples: \begin{itemize} \tightlist \item \(f:{\mathbb{Z}}\to {\mathbb{Z}}\) where \(f(m) \coloneqq 4m\) yields \(0\to {\mathbb{Z}}\xrightarrow{f} {\mathbb{Z}}\to {\mathbb{Z}}/4\to 0\) in \({\mathsf{{\mathbb{Z}}}{\hbox{-}}\mathsf{Mod}}\). \item In \({\mathsf{{\mathbb{C}}}{\hbox{-}}\mathsf{Mod}}\), one can take \(0\to {\mathbb{C}}\xrightarrow{\Delta: x\mapsto (x, x)} {\mathbb{C}}{ {}^{ \scriptscriptstyle\times^{2} } } \to {\mathbb{C}}\to 0\). \end{itemize} \end{example} \begin{remark} Direct sums, products, and indecomposables. Let \(I\) be an index set and \(\left\{{M_k}\right\}_{k\in I}\) \(R{\hbox{-}}\)modules to define the \textbf{direct product} \(\prod_{k\in I} M_k \coloneqq\left\{{(m_k)_{k\in I} {~\mathrel{\Big\vert}~}m_k\in M_k }\right\}\), the set of all ordered sequences of elements from the \(M_k\), with addition defined pointwise. For the \textbf{direct sum} \(\bigoplus _{k\in I} M_k\) to be those sequences with only finitely many nonzero components. For internal direct sums, if \(M = M_1 + M_2\) then \(M \cong M_1 \oplus M_2\) iff \(M \cap M_2 = 0\). An \textbf{irreducible representation} is a simple \(R{\hbox{-}}\)module, and an \textbf{indecomposable representation} is an indecomposable \(R{\hbox{-}}\)module. An \(R{\hbox{-}}\)module is \textbf{simple} iff its only submodules are \(0, M\), and \textbf{indecomposable} iff \(M \not\cong M_1 \oplus M_2\) for any \(M_i\not\cong M\). Note that simple \(\implies\) indecomposable. \begin{quote} Note: is it possible for \(M \cong M \oplus M\)? \end{quote} \end{remark} \begin{example}[?] Some examples: \begin{itemize} \item Simple objects in \({\mathsf{k}{\hbox{-}}\mathsf{Mod}}\) are isomorphic to \(k\), and indecomposables are also isomorphic to \(k\) if we restrict to finite dimensional modules. \item Simple objects in \({\mathsf{{\mathbb{Z}}}{\hbox{-}}\mathsf{Mod}}\) are cyclic groups of prime order, \(C_p\). Indecomposables are \({\mathbb{Z}}, C_{p^k}\), using the classification theorem to rule out composites. \item For \(A\in {\mathsf{Alg}}^{\mathrm{fd}}_{/ {k}}\), the simple objects in \({\mathsf{A}{\hbox{-}}\mathsf{Mod}}\) are hard to determine in general. The same goes for indecomposables, and is undecidable in many cases (equivalent to the word problem in finite groups). \begin{quote} See \textbf{finite}, \textbf{tame}, and \textbf{wild} representation types. \end{quote} \end{itemize} \end{example} \begin{remark} Toward homological algebra: free and projective modules. An \(R{\hbox{-}}\)module \(M\) is \textbf{free} iff \(M\cong \bigoplus_{i\in I} R_i\) for some indexing set where \(R_i \cong R\) as a left \(R{\hbox{-}}\)module. Equivalently, \(M\) has a linearly independent spanning set, or there exists an \(X\) and a unique \(\phi\) such that the following diagram commutes: \begin{center} \begin{tikzcd} M \\ \\ X && N \arrow["{\mathsf{Set}}", from=3-1, to=3-3] \arrow["{\iota\in {\mathsf{R}{\hbox{-}}\mathsf{Mod}}}", hook', from=3-1, to=1-1] \arrow["{\exists ! \phi \in {\mathsf{R}{\hbox{-}}\mathsf{Mod}}}", dashed, from=1-1, to=3-3] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsMyxbMCwyLCJYIl0sWzAsMCwiTSJdLFsyLDIsIk4iXSxbMCwyLCJcXFNldCJdLFswLDEsIlxcaW90YVxcaW4gXFxtb2Rze1J9IiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJib3R0b20ifX19XSxbMSwyLCJcXGV4aXN0cyAhIFxccGhpIFxcaW4gXFxtb2Rze1J9IiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV1d}{Link to Diagram} \end{quote} Every \(M\in{\mathsf{R}{\hbox{-}}\mathsf{Mod}}\) is the image of a free \(R{\hbox{-}}\)module: let \(X\coloneqq\left\{{m_i}\right\}_{i\in I}\) generate \(M\), so \(X\hookrightarrow M\) by inclusion. Define \(X \to \bigoplus \bigoplus_{i\in I} R_i\) sending \(m_i \to (0,\cdots, 1, \cdots, 0)\) with a 1 in the \(i\)th position, then since \(X\) is a generating set this will lift to a surjection \(\bigoplus _i R_i\to M\). We can use this to define a free resolution: \begin{center} \begin{tikzcd} {\ker \delta_1} \\ \cdots & \textcolor{rgb,255:red,92;green,92;blue,214}{\exists F_1} && {F_0} && M && 0 \\ && \textcolor{rgb,255:red,214;green,92;blue,92}{\ker \delta_0} \\ & \textcolor{rgb,255:red,214;green,92;blue,92}{0} && \textcolor{rgb,255:red,92;green,92;blue,214}{0} \arrow[from=4-2, to=3-3] \arrow[color={rgb,255:red,214;green,92;blue,92}, no head, from=3-3, to=4-2] \arrow["{\delta_0}", from=2-4, to=2-6] \arrow[from=2-6, to=2-8] \arrow[color={rgb,255:red,214;green,92;blue,92}, hook, from=3-3, to=2-4] \arrow[color={rgb,255:red,92;green,92;blue,214}, two heads, from=2-2, to=3-3] \arrow[color={rgb,255:red,92;green,92;blue,214}, from=3-3, to=4-4] \arrow["{\exists\delta_1}", color={rgb,255:red,92;green,92;blue,214}, dashed, from=2-2, to=2-4] \arrow[hook, from=1-1, to=2-2] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsOSxbNSwxLCJNIl0sWzcsMSwiMCJdLFszLDEsIkZfMCJdLFsyLDIsIlxca2VyIFxcZGVsdGFfMCIsWzAsNjAsNjAsMV1dLFsxLDMsIjAiLFswLDYwLDYwLDFdXSxbMSwxLCJcXGV4aXN0IEZfMSIsWzI0MCw2MCw2MCwxXV0sWzMsMywiMCIsWzI0MCw2MCw2MCwxXV0sWzAsMSwiXFxjZG90cyJdLFswLDAsIlxca2VyIFxcZGVsdGFfMSJdLFs0LDNdLFszLDQsIiIsMCx7ImNvbG91ciI6WzAsNjAsNjBdLCJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzIsMCwiXFxkZWx0YV8wIl0sWzAsMV0sWzMsMiwiIiwwLHsiY29sb3VyIjpbMCw2MCw2MF0sInN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzUsMywiIiwwLHsiY29sb3VyIjpbMjQwLDYwLDYwXSwic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV0sWzMsNiwiIiwwLHsiY29sb3VyIjpbMjQwLDYwLDYwXX1dLFs1LDIsIlxcZXhpc3RzXFxkZWx0YV8xIiwwLHsiY29sb3VyIjpbMjQwLDYwLDYwXSwic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fSxbMjQwLDYwLDYwLDFdXSxbOCw1LCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dXQ==}{Link to Diagram} \end{quote} \end{remark} \begin{remark} Let \(A\in {\mathsf{Alg}}^{\mathrm{fd}}_{/ {k}}\) and \(F \cong \bigoplus A\) be free, and suppose \(e\in A\) is idempotent, so \(e^2 = e\) -- these are useful because they can split algebras up. There is a \emph{Pierce decomposition} of \(1\) given by \(1 = e + (1-e)\). Noting that \(1-e\) is also idempotent, there is a decomposition \(A \cong Ae \oplus A(1-e)\). Since \(Ae\) is direct summand of \(A\) which is free, this yields a way to construct projective modules. \end{remark} \hypertarget{thursday-january-13}{% \section{Thursday, January 13}\label{thursday-january-13}} \begin{remark} Last time: \begin{itemize} \tightlist \item \(R{\hbox{-}}\)modules and their morphisms \item Free resolutions \(F \twoheadrightarrow R\). \end{itemize} Today: projective modules and their resolutions. \begin{quote} See Krull-Schmidt theorem. \end{quote} \end{remark} \begin{remark} Recall the definition of projective modules \(P\) and injective modules \(I\): \begin{center} \begin{tikzcd} &&&&&&& \textcolor{rgb,255:red,92;green,92;blue,214}{P} \\ \\ {\forall \xi:} & 0 && A && B && C && 0 \\ \\ &&& \textcolor{rgb,255:red,92;green,92;blue,214}{I} \arrow[from=3-2, to=3-4] \arrow[from=3-4, to=3-6] \arrow[from=3-6, to=3-8] \arrow[from=3-8, to=3-10] \arrow[from=1-8, to=3-8] \arrow["\exists", dashed, from=1-8, to=3-6] \arrow["\exists", dashed, from=3-6, to=5-4] \arrow[from=3-4, to=5-4] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsOCxbMSwyLCIwIl0sWzMsMiwiQSJdLFs1LDIsIkIiXSxbNywyLCJDIl0sWzksMiwiMCJdLFs3LDAsIlAiLFsyNDAsNjAsNjAsMV1dLFszLDQsIkkiLFsyNDAsNjAsNjAsMV1dLFswLDIsIlxcZm9yYWxsOiJdLFswLDFdLFsxLDJdLFsyLDNdLFszLDRdLFs1LDNdLFs1LDIsIlxcZXhpc3QiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMiw2LCJcXGV4aXN0IiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzEsNl1d}{Link to Diagram} \end{quote} \end{remark} \begin{exercise}[?] Show that free implies projective using the universal properties, and conclude that every \(R{\hbox{-}}\)module has a projective cover. \end{exercise} \begin{remark} Forming projective resolutions: take the minimal \(P_0 \xrightarrow[]{\delta_0} { \mathrel{\mkern-16mu}\rightarrow }\, M\to 0\) such that \(\Omega^1 \coloneqq\ker \delta_0\) has no projective summands. Continue in such a minimal way: \begin{center} \begin{tikzcd} & 0 && 0 \\ & {\Omega^2} && {\Omega^1} \\ \\ \cdots && {P_1} && {P_0} && M && 0 \arrow[two heads, from=4-5, to=4-7] \arrow[from=4-7, to=4-9] \arrow[hook, two heads, from=2-4, to=4-5] \arrow[two heads, from=4-3, to=2-4] \arrow["\exists", dashed, from=4-3, to=4-5] \arrow[dashed, from=4-1, to=4-3] \arrow[hook, no head, from=2-2, to=4-3] \arrow[from=1-2, to=2-2] \arrow[from=1-4, to=2-4] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsOSxbOCwzLCIwIl0sWzYsMywiTSJdLFs0LDMsIlBfMCJdLFszLDEsIlxcT21lZ2FeMSJdLFsyLDMsIlBfMSJdLFswLDMsIlxcY2RvdHMiXSxbMSwxLCJcXE9tZWdhXjIiXSxbMywwLCIwIl0sWzEsMCwiMCJdLFsyLDEsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFsxLDBdLFszLDIsIiIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn0sImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFs0LDMsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFs0LDIsIlxcZXhpc3RzIiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzUsNCwiIiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzYsNCwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifSwiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFs4LDZdLFs3LDNdXQ==}{Link to Diagram} \end{quote} \end{remark} \begin{remark} For modules \(M\) over an algebra \(A\), if \(\dim_k(M)\) is finite, then each \(P_i\) can be chosen to be finite dimensional. Otherwise, define a \textbf{complexity} or \textbf{rate of growth} \(s c_A(M) \geq 0\) such that \(\dim P_n \leq C n^{s-1}\) for some constant \(C\). A theorem we'll prove is that \(s\) is finite when \(A = k G\) for every finite dimensional \(G{\hbox{-}}\)module. When \(A = kG\), this is a numerical invariant but has a nice geometric interpretation in terms of support varieties \(V_A(M)\), an affine algebraic variety where \(\dim V_A(M) = c_A(M)\). \end{remark} \begin{exercise}[?] Recall the definition of a SES \(\xi: 0\to A \xrightarrow{d_1} B \xrightarrow{d_2} C\to 0\) and show that TFAE: \begin{itemize} \tightlist \item \(\xi\) splits \item \(\xi\) admits a right section \(s_r: C\to B\) \item \(\xi\) admits a left section \(s_\ell B\to A\) \end{itemize} \begin{quote} Hint: for the right section, show that \(s_r\) is injective. Get that \(\operatorname{im}f + \operatorname{im}h \subseteq M_2\), use exactness to write \(\operatorname{im}d_1 = \ker d_2\) and show that \(\ker d_2 \cap\operatorname{im}s_r = \emptyset\). \end{quote} \end{exercise} \begin{warnings} It's not necessarily true that if \(B \cong A \oplus C\) that \(\xi\) splits: consider \begin{center} \begin{tikzcd} 0 && {C_2} && {C_4} && {C_2} && 0 \arrow[from=1-1, to=1-3] \arrow[from=1-3, to=1-5] \arrow[from=1-5, to=1-7] \arrow[from=1-7, to=1-9] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsNSxbMCwwLCIwIl0sWzIsMCwiQ18yIl0sWzQsMCwiQ180Il0sWzYsMCwiQ18yIl0sWzgsMCwiMCJdLFswLDFdLFsxLDJdLFsyLDNdLFszLDRdXQ==}{Link to Diagram} \end{quote} \end{warnings} \begin{exercise}[?] Show that for \(P \in {\mathsf{R}{\hbox{-}}\mathsf{Mod}}\), TFAE: \begin{itemize} \tightlist \item \(P\) is projective. \item Every SES \(\xi: 0\to A\to B\to P \to 0\) splits. \item There exists a free module \(F\) such that \(F = P \oplus K\). \end{itemize} \end{exercise} \begin{exercise}[?] Show that \(\bigoplus_{i\in I} P_i\) is projective iff each \(P_i\) is projective. \end{exercise} \begin{example}[?] \begin{itemize} \item If \(R=k\in \mathsf{Field}\), then every \(M\in {\mathsf{k}{\hbox{-}}\mathsf{Mod}}\) is free and thus projective since \(M \cong \bigoplus_{i\in I} k\) with \(k\) free in \({\mathsf{k}{\hbox{-}}\mathsf{Mod}}\). \item If \(R={\mathbb{Z}}\), let \(P\in {\mathsf{{\mathbb{Z}}}{\hbox{-}}\mathsf{Mod}}\) be projective and \(F\) free and consider \(0\to K\to F\to P\to 0\). Since \(F\cong P \oplus K\), \(P\) is a submodule of \(F\), making \(P\) free since \({\mathbb{Z}}\) is a PID. So projective implies free. \item Not every \(M\in {\mathsf{{\mathbb{Z}}}{\hbox{-}}\mathsf{Mod}}\) is projective: take \(C_6\in {\mathsf{{\mathbb{Z}}}{\hbox{-}}\mathsf{Mod}}\), then \(C_6 \cong C_2 \oplus C_3\) so \(C_2, C_3\) are projective in \({\mathsf{C_6}{\hbox{-}}\mathsf{Mod}}\) but not free here. \end{itemize} \end{example} \begin{exercise}[?] Let \(Q\in{\mathsf{R}{\hbox{-}}\mathsf{Mod}}\) and show TFAE: \begin{itemize} \tightlist \item \(Q\) is injective \item Every SES \(\xi: 0\to Q\to B\to C\to 0\) splits. \end{itemize} \end{exercise} \begin{exercise}[?] Show that \(\prod_{i\in I}Q_i\) is injective iff each \(Q_i\) is injective. Note that one needs to use direct products instead of direct sums here. \end{exercise} \begin{theorem}[?] The category \({\mathsf{R}{\hbox{-}}\mathsf{Mod}}\) has enough injectives, i.e.~for every \(M\in{\mathsf{R}{\hbox{-}}\mathsf{Mod}}\) there is an injective \(Q\) and a SES \(0\to M\hookrightarrow Q\). \end{theorem} \begin{proof}[Sketch] See Hungerford or Weibel. Prove it first for \(\mathsf{C} = {\mathsf{Z}{\hbox{-}}\mathsf{Mod}}\). The idea now is to apply \begin{align*} F({-}) \coloneqq\mathop{\mathrm{Hom}}_{\mathbb{Z}}(R,{-}): ({{\mathbb{Z}}}, {{\mathbb{Z}}}){\hbox{-}}\mathsf{biMod} &\to ({R}, {{\mathbb{Z}}}){\hbox{-}}\mathsf{biMod} ,\end{align*} the left-exact contravariant hom. Using that \(R\in ({R}, {R}){\hbox{-}}\mathsf{biMod}\hookrightarrow({{\mathbb{Z}}}, {R}){\hbox{-}}\mathsf{biMod}\), one can use the right action \(R\) on itself to define a left action on \(\mathop{\mathrm{Hom}}_{\mathbb{Z}}(R, M)\). Then check that \begin{itemize} \tightlist \item \(f\) is left exact \item \(f\) sends injectives to injectives. \item If \(R\in{\mathsf{{\mathbb{Z}}}{\hbox{-}}\mathsf{Mod}}\) has an \(R{\hbox{-}}\)module structure, then \(F(R)\) is again an \(R{\hbox{-}}\)module. \end{itemize} \end{proof} \begin{exercise}[?] Show that for \(M\in{\mathsf{R}{\hbox{-}}\mathsf{Mod}}\) that \(\mathop{\mathrm{Hom}}_{\mathbb{Z}}(R, M) \cong M\). \begin{quote} Hint: try \(f\mapsto f(1)\). \end{quote} \end{exercise} \begin{remark} Next week: \begin{itemize} \tightlist \item Tensor products \item Categories \item Tensor and Hom \end{itemize} \end{remark} \hypertarget{tensor-products-tuesday-january-18}{% \section{Tensor Products (Tuesday, January 18)}\label{tensor-products-tuesday-january-18}} \begin{remark} Setup: \(R\in \mathsf{Ring}, M_R \in \mathsf{Mod}{\hbox{-}}\mathsf{R}\), and \({}_R N \in \mathsf{R}{\hbox{-}}\mathsf{Mod}\). Note that \(R\) is not necessarily commutative. The goal is to define \(M\otimes_R N\) as an abelian group. \end{remark} \begin{definition}[The Tensor Product] The \textbf{balanced product} of \(M\) and \(N\) is a \(P \in {\mathsf{Ab}}{\mathsf{Grp}}\) with a map \(f: M\times N\to P\) such that \begin{itemize} \tightlist \item \(f(x+x', y) = f(x, y) + f(x', y)\) \item \(f(x, y+y') = f(x,y) + f(x, y')\) \item \(f(ax, y) = f(x, ay)\). \end{itemize} The \textbf{tensor product} \((M\otimes_R N, \otimes)\) of \(M\) and \(N\) is the initial balanced product, i.e.~if \(P\) is a balanced product with \(M\times N \xrightarrow{f} P\) then there is a unique map \(\psi: M\otimes_R N\to P\): \begin{center} \begin{tikzcd} & {M\otimes_R N} \\ \\ {M\times N} && P \arrow["\otimes", from=3-1, to=1-2] \arrow["{\exists !\psi}", dashed, from=1-2, to=3-3] \arrow["f"', from=3-1, to=3-3] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsMyxbMCwyLCJNXFx0aW1lcyBOIl0sWzIsMiwiUCJdLFsxLDAsIk1cXHRlbnNvcl9SIE4iXSxbMCwyLCJcXHRlbnNvciJdLFsyLDEsIlxcZXhpc3RzICFcXHBzaSIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFswLDEsImYiLDJdXQ==}{Link to Diagram} \end{quote} Uniqueness follows from the standard argument on universal properties: \begin{center} \begin{tikzcd} &&& {(M\otimes N)_1} \\ \\ {M\times N} &&& {(M\otimes N)_2} \\ \\ &&& {(M\otimes N)_1} \arrow["{\otimes_2}"{description}, from=3-1, to=3-4] \arrow["{\otimes_1}"{description}, from=3-1, to=5-4] \arrow["{\exists \psi_{12}}"{description}, curve={height=-18pt}, dashed, from=5-4, to=3-4] \arrow["{\exists \psi_{21}}"{description}, curve={height=-18pt}, dashed, from=3-4, to=1-4] \arrow["\operatorname{id}"', curve={height=30pt}, from=5-4, to=1-4] \arrow["{\otimes_1}"{description}, from=3-1, to=1-4] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsNCxbMCwyLCJNXFx0aW1lcyBOIl0sWzMsNCwiKE1cXHRlbnNvciBOKV8xIl0sWzMsMiwiKE1cXHRlbnNvciBOKV8yIl0sWzMsMCwiKE1cXHRlbnNvciBOKV8xIl0sWzAsMiwiXFx0ZW5zb3JfMiIsMV0sWzAsMSwiXFx0ZW5zb3JfMSIsMV0sWzEsMiwiXFxleGlzdHMgXFxwc2lfezEyfSIsMSx7ImN1cnZlIjotMywic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzIsMywiXFxleGlzdHMgXFxwc2lfezIxfSIsMSx7ImN1cnZlIjotMywic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzEsMywiXFxpZCIsMix7ImN1cnZlIjo1fV0sWzAsMywiXFx0ZW5zb3JfMSIsMV1d}{Link to Diagram} \end{quote} Existence: let \(\mathsf{Free}({-}): {\mathsf{Set}}\to {\mathsf{Ab}}{\mathsf{Grp}}\) and \(F\coloneqq\mathsf{Free}(M\times N)\), then set \(M\otimes_R N \coloneqq F/G\) where \(G\) is generated by \begin{itemize} \tightlist \item \((x+x', y) - \qty{ (x, y) + (x', y) }\) \item \((x, y+y') - \qty{ (x, y) + (x, y') }\) \item \((ax, y) - (x, ay)\). \end{itemize} Then define the map as \begin{align*} \otimes: M\times N\to F \\ (x, y) &\mapsto x\otimes y \coloneqq(x, y) + G .\end{align*} Why it satisfies the universal property: use the universal property of free groups to get a map to \(F\) and check that the following diagram commutes: \begin{center} \begin{tikzcd} {M\times N} && F && {M\otimes_R N \coloneqq F/G} \\ \\ && P \arrow[from=1-1, to=3-3] \arrow["\otimes"', from=1-1, to=1-3] \arrow["{({-})/G}"', from=1-3, to=1-5] \arrow["{\exists }"', dashed, from=1-3, to=3-3] \arrow["{\exists \psi}", from=1-5, to=3-3] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsNCxbMCwwLCJNXFx0aW1lcyBOIl0sWzIsMCwiRiJdLFs0LDAsIk1cXHRlbnNvcl9SIE4gXFxkYSBGL0ciXSxbMiwyLCJQIl0sWzAsM10sWzAsMSwiXFx0ZW5zb3IiLDJdLFsxLDIsIihcXHdhaXQpL0ciLDJdLFsxLDMsIlxcZXhpc3RzICIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFsyLDMsIlxcZXhpc3RzICBcXHBzaSJdXQ==}{Link to Diagram} \end{quote} Morphisms: for \(f:M\to M'\) and \(g: N\to N'\), form \begin{align*} f\otimes g: M\otimes N &\to M'\otimes N' \\ x\otimes y &\mapsto f(x) \otimes g(y) .\end{align*} \end{definition} \begin{warnings} Note every \(z\in M\otimes_R N\) is a simple tensor of the form \(z=x\otimes y\)! \end{warnings} \begin{example}[?] \begin{itemize} \item For \(R=k\in \mathsf{Field}\), \(M\otimes_k N \in ({k}, {k}){\hbox{-}}\mathsf{biMod}\). If \(M = \left\langle{m_i}\right\rangle\) and \(N = \left\langle{n_j}\right\rangle\), then \(M\otimes_k n = \left\langle{m_i\otimes n_j}\right\rangle\) and \(\dim_k M\otimes_k N = \dim_k M \cdot \dim_k N\). \item For \(A\in {\mathsf{Ab}}{\mathsf{Grp}}\), \(A\otimes_{\mathbb{Z}}{\mathbb{Z}}\cong A\) since \(x\otimes y = xy\otimes 1\). \item \(M\coloneqq C_p\otimes_{\mathbb{Z}}{\mathbb{Q}}= 0\). It suffices to check on simple tensors: \begin{align*} x\otimes y &= x\otimes{p\over p} y \\ &= x\otimes p\qty{1\over p} y \\ &= px\otimes\qty{1\over p} y \\ &= 0\otimes{1\over p}y \\ &= 0 .\end{align*} \item More generally, if \(A\in {\mathsf{Ab}}{\mathsf{Grp}}\) is torsion then \(A\otimes_{\mathbb{Z}}{\mathbb{Q}}= 0\). \end{itemize} \end{example} \begin{definition}[Categories] A category \(\mathsf{C}\) is a class of objects \(A\in \mathsf{C}\) and for any pair \((A, B)\), a set of morphism \(\mathop{\mathrm{Hom}}_{\mathsf{C}}(A, B)\) such that \begin{enumerate} \def\labelenumi{\arabic{enumi}.} \tightlist \item \((A, B) \neq (C, D)\implies \mathop{\mathrm{Hom}}(A, B)\) and \(\mathop{\mathrm{Hom}}(C, D)\) are disjoint. \item Associativity of composition: \((h\circ g)\circ f = h\circ(g\circ f)\) \item Identities: \(\exists ! \operatorname{id}_A \in \mathop{\mathrm{Hom}}_{\mathsf{C}}(A, A)\) for all \(A\in \mathsf{C}\). \end{enumerate} A \textbf{subcategory} \(\mathsf{D} \leq \mathsf{C}\) is a subclass of objects and morphisms, and is \textbf{full} if \(\mathop{\mathrm{Hom}}_{\mathsf{D}}(A, B) = \mathop{\mathrm{Hom}}_{\mathsf{C}}(A, B)\) for all objects in \(\mathsf{D}\). \end{definition} \begin{example}[?] Examples of categories: \begin{itemize} \tightlist \item \(\mathsf{C} = {\mathsf{Set}}\), \item \(\mathsf{C} = {\mathsf{Grp}}\), \item \(\mathsf{C} = {\mathsf{R}{\hbox{-}}\mathsf{Mod}}\), \item \(\mathsf{C} = {\mathsf{Top}}\) with continuous maps. \end{itemize} \end{example} \begin{example}[?] Examples of fullness: \begin{itemize} \tightlist \item \({\mathsf{Grp}}\leq {\mathsf{Set}}\) is not a full subcategory, since not all set morphisms are group morphisms. \item \({\mathsf{Ab}}{\mathsf{Grp}}\leq {\mathsf{Grp}}\) is a full subcategory. \end{itemize} \end{example} \begin{remark} Recall the definition of covariant and contravariant functors, which requires that \(F(\operatorname{id}_A) = \operatorname{id}_{F(A)}\). \end{remark} \hypertarget{thursday-january-20}{% \section{Thursday, January 20}\label{thursday-january-20}} \begin{remark} RIP Brian Parshall and Fred Cohen\ldots{} 😔 \end{remark} \begin{remark} Recall the definition of a covariant functor. Some examples: \begin{itemize} \tightlist \item \(F(R) = U(R) = R^{\times}= {\mathbb{G}}_m(R)\), the group of units of \(R\). \item The forgetful functor \({\mathsf{Grp}}\to {\mathsf{Set}}\). \item \(\mathop{\mathrm{Hom}}_{\mathbb{Z}}(R, {-})\) for \(R\in ({{\mathbb{Z}}}, {R}){\hbox{-}}\mathsf{biMod}\) is a functor \(\mathsf{{\mathbb{Z}}}{\hbox{-}}\mathsf{Mod}\to \mathsf{R}{\hbox{-}}\mathsf{Mod}\). \end{itemize} \end{remark} \begin{exercise}[?] Formulate \(\mathop{\mathrm{Hom}}_{\mathbb{Z}}({-}, {-})\) in terms of functors between bimodule categories. How does this ``use up an action'' in the way \({-}\otimes_{\mathbb{Z}}{-}\) does? \end{exercise} \begin{remark} Recall that contravariant functors reverse arrows. Functors with the same variance can be composed. \end{remark} \begin{definition}[Full and Faithful Functors] Let \(F: \mathsf{C}\to \mathsf{D}\) and consider the set map \begin{align*} F_{AB}: \mathop{\mathrm{Hom}}(A, B) &\to \mathop{\mathrm{Hom}}(FA, FB) \\ f &\mapsto F(f) .\end{align*} We say \(F\) is \textbf{full} if \(F_{AB}\) is injective for all \(A, B\in \mathsf{C}\), and \textbf{faithful} if \(F_{AB}\) is surjective for all \(A, B\). \end{definition} \begin{definition}[Natural Transformations] A morphism of functors \(\eta: F\to G\) for \(F,G:\mathsf{C}\to \mathsf{D}\) is a \textbf{natural transformation}: a family of maps \(\eta_A\in \mathop{\mathrm{Hom}}_{\mathsf{D}}(FA, GA)\) satisfying the following naturality condition: \begin{center} \begin{tikzcd} A &&& FA && GA \\ &&&&&& {\in \mathsf{D}} \\ B &&& FB && GB \arrow["{\eta_A}", from=1-4, to=1-6] \arrow["{G(f)}", from=1-6, to=3-6] \arrow[""{name=0, anchor=center, inner sep=0}, "{F(f)}", from=1-4, to=3-4] \arrow["{\eta_B}"', from=3-4, to=3-6] \arrow[""{name=1, anchor=center, inner sep=0}, "{f \in \mathsf{C}}"', from=1-1, to=3-1] \arrow[shorten <=19pt, shorten >=19pt, Rightarrow, from=1, to=0] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsNyxbMywwLCJGQSJdLFszLDIsIkZCIl0sWzUsMCwiR0EiXSxbNSwyLCJHQiJdLFswLDAsIkEiXSxbMCwyLCJCIl0sWzYsMSwiXFxpbiBcXGNhdCBEIl0sWzAsMiwiXFxldGFfQSJdLFsyLDMsIkcoZikiXSxbMCwxLCJGKGYpIl0sWzEsMywiXFxldGFfQiIsMl0sWzQsNSwiZiBcXGluIFxcY2F0e0N9IiwyXSxbMTEsOSwiIiwwLHsic2hvcnRlbiI6eyJzb3VyY2UiOjIwLCJ0YXJnZXQiOjIwfX1dXQ==}{Link to Diagram} \end{quote} If \(\eta_A\) is an isomorphism for all \(A\in \mathsf{C}\), then \(\eta\) is a \textbf{natural isomorphism}. \end{definition} \begin{exercise}[?] For \(\mathsf{C}, \mathsf{D} = { \mathsf{Vect} }^{{\mathrm{fd}}}_{/ {k}}\) finite-dimensional vector spaces, take \(F = \operatorname{id}\) and \(G({-}) = ({-}) {}^{ \vee } {}^{ \vee }\). Note that \(\mathop{\mathrm{Hom}}(FV, GV) \cong \mathop{\mathrm{Hom}}(V, V {}^{ \vee } {}^{ \vee }) \cong \mathop{\mathrm{Hom}}(V, V)\), so set \(\eta_V\) to be the image of \(\operatorname{id}_V\) under this chain of isomorphisms. Show that \(\left\{{\eta_V }\right\}_{V\in \mathsf{C}}\) assemble to a natural transformation \(F\to G\). \end{exercise} \begin{definition}[Isomorphisms and Equivalences of categories] Two categories \(\mathsf{C}, \mathsf{D}\) are \textbf{isomorphic} if there are functors \(F, G\) with \(F\circ G = \operatorname{id}_{\mathsf{D}}, G\circ F = \operatorname{id}_{\mathsf{C}}\) \emph{equal} to the identities. They are \textbf{equivalent} if \(F\circ G, G\circ F\) are instead \emph{naturally isomorphic} to the identity. \end{definition} \begin{example}[?] Some examples: \begin{itemize} \item \(\mathsf{C} = {\mathsf{Ab}}{\mathsf{Grp}}\) and \(\mathsf{D} = {\mathsf{{\mathbb{Z}}}{\hbox{-}}\mathsf{Mod}}\) by taking \(G:\mathsf{D}\to \mathsf{C}\) the forgetful functor, and for \(F\), using the same underlying set and defining the \({\mathbb{Z}}{\hbox{-}}\)module structure by \(n\cdot m \coloneqq m + m + \cdots + m\). \item \(\mathsf{C}={\mathsf{R}{\hbox{-}}\mathsf{Mod}}\) and \(\mathsf{D} = {\mathsf{\operatorname{Mat}_{n\times n}(R)}{\hbox{-}}\mathsf{Mod}}\). For \({\mathsf{k}{\hbox{-}}\mathsf{Mod}}\), the simple objects are \(k\), but for \({\mathsf{\operatorname{Mat}_{n\times n}(R)}{\hbox{-}}\mathsf{Mod}}\), the simple objects are \(k^n\), so these categories are not isomorphic. However, it turns out that they are equivalent. \end{itemize} Producing inverse functors can be difficult, so we have the following: \end{example} \begin{proposition}[A useful criterion for equivalence of categories] Let \(F:\mathsf{C}\to \mathsf{D}\), then there exists an inverse inducing an \emph{equivalence} iff \begin{itemize} \tightlist \item \(F\) is fully faithful, \item Surjectivity on objects: for every \(A'\in \mathsf{D}\), there exists an \(A\in \mathsf{C}\) such that \(F(A) \cong A'\). \end{itemize} \end{proposition} \begin{proof}[?] \(\implies\): Suppose \(F, G\) induce an equivalence \(\mathsf{C} \simeq\mathsf{D}\), so \(F\circ G\simeq\operatorname{id}_{\mathsf{D}}\) and \(G\circ F \simeq\operatorname{id}_{\mathsf{C}}\). To show \(f\to F(f)\) is injective, check that \begin{align*} F(f) &= F(g) \\ \implies GF(f) &= GF(g) \\ \operatorname{id}(f) &= \operatorname{id}(g) \\ \implies f= g .\end{align*} \end{proof} \begin{exercise}[?] Show surjectivity. A hint: Let \(A'\in \mathsf{D}\) with \(FG \simeq\operatorname{id}_{\mathsf{D}}\) and \(\eta_{A'} \in \mathop{\mathrm{Hom}}_{\mathsf{D}}(A', FGA')\) is an iso. Set \(A \coloneqq GA'\in \mathsf{C}\) and use that \begin{align*} \mathop{\mathrm{Hom}}_{\mathsf{D}}(A', FGA') \coloneqq\mathop{\mathrm{Hom}}(A', FA) ,\end{align*} So if there is an isomorphism in \(\mathop{\mathrm{Hom}}(A', FA)\), there exists an isomorphism in \(\mathop{\mathrm{Hom}}(FA, A')\) and thus \(FA \cong A'\). \begin{quote} \#todo Missed a bit here so this doesn't make sense as-is! \end{quote} \end{exercise} \begin{proposition}[?] Let \(R\in \mathsf{Ring}\) and set \(S\coloneqq\operatorname{Mat}_{n\times n}(R)\), then \({\mathsf{R}{\hbox{-}}\mathsf{Mod}} \simeq{\mathsf{S}{\hbox{-}}\mathsf{Mod}}\). \end{proposition} \hypertarget{tuesday-january-25}{% \section{Tuesday, January 25}\label{tuesday-january-25}} \begin{remark} Recall isomorphisms \(\mathsf{C} \cong \mathsf{D}\) of categories, so \(F\circ G = \operatorname{id}\), vs equivalences of categories \(\mathsf{C} \simeq\mathsf{D}\) so \(F\circ G \cong \operatorname{id}\). \end{remark} \begin{theorem}[?] For \(F:\mathsf{C} \to \mathsf{D}\) and \(G:\mathsf{D}\to \mathsf{C}\) and write \(\psi_F: \mathop{\mathrm{Hom}}_{\mathsf{C}}(A, B) \to \mathop{\mathrm{Hom}}_{\mathsf{D}}(F(A), F(B))\). This pair induces an equivalence iff \begin{enumerate} \def\labelenumi{\arabic{enumi}.} \tightlist \item \(F\) is faithful, i.e.~\(\psi_F\) is injective, \item \(F\) is full, i.e.~\(\psi_F\) is surjective, \item For any \(D\in \mathsf{D}\), there exists a \(C\in \mathsf{C}\) with \(F(C) \cong D\). \end{enumerate} \end{theorem} \begin{proposition}[?] Let \(R\in \mathsf{Ring}\) and \(S=\operatorname{Mat}_{n\times n}(R)\), then \({\mathsf{R}{\hbox{-}}\mathsf{Mod}} \simeq{\mathsf{S}{\hbox{-}}\mathsf{Mod}}\). \end{proposition} \begin{proof}[?] Define a functor \(F:{\mathsf{R}{\hbox{-}}\mathsf{Mod}} \to {\mathsf{S}{\hbox{-}}\mathsf{Mod}}\) by \(F(M) \coloneqq\prod_{k\leq n} M\), regarding this as a column vector and letting \(S\) act by matrix multiplication. On morphisms, define \(F(f)(\mathbf{x}) = {\left[ {f(x_1), \cdots, f(x_n)} \right]}\) for \(\mathbf{x} \in \prod M\). Then \(F(\operatorname{id}) = \operatorname{id}\), and (exercise) \(F(f)\) is a morphism of \(S{\hbox{-}}\)modules and composes correctly: \begin{align*} F(g\circ f)(\mathbf{x}) = {\left[ {gf(x_1), \cdots, gf(x_n)} \right]} = F(g){\left[ {f(x_1), \cdots, f(x_n) } \right]} = \qty{ F(g)\circ F(f) } \mathbf{x} .\end{align*} So this defines a functor. \begin{claim} \(F\) is fully faithful. \end{claim} \begin{itemize} \item Faithfulness: if \(F(f_1) = F(f_2)\), then \(f_1(x_j) = f_2(x_j)\) for all \(j\), making \(f_1=f_2\). \item Fullness: let \(g\in \mathop{\mathrm{Hom}}_S(M^n, N^n)\) for \(M, N \in {\mathsf{R}{\hbox{-}}\mathsf{Mod}}\) and \(e_{ij}\) be the elementary matrix with a 1 only in the \(i, j\) position. Check that \(e_{11} M^n = \left\{{{\left[ {x,0,\cdots} \right]} {~\mathrel{\Big\vert}~}x\in M}\right\}\), \(e_{11} N^n = \left\{{{\left[ {y,0,\cdots} \right]}{~\mathrel{\Big\vert}~}y\in N}\right\}\), and \(\operatorname{diag}(x)\) be a matrix with only copies of \(x\) on the diagonal. Then \(g(e_{11} M^n) \subseteq e_{11} g(M^n) \subseteq e_{11}N^n\) and \(g{\left[ {x, 0, \cdots} \right]} = {\left[ {y, 0, \cdots} \right]}\). Define \(f:M\to N\) by \(f(x) = y\), then on one hand, \begin{align*} g(\operatorname{diag}(a) {\left[ {x, 0,\cdots} \right]}) = g{\left[ {ax, 0, \cdots} \right]} = {\left[ {f(ax), 0, \cdots} \right]} ,\end{align*} but since \(g\) is a morphism of \(S{\hbox{-}}\)modules, this also equals \(\operatorname{diag}(a)\cdot g{\left[ {x,0,\cdots} \right]} = {\left[ {ay,0,\cdots} \right]}\). Then \(f(ax) = ay = af(x)\), so \(f\) is a morphism of \(R{\hbox{-}}\)modules. Note that \(e_{j1} \mathbf{x} = {\left[ {0, \cdots, x,\cdots 0} \right]}\) with \(x\) in the \(j\)th position. Check that \(g(e_{j1}\mathbf{x}) = g{\left[ {0, \cdots, x, \cdots, 0} \right]}\). The LHS is \begin{align*} e_{j1} g(\mathbf{x}) = e_{j1}{\left[ {f(x), 0, \cdots} \right]} = {\left[ { 0,\cdots, f(x), \cdots, 0} \right]} \end{align*} with \(f(x)\) in the \(j\)th position. Hence \(g(\mathbf{x}) = {\left[ {f(x_1), \cdots, f(x_n)} \right]}\), making \(F\) full. \end{itemize} \begin{quote} See also Jacobson \emph{Basic Algebra Part II} p.31. \end{quote} \end{proof} \begin{exercise}[Tensors commute with direct sums] Show that \begin{align*} \qty{ \bigoplus _{\alpha \in I} M_\alpha } \otimes_R N &\cong \bigoplus _{\alpha\in I} \qty{M_\alpha \otimes_R N} ,\end{align*} and similarly for \(M\otimes(\oplus N_\alpha)\). \end{exercise} \begin{remark} Define functors \(F,G{\mathsf{R}{\hbox{-}}\mathsf{Mod}} \to{\mathsf{{\mathbb{Z}}}{\hbox{-}}\mathsf{Mod}}\) by \(F({-}) \coloneqq M\otimes_R ({-})\) and \(G({-}) \coloneqq({-})\otimes_R N\) on objects, and on morphisms \(f:N\to N'\), set \(F(f) \coloneqq\operatorname{id}\otimes f\) and similarly for \(G\). Recall the definition of exactness, left-exactness, and right-exactness. \end{remark} \begin{example}[Tensoring may not be left exact] Consider \begin{align*} \xi: 0\to p{\mathbb{Z}}\xrightarrow{f} {\mathbb{Z}}\xrightarrow{g} {\mathbb{Z}}/p{\mathbb{Z}}\to 0 \end{align*} and apply \(({-})\otimes_{\mathbb{Z}}{\mathbb{Z}}/p{\mathbb{Z}}\). Use that \(p{\mathbb{Z}}\cong {\mathbb{Z}}\) in \({\mathsf{{\mathbb{Z}}}{\hbox{-}}\mathsf{Mod}}\) to get \begin{align*} F(\xi): C_p \xrightarrow{f\otimes\operatorname{id}} C_p \xrightarrow{g\otimes\operatorname{id}} C_p ,\end{align*} and \begin{align*} (f\otimes\operatorname{id})(px\otimes y) = px\otimes y = x\otimes py = 0 ,\end{align*} using that \(f\) is the inclusion. \end{example} \begin{exercise}[?] Show that \(M\otimes_R({-})\) and \(({-})\otimes_R N\) are right exact for any \(M, N \in {\mathsf{R}{\hbox{-}}\mathsf{Mod}}\). \end{exercise} \begin{solution} Let \(0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0\) which maps to \(M\otimes A \xrightarrow{\operatorname{id}\otimes f} M\otimes B \xrightarrow{\operatorname{id}\otimes g} C\). \begin{itemize} \item Show \(\operatorname{id}\otimes g\) is surjective: write \(m\in M\otimes C\) as \(m=\sum x_i\otimes y_j\), pull back the \(y_j\) via \(g\) to get \(z_j\) with \(g(z_j) = y_j\). Then \begin{align*} (\operatorname{id}\otimes g)(\sum x_i \otimes z_J) = \sum x_i\otimes g(z_j) = \sum x_i \otimes y_j .\end{align*} \item Exactness, \(\operatorname{im}(\operatorname{id}\otimes f) = \ker (\operatorname{id}\otimes g)\): Use that \(gf=0\) by exactness of the original sequence, and \((\operatorname{id}\otimes g)\circ (\operatorname{id}\otimes f) = \operatorname{id}\otimes(g\circ f) = 0\), so \(\operatorname{im}(\operatorname{id}\otimes f) \subseteq \ker(\operatorname{id}\otimes g)\). \begin{itemize} \tightlist \item For the reverse containment, use that \(\operatorname{id}\otimes g: M\otimes B\to M\otimes C\) and define a map \begin{align*} \Gamma: {M\otimes B \over \operatorname{im}(\operatorname{id}\otimes f)} \to M\otimes C \\ m\otimes n + \operatorname{im}(\operatorname{id}\otimes f)&\mapsto m\otimes g(n) .\end{align*} Then \(\phi\) is an isomorphism iff \(\operatorname{im}(\operatorname{id}\otimes f) = \ker (\operatorname{id}\otimes g)\). Define \begin{align*} \Psi: M\times C &\to {M\otimes B\over \operatorname{im}(\operatorname{id}\otimes f)} \\ (x, y) &\mapsto x \otimes z + \operatorname{im}(\operatorname{id}\otimes f) ,\end{align*} where \(g(z) = y\), so \(z\) is a lift of \(y\). \end{itemize} Why is this well-defined? Check \(g(z_1) = y = g(z_2)\) implies \(z_1 -z_2\in \ker g = \operatorname{im}f\), so write \(f(y) = z_1-z_2\) for some \(y\). Then \(x\otimes z_1 + \operatorname{im}f = x\otimes z_2 + \operatorname{im}f\). Why does this factor through the tensor product? Check that \(\Psi\) is a balanced product, this yields \(\mkern 1.5mu\overline{\mkern-1.5mu\Psi\mkern-1.5mu}\mkern 1.5mu: M\otimes C\to {M\otimes B\over \operatorname{im}(\operatorname{id}\otimes f)}\). Now check that \(\mkern 1.5mu\overline{\mkern-1.5mu\Psi\mkern-1.5mu}\mkern 1.5mu, \Gamma\) are mutually inverse: \begin{align*} \Gamma\Psi(x\otimes y) &= \Gamma(x\otimes z + \operatorname{im}(\operatorname{id}\otimes f)) = x\otimes g(z) = x\otimes y \\ \Psi\Gamma(x\otimes z + \operatorname{im}(\operatorname{id}\otimes f)) &= (x\otimes g(z) ) = x\otimes z + \operatorname{im}f .\end{align*} \end{itemize} \end{solution} \begin{question} When is \(M\otimes_R ({-})\) exact? \end{question} \hypertarget{thursday-january-27}{% \section{Thursday, January 27}\label{thursday-january-27}} \begin{remark} Recall that \(M\in {\mathsf{R}{\hbox{-}}\mathsf{Mod}}\) is flat iff for every \(N, N'\) and \(f\in \mathop{\mathrm{Hom}}_{{\mathsf{R}{\hbox{-}}\mathsf{Mod}}}(N, N')\), the induced map \begin{align*} \operatorname{id}_M\otimes f: M\otimes_R N \to M\otimes_R N' \end{align*} is a monomorphism. Equivalently, \(M\otimes_R ({-})\) is left exact and thus exact. \end{remark} \begin{proposition}[?] \(M \coloneqq\bigoplus _{\alpha\in I} M_\alpha\) is flat iff \(M_\alpha\) is flat for all \(\alpha\in I\). \end{proposition} \begin{proof}[?] \begin{align*} M\otimes_R({-}) \coloneqq(\bigoplus M_\alpha)\otimes_R ({-}) \cong \bigoplus (M_\alpha \otimes_R ({-}) ) .\end{align*} \end{proof} \begin{exercise}[?] Show that projective \(\implies\) flat. \end{exercise} \begin{exercise}[?] Prove that the hom functors \(\mathop{\mathrm{Hom}}_{{\mathsf{R}{\hbox{-}}\mathsf{Mod}}}(M, {-}), \mathop{\mathrm{Hom}}_{{\mathsf{R}{\hbox{-}}\mathsf{Mod}}}({-}, M): {\mathsf{R}{\hbox{-}}\mathsf{Mod}}\to {\mathbb{Z}{\hbox{-}}\mathsf{Mod}}\) are left exact. \end{exercise} \begin{exercise}[?] Show that \begin{itemize} \tightlist \item \(P\) is projective iff \(\mathop{\mathrm{Hom}}_{{\mathsf{R}{\hbox{-}}\mathsf{Mod}}}(P, {-})\) is exact \item \(I\) is projective iff \(\mathop{\mathrm{Hom}}_{{\mathsf{R}{\hbox{-}}\mathsf{Mod}}}({-}, I)\) is exact \end{itemize} \end{exercise} \begin{remark} An object \(Z\in \mathsf{C}\) is a zero object iff \(\mathop{\mathrm{Hom}}_{\mathsf{C}}(A, Z), \mathop{\mathrm{Hom}}_{\mathsf{C}}(Z, A)\) are singletons for all \(A\in \mathsf{C}\). Write this as \(0_A \in \mathop{\mathrm{Hom}}_{\mathsf{C}}(A, Z)\). If \(\mathsf{C}\) has a zero object, define the zero morphism as \(0_{AB} \coloneqq 0_{B} \circ 0_A \in \mathop{\mathrm{Hom}}_{\mathsf{C}}(A, B)\). \end{remark} \hypertarget{tuesday-february-01}{% \section{Tuesday, February 01}\label{tuesday-february-01}} \begin{definition}[Additive categories] A category \(\mathsf{C}\) is \textbf{additive} iff \begin{itemize} \tightlist \item \(\mathsf{C}\) has zero object \item There exists a binary operation \(+: \mathop{\mathrm{Hom}}(A, B){ {}^{ \scriptscriptstyle\times^{2} } }\to \mathop{\mathrm{Hom}}(A, B)\) for all \(A, B\in \mathsf{C}\) making \(\mathop{\mathrm{Hom}}(A ,B)\) an abelian group. \item Distributivity with respect to composition: \((g_1 + g_2)f = g_1f + g_2 f\) \item For any collection \(\left\{{A_1,\cdots, A_n}\right\}\), there exists an object \(A\), projections \(p_j: A\to A_j\) with sections \(i_k: A_k\to A\) with \(p_j i_j = \operatorname{id}_A\), \(p_j i_k = 0\) for \(j\neq k\), and \(\sum i_j p_j = \operatorname{id}_A\). \end{itemize} \end{definition} \begin{definition}[Monomorphisms and epimorphisms] A morphism: \(k:K\to A\) is \textbf{monic} iff whenever \(g_1, g_2: L\to K\), \(kg_1 = kg_2 \implies g_1 = g_2\): \begin{center} \begin{tikzcd} L && K && A \arrow["k", from=1-3, to=1-5] \arrow["{g_1}", shift left=3, from=1-1, to=1-3] \arrow["{g_2}", shift right=3, from=1-1, to=1-3] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsMyxbMCwwLCJMIl0sWzIsMCwiSyJdLFs0LDAsIkEiXSxbMSwyLCJrIl0sWzAsMSwiZ18xIiwwLHsib2Zmc2V0IjotM31dLFswLDEsImdfMiIsMCx7Im9mZnNldCI6M31dXQ==}{Link to Diagram} \end{quote} Define \(k\) to be \textbf{epic} by reversing the arrows. \end{definition} \begin{definition}[Kernel] Assume \(\mathsf{C}\) has a zero object. Then for \(f:A\to B\), the \emph{morphism} \(k: K\to A\) is the \textbf{kernel} of \(f\) iff \begin{itemize} \tightlist \item \(k\) is monic \item \(fk=0\) \item For any \(g:G\to A\) with \(fg=0\), there exists a \(g'\) with \(g=kg'\). \end{itemize} \end{definition} \begin{example}[?] For \(f\in {\mathsf{R}{\hbox{-}}\mathsf{Mod}}(A, B)\), take \(k: \ker f\hookrightarrow A\). If \(g\in \mathsf{C}(G, A)\) with \(f(g(x)) = 0\) for all \(x\in G\), then \(\operatorname{im}g \subseteq \ker f\) and we can factor \(g\) as \(G \xrightarrow{g'} \ker f \xhookrightarrow{k} A\). \end{example} \begin{definition}[Cokernel] For \(f: A\to B\), a morphism \(c: B\to C\) is a \textbf{cokernel of \(f\)} iff \begin{itemize} \tightlist \item \(c\) is epic, \item \(cf=0\) \item For any \(h\in \mathsf{C}(B, H)\) with \(hf=0\), there is a lift \(h': C\to G\) with \(h=h'c\). \end{itemize} \end{definition} \begin{example}[?] For \(\mathsf{C} = {\mathsf{R}{\hbox{-}}\mathsf{Mod}}\) and \(f\in {\mathsf{R}{\hbox{-}}\mathsf{Mod}}(A, B)\), set \(c: B\to B/\operatorname{im}f\). \end{example} \begin{exercise}[?] Show that kernels are unique. Sketch: \begin{itemize} \tightlist \item Set \(k:K\to A\), \(k': K'\to A\). \item Factor \(k=k' u_1\) and \(k' = ku_2\). \item Then \(k\operatorname{id}= k(u_2 u_1) \implies \operatorname{id}= u_2 u_1\), similarly \(u_1u_2=\operatorname{id}\). \end{itemize} \end{exercise} \begin{definition}[Abelian categories] \(\mathsf{C}\) is \textbf{abelian} iff \(\mathsf{C}\) is additive and \begin{itemize} \tightlist \item A5: Every morphism admits kernels and cokernels. \item A6: Every monic is the kernel of its cokernel, and every epic is the cokernel of its kernel. \item A7: Every morphism \(f\) factors as \(f=me\) with \(m\) monic and \(e\) epic. \end{itemize} \end{definition} \begin{example}[?] For \(f\in {\mathsf{R}{\hbox{-}}\mathsf{Mod}}(A, B)\), \begin{itemize} \tightlist \item A5: Take \(k: \ker f\hookrightarrow A\) and \(c: B\twoheadrightarrow B/\operatorname{im}f\) \item A6: For \(m: A\hookrightarrow B\) monic, consider the composition \(A\hookrightarrow B \xrightarrow{\operatorname{coker}m} B/A\) and check \(A\cong \ker(\operatorname{coker}m)\). \item A7: Use the 1st isomorphism theorem: \end{itemize} \begin{center} \begin{tikzcd} A &&&& B \\ \\ & {A/\ker f} && {\operatorname{im}f} \arrow["f", from=1-1, to=1-5] \arrow["i"', two heads, from=1-1, to=3-2] \arrow["{\text{1st iso}}"', from=3-2, to=3-4] \arrow["m"', hook, from=3-4, to=1-5] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsNCxbMCwwLCJBIl0sWzQsMCwiQiJdLFszLDIsIlxcaW0gZiJdLFsxLDIsIkEvXFxrZXIgZiJdLFswLDEsImYiXSxbMCwzLCJpIiwyLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV0sWzMsMiwiXFx0ZXh0ezFzdCBpc299IiwyXSxbMiwxLCJtIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XV0=}{Link to Diagram} \end{quote} \end{example} \begin{remark} Some notes: \begin{itemize} \tightlist \item Recall the definition the category of chain complexes \(\mathsf{Ch}(\mathsf{C})\) over an abelian category: \(d_i d_{i+1} = 0\), so \(\operatorname{im}d_i \subseteq \ker d_{i+1}\). \item Every exact sequence is an acyclic complex. \item \(\mathsf{C}\hookrightarrow\mathsf{Ch}(\mathsf{C})\) by \(M\mapsto \cdots \to 0 \to M \to 0 \to \cdots\). Note that this isn't an acyclic complex. \item Morphisms between complexes: chain maps, just levelwise maps forming commutative squares, i.e.~maps commuting with the differentials. \item \(\mathsf{Ch}(\mathsf{C})\) is additive: given \(\alpha_\bullet, \beta_\bullet\in \mathsf{Ch}\mathsf{C}( (A, d), (B, \delta) )\), check that \((\alpha_{i-1} + \beta_{i-1})d_i = \delta_i (\alpha_i + \beta_i)\). \item There are direct sums: \((A \oplus B)_i \coloneqq A_i \oplus B_i\) with \(d \coloneqq d_A + d_B\). \item Define cycles as \(Z_i \coloneqq\ker\qty{ C_i \xrightarrow{d_i} C_{i-1}}\) for \(C_\bullet \in \mathsf{Ch}(\mathsf{C})\), and boundaries \(B_i \coloneqq\operatorname{im}\qty{C_{i+1} \xrightarrow{d_{i+1}} C_i} \subseteq \ker d_i\). \item Define \(H_i(C_\bullet )\coloneqq Z_i/B_i\). \item Show that chain morphisms induce morphisms on homology: \begin{itemize} \tightlist \item Let \(\alpha\in \mathsf{Ch}(\mathsf{C})(C, C')\), then \(\alpha_i(Z_i) \subseteq Z_i'\). \item Check \(d_2(a_i(Z_i)) = a_{i-1} d_i(Z_i) = 0\). \item Factor \(Z_i \xrightarrow{\alpha_i} Z_i' \twoheadrightarrow Z_i'/B_i'\). \item Show that \(x\in B_i\) maps lands in \(B_i'\) to get well-defined map on \(H_i\). \item Use \(\alpha(B_i) \subseteq Z_i'\), so pull back \(x\in B_i\) to \(y\in C_{i+1}\). \item Check \(d_{i+1}(y) = x\), so \(\alpha(d_{i+1}(y)) = \alpha(x)\). \item The LHS is \(d_{i+1}'(\alpha_{i+1}(y))\), so \(\alpha_i(x) in \operatorname{im}d_{i+1}' = B_{i+1}'\) \end{itemize} \item Chain homotopies: for \(\alpha, \beta\in \mathsf{Ch}(\mathsf{C})(C, C')\), write \(\alpha \simeq\beta\) iff there exists \(\left\{{s_i: C_i \to C_{i+1}' }\right\}\) with \(\alpha_i - \beta_i = d_{i+1}' s_i + s_{i-1} d_i\). \end{itemize} \begin{center} \begin{tikzcd} \cdots && {C_{i+1}} && {C_{i}} && {C_{i-1}} && \cdots \\ \\ \cdots && {C_{i+1}'} && {C_{i}'} && {C_{i-1}'} && \cdots \arrow[from=1-1, to=1-3] \arrow["{d_{i+1}}", from=1-3, to=1-5] \arrow["{d_{i+1}}", color={rgb,255:red,92;green,92;blue,214}, from=1-5, to=1-7] \arrow[from=1-7, to=1-9] \arrow[from=3-1, to=3-3] \arrow["{d_{i}'}", from=3-5, to=3-7] \arrow["{d_{i+1}'}", color={rgb,255:red,214;green,92;blue,92}, from=3-3, to=3-5] \arrow[from=3-7, to=3-9] \arrow[from=1-3, to=3-3] \arrow["{\alpha_i-\beta_i}"{description}, color={rgb,255:red,92;green,92;blue,214}, from=1-5, to=3-5] \arrow[from=1-7, to=3-7] \arrow["{s_i}"{description}, color={rgb,255:red,214;green,92;blue,92}, from=1-5, to=3-3] \arrow["{s_{i-1}}"{description}, color={rgb,255:red,214;green,153;blue,92}, from=1-7, to=3-5] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsMTAsWzIsMCwiQ197aSsxfSJdLFs0LDAsIkNfe2l9Il0sWzYsMCwiQ197aS0xfSJdLFsyLDIsIkNfe2krMX0nIl0sWzQsMiwiQ197aX0nIl0sWzYsMiwiQ197aS0xfSciXSxbMCwwLCJcXGNkb3RzIl0sWzgsMCwiXFxjZG90cyJdLFswLDIsIlxcY2RvdHMiXSxbOCwyLCJcXGNkb3RzIl0sWzYsMF0sWzAsMSwiZF97aSsxfSJdLFsxLDIsImRfe2krMX0iLDAseyJjb2xvdXIiOlsyNDAsNjAsNjBdfSxbMjQwLDYwLDYwLDFdXSxbMiw3XSxbOCwzXSxbNCw1LCJkX3tpfSciXSxbMyw0LCJkX3tpKzF9JyIsMCx7ImNvbG91ciI6WzAsNjAsNjBdfSxbMCw2MCw2MCwxXV0sWzUsOV0sWzAsM10sWzEsNCwiXFxhbHBoYV9pLVxcYmV0YV9pIiwxLHsiY29sb3VyIjpbMjQwLDYwLDYwXX0sWzI0MCw2MCw2MCwxXV0sWzIsNV0sWzEsMywic19pIiwxLHsiY29sb3VyIjpbMCw2MCw2MF19LFswLDYwLDYwLDFdXSxbMiw0LCJzX3tpLTF9IiwxLHsiY29sb3VyIjpbMzAsNjAsNjBdfSxbMzAsNjAsNjAsMV1dXQ==}{Link to Diagram} \end{quote} \end{remark} \hypertarget{thursday-february-03}{% \section{Thursday, February 03}\label{thursday-february-03}} \hypertarget{projective-resolutions-and-chain-maps}{% \subsection{Projective Resolutions and Chain Maps}\label{projective-resolutions-and-chain-maps}} \begin{remark} Also check that \(\simeq\) is an equivalence relation, i.e.~it is symmetric, transitive, and reflexive. For transitivity: given \begin{align*} \alpha_i - \beta_i &= d_{i+1}' s_i +s_{i-1} d_i \\ \beta_i - \gamma_i &= d_{i+1}' t_{i} + t_{i-1} d_i ,\end{align*} one can write \begin{align*} \alpha_i - \gamma_i &= d_{i+1}'(s_i + t_i) + (s_{i-1} + t_{i-1} ) d_i .\end{align*} \end{remark} \begin{theorem}[?] Let \(\alpha, \beta \in \mathsf{Ch}\mathsf{C}(A, B)\) with induced maps \(\widehat{\alpha}, \widehat{\beta }\in \mathsf{Ch}\mathsf{C}(H^* A, H^* B)\) on homology. If \(\alpha \simeq\beta\), then \(\widehat{\alpha }= \widehat{\beta}\). \end{theorem} \begin{proof}[?] A computation: \begin{align*} \widehat{\alpha}_{1}(&\left.z_{1}+B_{i}\right)=\alpha_{1}\left(z_{i}\right)+B_{i}^{\prime} \\ &=\beta_{i}\left(z_{i}\right)+\delta_{i+1}^{\prime} s_{1}\left(z_{i}\right)+s_{i-1}^{\prime \prime} \delta_{i}\left(z_{i}\right) + B_i'\\ &=\beta_{i}\left(z_{i}\right)+B_{i}^{\prime} \\ &=\widehat{\beta}_{i}\left(z_{i}+B_{i}\right) \end{align*} \end{proof} \begin{remark} Roadmap: \begin{itemize} \tightlist \item Homological algebra \item Commutative rings \item Support theory \item Tensor triangular geometry \end{itemize} \end{remark} \begin{definition}[?] Let \(M\in {\mathsf{R}{\hbox{-}}\mathsf{Mod}}\). A \textbf{projective complex} for \(M\) is a chain complex \((C_i, d_i)_{i\in {\mathbb{Z}}}\), indexed homologically: \begin{align*} \cdots \to C_2 \xrightarrow{d_2} C_1 \xrightarrow{d_1} C_0 \xrightarrow{d_0\coloneqq{\varepsilon}} 0 .\end{align*} In particular, \(d^2 = 0\), but this complex need not be exact. A \textbf{projective resolution} of \(M\) is an \emph{exact} projective complex in the following sense: \begin{itemize} \tightlist \item \(H_{k\geq 1}({ {C}_{\scriptscriptstyle \bullet}} ) = 0\) \item \(H_0({ {C}_{\scriptscriptstyle \bullet}} ) = C_0/d(C_1) = C_0/\ker {\varepsilon}\cong M\). \end{itemize} \end{definition} \begin{example}[?] Some projective resolutions: \begin{itemize} \tightlist \item For \(M\in {\mathsf{R}{\hbox{-}}\mathsf{Mod}}\), projective resolutions exist since we can find covers by free modules: \end{itemize} \begin{center} \begin{tikzcd} \cdots & {F_2} & {F_1} & {F_0} & M & 0 \\ && {\ker d_1} & {\ker {\varepsilon}} \arrow[from=1-4, to=2-4] \arrow[from=2-4, to=1-5] \arrow[from=1-3, to=2-3] \arrow[from=2-3, to=1-4] \arrow[from=1-2, to=1-3] \arrow["{d_1}", from=1-3, to=1-4] \arrow["{\varepsilon}", two heads, from=1-4, to=1-5] \arrow[from=1-5, to=1-6] \arrow[from=1-1, to=1-2] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsOCxbMCwwLCJcXGNkb3RzIl0sWzEsMCwiRl8yIl0sWzIsMCwiRl8xIl0sWzMsMCwiRl8wIl0sWzQsMCwiTSJdLFs1LDAsIjAiXSxbMywxLCJcXGtlciBcXGVwcyJdLFsyLDEsIlxca2VyIGRfMSJdLFszLDZdLFs2LDRdLFsyLDddLFs3LDNdLFsxLDJdLFsyLDMsImRfMSJdLFszLDQsIlxcZXBzIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV0sWzQsNV0sWzAsMV1d}{Link to Diagram} \end{quote} \begin{itemize} \tightlist \item For \(M\in {\mathsf{Z}{\hbox{-}}\mathsf{Mod}}\), every module has a 2-stage resolution: \end{itemize} \begin{center} \begin{tikzcd} 0 & {\ker {\varepsilon}\cong {\mathbb{Z}}{ {}^{ \scriptscriptstyle\oplus^{m} } }} & {{\mathbb{Z}}{ {}^{ \scriptscriptstyle\oplus^{n} } }} & M & 0 \arrow[from=1-4, to=1-5] \arrow["{\varepsilon}", two heads, from=1-3, to=1-4] \arrow[from=1-2, to=1-3] \arrow[from=1-1, to=1-2] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsNSxbNCwwLCIwIl0sWzMsMCwiTSJdLFsyLDAsIlxcWlpcXHN1bXBvd2Vye259Il0sWzEsMCwiXFxrZXIgXFxlcHMgXFxjb25nIFxcWlpcXHN1bXBvd2Vye219Il0sWzAsMCwiMCJdLFsxLDBdLFsyLDEsIlxcZXBzIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV0sWzMsMl0sWzQsM11d}{Link to Diagram} \end{quote} \end{example} \begin{theorem}[?] For \(\mu \in \mathsf{C}(M, M')\) and \(C \coloneqq({ {C}_{\scriptscriptstyle \bullet}} , d) \twoheadrightarrow M, C' \coloneqq({ {C}_{\scriptscriptstyle \bullet}} ', d')\twoheadrightarrow M'\), there is an induced chain map \(\alpha \in \mathsf{Ch}\mathsf{C}(C, C')\). Moreover, any other chain map \(\beta\) is chain homotopic to \(\alpha\). \begin{quote} Note that \(C\) can in fact be any projective complex over \(M\), not necessarily a resolution. \end{quote} \end{theorem} \begin{proof}[?] Using that \(C_0\) is projective, there is a lift of the following form: \begin{center} \begin{tikzcd} {C_0} && M \\ \\ {C_0'} && {M'} \arrow["\mu", from=1-3, to=3-3] \arrow["{\varepsilon}"', two heads, from=3-1, to=3-3] \arrow["{\varepsilon}", two heads, from=1-1, to=1-3] \arrow["{\exists \alpha_0}"', dashed, from=1-1, to=3-1] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsNCxbMCwyLCJDXzAnIl0sWzIsMiwiTSciXSxbMiwwLCJNIl0sWzAsMCwiQ18wIl0sWzIsMSwiXFxtdSJdLFswLDEsIlxcZXBzIiwyLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV0sWzMsMiwiXFxlcHMiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbMywwLCJcXGV4aXN0cyBcXGFscGhhXzAiLDIseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=}{Link to Diagram} \end{quote} Now inductively, we want to construct the following lift: \begin{center} \begin{tikzcd} {C_n} && {C_{n-1}} && {C_{n-2}} \\ \\ {C_{n}'} && {C_{n-1}'} && {C_{n-2}'} \\ & {\operatorname{im}d_n' = \ker d_{n-1}'} \arrow["{d_n}", from=1-1, to=1-3] \arrow["{d_{n-1}}", from=1-3, to=1-5] \arrow["{\alpha_{n-2}}", from=1-5, to=3-5] \arrow["{d_{n-1}'}"', from=3-3, to=3-5] \arrow["{d_n'}"', from=3-1, to=3-3] \arrow["{\alpha_{n-1}}", from=1-3, to=3-3] \arrow["\exists"', dashed, from=1-1, to=3-1] \arrow[two heads, from=3-1, to=4-2] \arrow[hook, from=4-2, to=3-3] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsNyxbMCwwLCJDX24iXSxbMiwwLCJDX3tuLTF9Il0sWzQsMCwiQ197bi0yfSJdLFs0LDIsIkNfe24tMn0nIl0sWzIsMiwiQ197bi0xfSciXSxbMCwyLCJDX3tufSciXSxbMSwzLCJcXGltIGRfbicgPSBcXGtlciBkX3tuLTF9JyJdLFswLDEsImRfbiJdLFsxLDIsImRfe24tMX0iXSxbMiwzLCJcXGFscGhhX3tuLTJ9Il0sWzQsMywiZF97bi0xfSciLDJdLFs1LDQsImRfbiciLDJdLFsxLDQsIlxcYWxwaGFfe24tMX0iXSxbMCw1LCJcXGV4aXN0cyIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFs1LDYsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFs2LDQsIiIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV1d}{Link to Diagram} \end{quote} STS \(\operatorname{im}\alpha_{n-1} d_n \subseteq \ker d_{n-1}'\), which follows from \begin{align*} d_{n-1}' \alpha_{n-1} d_n(x) = \alpha_{n-1} d_{n-1} d_n(x) .\end{align*} So there is a map \(C_n \to \operatorname{im}d_n'\), and using projectivity produces the desired lift by the same argument as in the case case: \begin{center} \begin{tikzcd} {C_n} && {C_{n-1}} && {C_{n-2}} \\ \\ {C_{n}'} && {C_{n-1}'} && {C_{n-2}'} \\ & {\operatorname{im}d_n' = \ker d_{n-1}'} \arrow["{d_n}", from=1-1, to=1-3] \arrow["{d_{n-1}}", from=1-3, to=1-5] \arrow["{\alpha_{n-2}}", from=1-5, to=3-5] \arrow["{d_{n-1}'}"', from=3-3, to=3-5] \arrow["{d_n'}"'{pos=0.4}, from=3-1, to=3-3] \arrow["{\alpha_{n-1}}", from=1-3, to=3-3] \arrow[""{name=0, anchor=center, inner sep=0}, "{\exists \text{ by projectivity}}"', dashed, from=1-1, to=3-1] \arrow[two heads, from=3-1, to=4-2] \arrow[hook, from=4-2, to=3-3] \arrow[""{name=1, anchor=center, inner sep=0}, "\exists"{description}, curve={height=-18pt}, dashed, from=1-1, to=4-2] \arrow[shorten <=8pt, shorten >=8pt, Rightarrow, from=1, to=0] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsNyxbMCwwLCJDX24iXSxbMiwwLCJDX3tuLTF9Il0sWzQsMCwiQ197bi0yfSJdLFs0LDIsIkNfe24tMn0nIl0sWzIsMiwiQ197bi0xfSciXSxbMCwyLCJDX3tufSciXSxbMSwzLCJcXGltIGRfbicgPSBcXGtlciBkX3tuLTF9JyJdLFswLDEsImRfbiJdLFsxLDIsImRfe24tMX0iXSxbMiwzLCJcXGFscGhhX3tuLTJ9Il0sWzQsMywiZF97bi0xfSciLDJdLFs1LDQsImRfbiciLDIseyJsYWJlbF9wb3NpdGlvbiI6NDB9XSxbMSw0LCJcXGFscGhhX3tuLTF9Il0sWzAsNSwiXFxleGlzdHMgXFx0ZXh0eyBieSBwcm9qZWN0aXZpdHl9IiwyLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzUsNiwiIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV0sWzYsNCwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMCw2LCJcXGV4aXN0cyIsMSx7ImN1cnZlIjotMywic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzE2LDEzLCIiLDEseyJsYWJlbF9wb3NpdGlvbiI6NjAsInNob3J0ZW4iOnsic291cmNlIjoyMCwidGFyZ2V0IjoyMH19XV0=}{Link to Diagram} \end{quote} To see that any two such maps are chain homotopic, set \(\gamma \coloneqq\alpha - \beta\), then \begin{align*} {\varepsilon}'( \gamma_0) = {\varepsilon}'( \alpha_i - \beta_i) = \mu{\varepsilon}- \mu {\varepsilon}=0 ,\end{align*} and \begin{align*} d_n'(\gamma_n) &- d_n'( \alpha_n - \beta_n) \\ &= d_n' \alpha_n - d_n' \beta_n \\ &= \alpha_{n-1} d_n - \beta_{n-1} d_n \\ &= \gamma_{n-1} d_n ,\end{align*} so \(\gamma\) yields a well-defined chain map. We'll now construct the chain homotopy inductively. There is a lift \(s_0\) of the following form: \begin{center} \begin{tikzcd} && {C_0} \\ \\ {C_1'} && {C'_0} & {M'} & 0 \\ & {\operatorname{im}d_1'} \arrow["{d_1'}"', two heads, from=3-1, to=4-2] \arrow[hook, from=4-2, to=3-3] \arrow["{\gamma_0}"', from=1-3, to=3-3] \arrow["{\exists s_0}"', dashed, from=1-3, to=3-1] \arrow[from=3-1, to=3-3] \arrow["{{\varepsilon}'}", two heads, from=3-3, to=3-4] \arrow[from=3-4, to=3-5] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsNixbMywyLCJNJyJdLFs0LDIsIjAiXSxbMiwyLCJDJ18wIl0sWzEsMywiXFxpbSBkXzEnIl0sWzIsMCwiQ18wIl0sWzAsMiwiQ18xJyJdLFs1LDMsImRfMSciLDIseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbMywyLCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFs0LDIsIlxcZ2FtbWFfMCIsMl0sWzQsNSwiXFxleGlzdHMgc18wIiwyLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzUsMl0sWzIsMCwiXFxlcHMnIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV0sWzAsMV1d}{Link to Diagram} \end{quote} This follows because \(\operatorname{im}d_1' = \ker {\varepsilon}'\) and \({\varepsilon}' \gamma_0 = 0\) by the previous calculation. Assuming all \(s_{i\leq n-1}\) are constructed, set \(\gamma_i = d_{i+1}' s_i + s_{i-1} d_i\). Setting \(\gamma_n - s_{n-1}d_n: C_n \to C_n'\), then \begin{align*} d_n'( \gamma_n - s_{n-1} d_n) &= d_n' \gamma_n - d_n' s_{n-1} d_n \\ &= \gamma_{n-1} d_n - d_n' s_{n-1} d_n \\ &= (\gamma_{n-1} - d_n' s_{n-1})d_n \\ &= s_{n-2} d_{n-1} d_n \\ &= 0 ,\end{align*} using \(d^2 = 0\). Now there is a lift \(s_n\) of the following form: \begin{center} \begin{tikzcd} && {C_n} \\ \\ {C_{n+1}'} && {C_n'} && {C_{n-1}} \\ & {\operatorname{im}d_{n+1} = \ker d_n'} \arrow["{\gamma_n - s_{n-1} d_N}", from=1-3, to=3-3] \arrow["{d_n'}", from=3-3, to=3-5] \arrow[from=3-1, to=3-3] \arrow["{d_{n+1}}"', from=3-1, to=4-2] \arrow[from=4-2, to=3-3] \arrow["{s_n}"', dashed, from=1-3, to=3-1] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsNSxbMiwwLCJDX24iXSxbMiwyLCJDX24nIl0sWzQsMiwiQ197bi0xfSJdLFswLDIsIkNfe24rMX0nIl0sWzEsMywiXFxpbSBkX3tuKzF9ID0gXFxrZXIgZF9uJyJdLFswLDEsIlxcZ2FtbWFfbiAtIHNfe24tMX0gZF9OIl0sWzEsMiwiZF9uJyJdLFszLDFdLFszLDQsImRfe24rMX0iLDJdLFs0LDFdLFswLDMsInNfbiIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==}{Link to Diagram} \end{quote} Thus follows from the fact that \(\operatorname{im}\gamma_n - s_{n-1} d_n \subseteq \ker d_n'\) and projectivity of \(C_n\). \end{proof} \begin{remark} Dually one can construct injective resolutions \(0 \to M \xhookrightarrow{\eta} { {D}_{\scriptscriptstyle \bullet}}\) \end{remark} \hypertarget{derived-functors}{% \subsection{Derived Functors}\label{derived-functors}} \begin{remark} Setup: \(F: {\mathsf{R}{\hbox{-}}\mathsf{Mod}}\to {\mathbb{Z}{\hbox{-}}\mathsf{Mod}}\) is an additive covariant functor, e.g.~\(({-}) \otimes_R N\) or \(M\otimes_R({-})\), and \({ {C}_{\scriptscriptstyle \bullet}} \xrightarrow[]{{\varepsilon}} { \mathrel{\mkern-16mu}\rightarrow }\, M\) a complex over \(M\). We define the left-derived functors as \((L_n F)(M) \coloneqq H_n(F({ {C}_{\scriptscriptstyle \bullet}} ))\). \end{remark} \hypertarget{tuesday-february-08}{% \section{Tuesday, February 08}\label{tuesday-february-08}} \begin{remark} Defining derived functors: for \(F\) an additive functor and \(M\in {\mathsf{R}{\hbox{-}}\mathsf{Mod}}\), take a projective resolution and apply \(F\): \begin{align*} \cdots \to C_2 \xrightarrow{d_2} C_1 \xrightarrow{d_1} C_0 \xrightarrow{{\varepsilon}= d_0} M \to 0 \leadsto F(C_2) \xrightarrow{Fd_2} F(C_1) \xrightarrow{Fd_1} \cdots ,\end{align*} so \({ {C}_{\scriptscriptstyle \bullet}} \rightrightarrows F\). Define the left-derived functor \begin{align*} {\mathbb{L}}F M \coloneqq H_n F{ {C}_{\scriptscriptstyle \bullet}} .\end{align*} \end{remark} \begin{remark} Any \(\mu \in {\mathsf{R}{\hbox{-}}\mathsf{Mod}}(M, M')\) induces a chain map \(\widehat{\alpha }\in \mathsf{Ch}{\mathsf{R}{\hbox{-}}\mathsf{Mod}}(H_* F{ {C}_{\scriptscriptstyle \bullet}} , H_* F{ {C}_{\scriptscriptstyle \bullet}} ' )\), where \(\alpha\) is any lift of \(\mu\) to their resolutions. \begin{center} \begin{tikzcd} {{ {C}_{\scriptscriptstyle \bullet}} } && M \\ \\ {{ {C}_{\scriptscriptstyle \bullet}} '} && {M'} \arrow["{\varepsilon}", Rightarrow, from=1-1, to=1-3] \arrow["\mu", from=1-3, to=3-3] \arrow["{{\varepsilon}'}"', Rightarrow, from=3-1, to=3-3] \arrow["\alpha"', from=1-1, to=3-1] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsNCxbMiwwLCJNIl0sWzIsMiwiTSciXSxbMCwyLCJcXGNvbXBsZXh7Q30nIl0sWzAsMCwiXFxjb21wbGV4e0N9Il0sWzMsMCwiXFxlcHMiLDAseyJsZXZlbCI6Mn1dLFswLDEsIlxcbXUiXSxbMiwxLCJcXGVwcyciLDIseyJsZXZlbCI6Mn1dLFszLDIsIlxcYWxwaGEiLDJdXQ==}{Link to Diagram} \end{quote} \end{remark} \begin{exercise}[?] Show that any two lifts \(\alpha, \alpha'\) induce the same map on homology. \end{exercise} \begin{remark} Similarly, \({\mathbb{L}}F(M)\) does not depend on the choice of resolution: \begin{center} \begin{tikzcd} {{ {C}_{\scriptscriptstyle \bullet}} } && M &&&& {F{ {C}_{\scriptscriptstyle \bullet}} } && {F(M)} \\ \\ {{ {C}_{\scriptscriptstyle \bullet}} '} && M & \leadsto &&& {F{ {C}_{\scriptscriptstyle \bullet}} '} && {F(M)} \\ \\ {{ {C}_{\scriptscriptstyle \bullet}} } && M &&&& {F{ {C}_{\scriptscriptstyle \bullet}} } && {F(M)} \arrow["{\operatorname{id}_M}", from=1-3, to=3-3] \arrow["{\operatorname{id}_M}", from=3-3, to=5-3] \arrow["\alpha", from=1-1, to=3-1] \arrow["\beta", from=3-1, to=5-1] \arrow["{\varepsilon}", from=5-1, to=5-3] \arrow["{\varepsilon}", from=3-1, to=3-3] \arrow["{\varepsilon}", from=1-1, to=1-3] \arrow[from=1-9, to=3-9] \arrow[from=3-9, to=5-9] \arrow[from=5-7, to=5-9] \arrow[from=3-7, to=3-9] \arrow[from=1-7, to=1-9] \arrow["{F(\alpha)}", from=1-7, to=3-7] \arrow["{F(\beta)}"', from=3-7, to=5-7] \arrow["{\operatorname{id}_{{ {C}_{\scriptscriptstyle \bullet}} }}"', curve={height=30pt}, from=1-1, to=5-1] \arrow["{\therefore \operatorname{id}_{F { {C}_{\scriptscriptstyle \bullet}} }}"', curve={height=30pt}, dashed, from=1-7, to=5-7] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsMTMsWzIsMCwiTSJdLFsyLDIsIk0iXSxbMiw0LCJNIl0sWzAsNCwiXFxjb21wbGV4e0N9Il0sWzAsMiwiXFxjb21wbGV4e0N9JyJdLFswLDAsIlxcY29tcGxleHtDfSJdLFszLDIsIlxcbGVhZHN0byJdLFs2LDAsIkZcXGNvbXBsZXh7Q30iXSxbNiwyLCJGXFxjb21wbGV4e0N9JyJdLFs2LDQsIkZcXGNvbXBsZXh7Q30iXSxbOCwwLCJGKE0pIl0sWzgsMiwiRihNKSJdLFs4LDQsIkYoTSkiXSxbMCwxLCJcXGlkX00iXSxbMSwyLCJcXGlkX00iXSxbNSw0LCJcXGFscGhhIl0sWzQsMywiXFxiZXRhIl0sWzMsMiwiXFxlcHMiXSxbNCwxLCJcXGVwcyJdLFs1LDAsIlxcZXBzIl0sWzEwLDExXSxbMTEsMTJdLFs5LDEyXSxbOCwxMV0sWzcsMTBdLFs3LDgsIkYoXFxhbHBoYSkiXSxbOCw5LCJGKFxcYmV0YSkiLDJdLFs1LDMsIlxcaWRfe1xcY29tcGxleHtDfX0iLDIseyJjdXJ2ZSI6NX1dLFs3LDksIlxcdGhlcmVmb3JlIFxcaWRfe0YgXFxjb21wbGV4e0N9fSIsMix7ImN1cnZlIjo1LCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=}{Link to Diagram} \end{quote} \end{remark} \begin{definition}[Projective resolution of a SES] For \(0\to M' \to M\to M'' \to 0\) in \(\mathsf{C}\), a \textbf{projective resolution} is a collection of chain maps forming projective resolutions of each of the constituent modules: \begin{center} \begin{tikzcd} 0 && {{ {C}_{\scriptscriptstyle \bullet}} '} && {{ {C}_{\scriptscriptstyle \bullet}} } && {{ {C}_{\scriptscriptstyle \bullet}} ''} && 0 \\ \\ 0 && {M'} && M && {M''} && 0 \arrow[from=3-1, to=3-3] \arrow[from=3-3, to=3-5] \arrow[from=3-5, to=3-7] \arrow[from=3-7, to=3-9] \arrow[from=1-7, to=1-9] \arrow[from=1-5, to=1-7] \arrow[from=1-3, to=1-5] \arrow[from=1-1, to=1-3] \arrow[Rightarrow, from=1-3, to=3-3] \arrow[Rightarrow, from=1-5, to=3-5] \arrow[Rightarrow, from=1-7, to=3-7] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsMTAsWzAsMiwiMCJdLFsyLDIsIk0nIl0sWzQsMiwiTSJdLFs2LDIsIk0nJyJdLFs4LDIsIjAiXSxbMCwwLCIwIl0sWzIsMCwiXFxjb21wbGV4e0N9JyJdLFs0LDAsIlxcY29tcGxleHtDfSJdLFs2LDAsIlxcY29tcGxleHtDfScnIl0sWzgsMCwiMCJdLFswLDFdLFsxLDJdLFsyLDNdLFszLDRdLFs4LDldLFs3LDhdLFs2LDddLFs1LDZdLFs2LDEsIiIsMSx7ImxldmVsIjoyfV0sWzcsMiwiIiwxLHsibGV2ZWwiOjJ9XSxbOCwzLCIiLDEseyJsZXZlbCI6Mn1dXQ==}{Link to Diagram} \end{quote} \end{definition} \begin{exercise}[?] Show that such resolutions exist. This involves constructing \({\varepsilon}: C_0 \to M\): \begin{center} \begin{tikzcd} 0 && {C_0'} && {C \cong C_0' \oplus C_0''} && {C_0''} && 0 \\ \\ 0 && {M'} && M && {M''} && 0 \arrow[from=3-1, to=3-3] \arrow["\gamma", hook, from=3-3, to=3-5] \arrow["\sigma", two heads, from=3-5, to=3-7] \arrow[from=3-7, to=3-9] \arrow[from=1-7, to=1-9] \arrow["{p_0}", two heads, from=1-5, to=1-7] \arrow["{\iota_0}", hook, from=1-3, to=1-5] \arrow[from=1-1, to=1-3] \arrow["{\varepsilon}"', from=1-3, to=3-3] \arrow["{\therefore \exists {\varepsilon}}"', dashed, from=1-5, to=3-5] \arrow["{{\varepsilon}''}"', two heads, from=1-7, to=3-7] \arrow["{\exists {\varepsilon}^*}"', dashed, from=1-7, to=3-5] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsMTAsWzAsMiwiMCJdLFsyLDIsIk0nIl0sWzQsMiwiTSJdLFs2LDIsIk0nJyJdLFs4LDIsIjAiXSxbMCwwLCIwIl0sWzIsMCwiQ18wJyJdLFs0LDAsIkMgXFxjb25nIENfMCcgXFxvcGx1cyBDXzAnJyJdLFs2LDAsIkNfMCcnIl0sWzgsMCwiMCJdLFswLDFdLFsxLDIsIlxcZ2FtbWEiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFsyLDMsIlxcc2lnbWEiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbMyw0XSxbOCw5XSxbNyw4LCJwXzAiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbNiw3LCJcXGlvdGFfMCIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzUsNl0sWzYsMSwiXFxlcHMiLDJdLFs3LDIsIlxcdGhlcmVmb3JlIFxcZXhpc3RzIFxcZXBzIiwyLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzgsMywiXFxlcHMnJyIsMix7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFs4LDIsIlxcZXhpc3RzIFxcZXBzXioiLDIseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=}{Link to Diagram} \end{quote} The claim is that \({\varepsilon}(x, x'') \coloneqq\gamma {\varepsilon}'(x') + {\varepsilon}^*(x'')\) works. To prove surjectivity, use the following: \end{exercise} \begin{proposition}[Short Five Lemma] Given a commutative diagram of the following form \begin{center} \begin{tikzcd} 0 && A && B && C && 0 \\ \\ 0 && {A'} && {B'} && {C'} && 0 \arrow[from=3-1, to=3-3] \arrow["s", from=3-3, to=3-5] \arrow["t", from=3-5, to=3-7] \arrow[from=3-7, to=3-9] \arrow[from=1-1, to=1-3] \arrow["p", from=1-3, to=1-5] \arrow["q", from=1-5, to=1-7] \arrow[from=1-7, to=1-9] \arrow["h"', from=1-7, to=3-7] \arrow["g"', from=1-5, to=3-5] \arrow["f"', from=1-3, to=3-3] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsMTAsWzAsMCwiMCJdLFsyLDAsIkEiXSxbNCwwLCJCIl0sWzYsMCwiQyJdLFs4LDAsIjAiXSxbMCwyLCIwIl0sWzIsMiwiQSciXSxbNCwyLCJCJyJdLFs2LDIsIkMnIl0sWzgsMiwiMCJdLFs1LDZdLFs2LDcsInMiXSxbNyw4LCJ0Il0sWzgsOV0sWzAsMV0sWzEsMiwicCJdLFsyLDMsInEiXSxbMyw0XSxbMyw4LCJoIiwyXSxbMiw3LCJnIiwyXSxbMSw2LCJmIiwyXV0=}{Link to Diagram} \end{quote} If \(g,h\) are mono (resp. epi, resp. iso) then \(f\) is mono (resp. epi, resp. iso). \end{proposition} \begin{proof}[of surjectivity, alternative by diagram chase] \envlist \begin{itemize} \item Let \(x\in M\) \item Set \(y=\sigma(x)\) \item Find \(z\in C_0\) such that \({\varepsilon}'' p_0 (z) = y\). \item Consider \({\varepsilon}(z) - x\) and apply \(\sigma\): \begin{align*} \sigma({\varepsilon}(z) - x) &= \sigma {\varepsilon}(x) - \sigma(x) \\ &= {\varepsilon}'' p_0(x) - \sigma(x) \\ &= y-y \\ &= 0 .\end{align*} \item So \({\varepsilon}(z) - x\in \ker \sigma = \operatorname{im}\gamma\) \item Pull back to \(w\in C_0'\) such that \(\gamma {\varepsilon}'(w) = {\varepsilon}(z) - x\) \item Check \({\varepsilon}i_0 (w) = \gamma {\varepsilon}'(w) = {\varepsilon}(z) - x\), so \({\varepsilon}(i_0(w) - z) = -x\). \end{itemize} \end{proof} \begin{proof}[of existence] The setup: \begin{center} \begin{tikzcd} && 0 && 0 && 0 \\ \\ 0 && {\ker {\varepsilon}'} && {\ker {\varepsilon}} && {\ker {\varepsilon}''} && 0 \\ \\ 0 && {C_0'} && {C_0} && {C_0''} && 0 \\ \\ 0 && {M'} && M && {M''} && 0 \arrow[from=7-1, to=7-3] \arrow["\gamma", hook, from=7-3, to=7-5] \arrow["\sigma", two heads, from=7-5, to=7-7] \arrow[from=7-7, to=7-9] \arrow[from=5-7, to=5-9] \arrow["{p_0}", two heads, from=5-5, to=5-7] \arrow["{\iota_0}", hook, from=5-3, to=5-5] \arrow[from=5-1, to=5-3] \arrow["{{\varepsilon}'}"', from=5-3, to=7-3] \arrow["{\therefore \exists {\varepsilon}}"', dashed, from=5-5, to=7-5] \arrow["{{\varepsilon}''}"', two heads, from=5-7, to=7-7] \arrow["{\exists {\varepsilon}^*}"', dashed, from=5-7, to=7-5] \arrow[from=3-1, to=3-3] \arrow["f", hook, from=3-3, to=3-5] \arrow["g", from=3-5, to=3-7] \arrow[from=3-7, to=3-9] \arrow[hook, from=3-7, to=5-7] \arrow[hook, from=3-5, to=5-5] \arrow[hook, from=3-3, to=5-3] \arrow[from=1-3, to=3-3] \arrow[from=1-5, to=3-5] \arrow[from=1-7, to=3-7] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsMTgsWzAsNiwiMCJdLFsyLDYsIk0nIl0sWzQsNiwiTSJdLFs2LDYsIk0nJyJdLFs4LDYsIjAiXSxbMCw0LCIwIl0sWzIsNCwiQ18wJyJdLFs0LDQsIkNfMCJdLFs2LDQsIkNfMCcnIl0sWzgsNCwiMCJdLFsyLDIsIlxca2VyIFxcZXBzJyJdLFs0LDIsIlxca2VyIFxcZXBzIl0sWzYsMiwiXFxrZXIgXFxlcHMnJyJdLFswLDIsIjAiXSxbOCwyLCIwIl0sWzIsMCwiMCJdLFs0LDAsIjAiXSxbNiwwLCIwIl0sWzAsMV0sWzEsMiwiXFxnYW1tYSIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzIsMywiXFxzaWdtYSIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFszLDRdLFs4LDldLFs3LDgsInBfMCIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFs2LDcsIlxcaW90YV8wIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbNSw2XSxbNiwxLCJcXGVwcyciLDJdLFs3LDIsIlxcdGhlcmVmb3JlIFxcZXhpc3RzIFxcZXBzIiwyLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzgsMywiXFxlcHMnJyIsMix7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFs4LDIsIlxcZXhpc3RzIFxcZXBzXioiLDIseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMTMsMTBdLFsxMCwxMSwiZiIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzExLDEyLCJnIl0sWzEyLDE0XSxbMTIsOCwiIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMTEsNywiIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMTAsNiwiIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMTUsMTBdLFsxNiwxMV0sWzE3LDEyXV0=}{Link to Diagram} \end{quote} This is exact and commutative by a diagram chase: \begin{itemize} \tightlist \item \(f = i \circ \downarrow_{\ker {\varepsilon}'}\) shows \(g(\ker {\varepsilon}) \subseteq \ker {\varepsilon}''\) \item \(g = p \circ \downarrow_{\ker {\varepsilon}}\) shows \(f(\ker {\varepsilon}') \subseteq \ker {\varepsilon}\). \end{itemize} To show exactness along the top line: \begin{itemize} \tightlist \item \(f\) is injective, since it's the restriction of an injective map. \item \(g\) is surjective: \begin{itemize} \tightlist \item Let \(x\in \ker {\varepsilon}''\), so \({\varepsilon}''(x) = 0\). \item \(\exists y\in C_0\) with \(p_0(y) = x\) by surjectivity of \(p_0\). \item Check \({\varepsilon}''(p_0(y)) = {\varepsilon}(x) = 0\) in \(M''\), so \(\sigma{\varepsilon}(y) = 0\) \item Thus \({\varepsilon}(y)\in \ker \sigma = \operatorname{im}\gamma\) \item By surjectivity there exists \(w \in C_0'\) such that \(\gamma( {\varepsilon}'(w)) = {\varepsilon}(y)\). \item Use commutativity to verify \begin{align*} {\varepsilon}(i_0(w) - y) &= {\varepsilon}(i_0(w)) - {\varepsilon}(y) \\ &= \gamma{\varepsilon}'(w) - {\varepsilon}(y) \\ &= {\varepsilon}(y) - {\varepsilon}(y) \\ &= 0 .\end{align*} \item Then \begin{align*} g(i_0(w) - y) &= p_0(i_0 (w)) - g(y) \\ &= -g(y) \\ &= -p_0(y) \\ &= -x .\end{align*} \end{itemize} \item Exactness at the middle, i.e.~\(\operatorname{im}f = \ker g\): \begin{itemize} \tightlist \item \(\operatorname{im}f \subseteq \ker g\) by exactness of the second row, so it STS \(\ker g \subseteq \operatorname{im}f\). \item Let \(y\in \ker g\), then by commutativity \(y\in \ker p_0 = \operatorname{im}i_0\). Note that \(y\in \ker {\varepsilon}\) by definition. \item Write \(y = i_0(x)\) for some \(x\in C_0'\) \item Note \(\gamma {\varepsilon}' (x) = {\varepsilon}i_0(x) = {\varepsilon}(y) = 0\) since \(y\in \ker {\varepsilon}\). \item Since \(\gamma'\) is mono, \({\varepsilon}'(x) = 0\), so \(y = i_0(x) = f(x)\). \end{itemize} \end{itemize} \end{proof} \begin{proposition}[?] For \(F: {\mathsf{R}{\hbox{-}}\mathsf{Mod}}\to{\mathbb{Z}{\hbox{-}}\mathsf{Mod}}\) additive and a SES \begin{align*} \xi: 0\to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0 ,\end{align*} note that there are morphisms \begin{align*} {\mathbb{L}}F M'' \to {\mathbb{L}}F M\to {\mathbb{L}}FM' .\end{align*} There is a connecting morphism \begin{align*} \Delta: {\mathbb{L}}F M'' \to \Sigma^{-1} {\mathbb{L}}F M' ,\end{align*} which in components looks like \begin{center} \begin{tikzcd} 0 && {{\mathbb{L}}_0 F(M'')} && {{\mathbb{L}}_0 F(M)} && {{\mathbb{L}}_0 F(M')} \\ \\ && {{\mathbb{L}}_1 F(M'')} && {{\mathbb{L}}_1 F(M)} && {{\mathbb{L}}_1 F(M')} \\ \\ && {{\mathbb{L}}_2 F(M'')} && \cdots \arrow[from=1-3, to=1-1] \arrow[from=1-5, to=1-3] \arrow[from=1-7, to=1-5] \arrow[from=3-3, to=1-7] \arrow[from=3-5, to=3-3] \arrow[from=3-7, to=3-5] \arrow[from=5-3, to=3-7] \arrow[from=5-5, to=5-3] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsOSxbMCwwLCIwIl0sWzIsMCwiXFxMTF8wIEYoTScnKSJdLFs0LDAsIlxcTExfMCBGKE0pIl0sWzYsMCwiXFxMTF8wIEYoTScpIl0sWzIsMiwiXFxMTF8xIEYoTScnKSJdLFs0LDIsIlxcTExfMSBGKE0pIl0sWzYsMiwiXFxMTF8xIEYoTScpIl0sWzIsNCwiXFxMTF8yIEYoTScnKSJdLFs0LDQsIlxcY2RvdHMiXSxbMSwwXSxbMiwxXSxbMywyXSxbNCwzXSxbNSw0XSxbNiw1XSxbNyw2XSxbOCw3XV0=}{Link to Diagram} \end{quote} \end{proposition} \hypertarget{thursday-february-10}{% \section{Thursday, February 10}\label{thursday-february-10}} Missed! Please send me notes. :) \hypertarget{tuesday-february-15}{% \section{Tuesday, February 15}\label{tuesday-february-15}} \hypertarget{tuesday-february-22}{% \section{Tuesday, February 22}\label{tuesday-february-22}} \hypertarget{prime-ideals}{% \subsection{Prime Ideals}\label{prime-ideals}} \begin{remark} Plan: commutative ring theory, aiming toward tensor triangular geometry. \end{remark} \begin{remark} \envlist \begin{itemize} \tightlist \item Recall the definition of prime ideals. \item Show \({\mathfrak{p}}\in \operatorname{Spec}R \iff R/{\mathfrak{p}}\) is an integral domain. \item Recall \({\mathfrak{m}}\in \operatorname{mSpec}R \iff R/{\mathfrak{m}}\) is a field. \item Recall the definition of a monoid \item Note that \(R\setminus{\mathfrak{p}}\ni 1\) and \(R\setminus{\mathfrak{p}}\) is a submonoid of \((R, \cdot)\). \item Examples of primes: \begin{itemize} \tightlist \item \(\left\langle{p}\right\rangle \in \operatorname{Spec}R\) and if \(p\neq 0\) then \(\left\langle{p}\right\rangle \in \operatorname{mSpec}R\). \item \(R = k[x]\) is a PID and \(\left\langle{f}\right\rangle \in \operatorname{Spec}R \iff f\) is irreducible. \end{itemize} \item Recall the set of nilpotent elements and the nilradical \({\sqrt{0_{R}} }\). \begin{itemize} \tightlist \item Show \({\sqrt{0_{R}} } \in \operatorname{Id}(R)\). \item Show that \(R_{ \text{red} }\coloneqq R/{\sqrt{0_{R}} }\) is reduced (no nonzero nilpotents). \end{itemize} \end{itemize} \end{remark} \begin{lemma}[Prime Avoidance] Let \(A, I_j \in \operatorname{Id}(R)\) where at most two of the \(I_j\) are not prime and \(A \subseteq \displaystyle\bigcup_j I_j\). Then \(A \subseteq I_j\) for some \(j\). \end{lemma} \begin{proof}[of lemma] The case \(n=1\) is clear. For \(n>1\), if \(A \subseteq \tilde I_k \coloneqq I_1 \cup I_2 \cup\cdots \widehat{I}_k \cup\cdots \cup I_n\) then the result holds by the IH. So suppose \(A \not\subseteq \tilde I_k\) and pick some \(a_k \not\in \tilde I_k\). Since \(A \subseteq \displaystyle\bigcup I_j\), we must have \(a_k\in I_k\). Case 1: \(n=2\). If \(a_1 + a_2\in A\) with \(a_1 \in I_1 \setminus I_2\) and \(a_2\in I_2\setminus I_1\), then \(a_1 + a_2\not\in I_1 \cup I_2\) -- otherwise \(a_1 + a_2 \in I_1 \implies a_2\in I_1\), and similarly if \(a_1 + a_2\in I_2\). So \(A \subseteq I_1 \cup I_2\). Case 2: \(n>2\). At least one \(I_j\) is prime, without loss of generality \(I_1\). However, \(a_1 + a_2a_3\cdots a_n\in A \setminus\displaystyle\bigcup_{j\geq 1} I_j\). Since \(a_j\in I_j\), we have \(a_2\cdots a_n \in I_j\), contradicting \(a_1\not\in I_j\) for \(j\neq 1\). \end{proof} \begin{proposition}[?] Let \(S\leq (R, \cdot)\) be a submonoid and \(P\in \operatorname{Id}(R)\) proper with \(P \cap S = \emptyset\) and \(P\) is maximal with respect to this property, so if \(P' \supseteq P\) and \(P' \cap S = \emptyset\) then \(P' = P\). Then \(P\in \operatorname{Spec}R\) is prime. \end{proposition} \begin{proof}[?] By contrapositive, we'll show \(a,b\not\in P \implies ab\not\in P\). If \(a,b\not\in P\), then \(P \subsetneq aR + P, bR + P\) is a proper subset. By maximality, \((aR + P) \cap S \neq \emptyset\) and \((bR + P) \cap S \neq \emptyset\). Pick \(s_1, s_2\in S\) with \(s_1 = x_1 a + p_1, s_2 = x_2 b + p_2\). Then \(s_1 s_2\in S\) and thus \begin{align*} s_1 s_2 = x_1x_2 ab + x_1 ap_2 + x_2 b p_1 + p_1 p_2\in x_1x_2 ab + P + P + P ,\end{align*} hence \(ab\not\in P\) -- otherwise \(S \cap P \neq \emptyset\). \(\contradiction\) \end{proof} \begin{proposition}[?] Let \(S \leq R\) be a monoid and let \(I \in \operatorname{Id}(R)\) with \(I \cap S = \emptyset\). Then there exists some \(p\in \operatorname{Spec}R\) such that \begin{itemize} \tightlist \item \(I \subseteq p\) \item \(p \cap S = \emptyset\) \end{itemize} \end{proposition} \begin{proof}[?] Set \(B = \left\{{I' \supseteq I {~\mathrel{\Big\vert}~}I' \cap S = \emptyset}\right\}\), then \(B \neq \emptyset\). Apply Zorn's lemma to get a maximal element \(p\), which is prime by the previous proposition. \end{proof} \begin{theorem}[Krull] \begin{align*} {\sqrt{0_{R}} } = \cap_{p\in \operatorname{Spec}R} p .\end{align*} \end{theorem} \begin{exercise}[?] Prove this! \end{exercise} \hypertarget{localization}{% \subsection{Localization}\label{localization}} \begin{remark} Recall the definition of \({\mathbb{Q}}\) as \({\mathbb{Z}}{ \left[ { \scriptstyle \frac{1}{S} } \right] }\) where \(S = {\mathbb{Z}}\setminus\left\{{0}\right\}\) using the arithmetic of fractions. More generally, for \(D\) an integral domain, there is a field of fractions \(F\) with \(D \hookrightarrow F\) satisfying a universal property and thus uniqueness. Recall the definition of localization and the universal property: if \(\eta: R\to R'\) with \(\eta(S) \subseteq (R')^{\times}\) then \(\exists \tilde\eta: R \left[ { \scriptstyle { {S}^{-1}} } \right] \to R'\). \end{remark} \begin{remark} Next time: \begin{itemize} \tightlist \item Existence of \(R \left[ { \scriptstyle { {S}^{-1}} } \right]\) \item Localization for \({\mathsf{R}{\hbox{-}}\mathsf{Mod}}\). \item Localization using tensor products. \end{itemize} \end{remark} \hypertarget{tuesday-march-01}{% \section{Tuesday, March 01}\label{tuesday-march-01}} \begin{remark} Recall the definition of the localization of an \(R\in \mathsf{CRing}^{\operatorname{unital}}\) at a submonoid \(S \leq (M, \cdot)\), written \(R \left[ { \scriptstyle { {S}^{-1}} } \right]\). Similarly for \(M\in {\mathsf{R}{\hbox{-}}\mathsf{Mod}}\), one can form \(M \left[ { \scriptstyle { {S}^{-1}} } \right]\), and \(({-}) \left[ { \scriptstyle { {S}^{-1}} } \right]\) is a functor where the induced map on \(M \xrightarrow{f} N\) is \(f_S(m/s) \coloneqq f(m)/s\). \end{remark} \begin{proposition}[?] For \(I\in \operatorname{Id}(R)\), let \(j(I) \coloneqq\left\{{a\in R{~\mathrel{\Big\vert}~}a/s\in I \text{ for some } s\in S}\right\}\) which is again an ideal in \(R\). Then \begin{enumerate} \def\labelenumi{\arabic{enumi}.} \tightlist \item \(j(I)_S = I\), \item \(I_S = R_S \iff I\) contains an element of \(S\). \end{enumerate} \end{proposition} \begin{proof}[of 2] \(\impliedby\): \(I_S \subseteq R_S\) is clear. Let \(x/t\in R_S\) and \(s\in I \cap S\), then \({sx\over st} = {x\over t}\in I_S\). \(\implies\): Write \(1=i/s\) to produce \(t\in s\) with \(t(s-i) = 0\). Then \(z=ts \in S\) and \(z=it\in I\) so \(z \in I \cap S\). \end{proof} \begin{proposition}[?] Let \(P\in \operatorname{Spec}R\) with \(S \cap p = \emptyset\), then \(j(P_S) = P\). \end{proposition} \begin{proof}[?] \(\supseteq\): Clear. \(\subseteq\): Let \(a\in j(P_S)\), so \(a/s=p/t\) for \(s,t\in S, p\in P\) and \(\exists u\in S\) such that \(u(at-sp)=0\in P\), so \(uat - usp\in P\) where \(usp\in P\). Thus \(uat\in P \implies a(ut)\in P\implies a\in P\), since \(ut\in S\) and \(ut\not\in P\). \end{proof} \begin{proposition}[?] There is an order-preserving correspondence \begin{align*} \left\{{p\in \operatorname{Spec}R {~\mathrel{\Big\vert}~}p \cap S = \emptyset}\right\} &\rightleftharpoons\operatorname{Spec}R \left[ { \scriptstyle { {S}^{-1}} } \right] \\ P &\mapsto P \left[ { \scriptstyle { {S}^{-1}} } \right] \\ j(P') &\mapsfrom P' .\end{align*} \end{proposition} \begin{proof}[?] We need to show \begin{enumerate} \def\labelenumi{\arabic{enumi}.} \tightlist \item \(P \left[ { \scriptstyle { {S}^{-1}} } \right] \in \operatorname{Spec}R \left[ { \scriptstyle { {S}^{-1}} } \right]\) is actually prime. \item If \(P'\in \operatorname{Spec}R \left[ { \scriptstyle { {S}^{-1}} } \right]\) then \(j(P')\in \operatorname{Spec}R\) with \(j(P') \cap S = \emptyset\). \end{enumerate} For one: \begin{align*} {x\over t}, {y\over t} \in P_S &\implies {xy\over st} \in P_S \\ &\implies xy \in j(P_S) = P \\ &\implies x\in P \text{ or } y\in P \\ &\implies x/s\in P \text{ or } y/s\in P .\end{align*} For two: \begin{align*} xy\in j(P') &\implies {xy\over s}\in P' \\ &\implies {x\over 1}{y\over s}\in P' \\ &\implies {x\over 1}\in P' \text{ or } {y\over s}\in P' \\ &\implies {x}\in P' \text{ or } {y}\in P' \\ .\end{align*} If \(x\in j(P') \cap S\) then \({x\over t}\in P'\) so \({t\over x}{x\over t}\in P'\). \(\contradiction\) One can then check that these two maps compose to the identity. \end{proof} \begin{exercise}[?] Show that if \(p\in \operatorname{Spec}R\) then \(R_p \in \mathsf{Loc}\mathsf{Ring}\) is local. Use that the image of \(p\) in \(R_p\) is \(P_p = R_p\setminus R_p^{\times}\), making it maximal and unique. \end{exercise} \begin{exercise}[?] Show that \begin{enumerate} \def\labelenumi{\arabic{enumi}.} \tightlist \item \(M=0 \iff M_S = 0\) for all \(S\), \item \(M=0 \iff M_p = 0\, \forall p\in \operatorname{mSpec}R\), \item \(M=0 \iff M_p = 0\, \forall p\in \operatorname{Spec}R\), noting that this is a stronger condition than maximal. \end{enumerate} For (2), use that \(\operatorname{Ann}_R(x)\) is a proper ideal and thus contained in a maximal, and show by contradiction that \(x/1\neq 0\in M_p\). \end{exercise} \begin{exercise}[?] Show that if \(f\in {\mathsf{R}{\hbox{-}}\mathsf{Mod}}(M, N)\) then \begin{itemize} \tightlist \item \(f\) injective (resp. surjective) \(\implies f_S\) injective (resp. surjective) \item If \(f_p\) is injective for all \(p\in \operatorname{Spec}R\), then \(f\) is injective (resp. surjective) \item If \(M\) is flat then \(M_S\) is flat \item If \(M_p\) is flat for all \(p\) then \(M\) is flat. \end{itemize} \end{exercise} \begin{remark} Recall that for \(A \subseteq R\), \(V(A) \coloneqq\left\{{p\in \operatorname{Spec}R{~\mathrel{\Big\vert}~}p\supseteq A}\right\}\). Letting \(I(A)\) be the ideal generated by \(A\), then check that \(V(I(A)) = V(A)\) and \(V(I) = V(\sqrt I)\). \end{remark} \begin{exercise}[?] Check that defining closed sets as \(\left\{{V(A) {~\mathrel{\Big\vert}~}A \subseteq R}\right\}\) forms the basis for a topology on \(\operatorname{Spec}R\), and \(V(p) \cap V(q) = V(pq)\). \end{exercise} \begin{remark} Next time: generic points, idempotents, irreducible sets. \end{remark} \hypertarget{tuesday-march-15}{% \section{Tuesday, March 15}\label{tuesday-march-15}} \begin{quote} See \url{https://www.math.ucla.edu/~balmer/Pubfile/TTG.pdf} \end{quote} \begin{remark} Recall that \(V(B) \coloneqq\left\{{p\in \operatorname{Spec}R {~\mathrel{\Big\vert}~}p\supseteq B}\right\}\) are the closed sets for the Zariski topology, and \(V(B) = V(\left\langle{B}\right\rangle)\). Write \(I(A) = \displaystyle\bigcap_{p\in A} p\) for the vanishing ideal of \(A\), and note \(V(I(A)) = { \operatorname{cl}} _{\operatorname{Spec}R} A\). Recall \(\sqrt{J} = \displaystyle\bigcap_{p\supseteq J} = \left\{{x\in R {~\mathrel{\Big\vert}~}\exists n\, \text{ such that } x^n \in J}\right\}\), so \(\sqrt{0}\) is the nilradical, i.e.~all nilpotent elements. An ideal \(J\) is radical iff \(\sqrt J = J\). \end{remark} \begin{theorem}[?] For \(X=\operatorname{Spec}R\), \(I(V(J)) = \sqrt{J}\), and there is a bijection between closed subsets of \(X\) and radical ideals in \(R\). \end{theorem} \begin{proof}[?] \begin{align*} I(V(J)) = \displaystyle\bigcap_{p\in V(J)} p = \displaystyle\bigcap_{p\supseteq J} p = \sqrt{J} ,\end{align*} and \begin{align*} J \xrightarrow{V} V(J) \xrightarrow{I} I(V(J)) = \sqrt{J} = J .\end{align*} \end{proof} \begin{remark} Recall that \(X\) is \textbf{reducible} iff \(X= X_1 \cup X_2\) with \(X_i\) nonempty proper and closed. \end{remark} \begin{theorem}[?] For \(R\in \mathsf{CRing}\), a closed subset \(A \subseteq X\) is irreducible iff \(I(A)\) is a prime ideal. \end{theorem} \begin{proof}[?] \(\implies\): Suppose \(A\) is irreducible, let \(fg\in I(A) = \displaystyle\bigcap_{p\in A} p\). Then \(fg\in p\implies f\in [\) without loss of generality for all \(p\in A\), and \(A = (A \cap V(f)) \cup(A \cap V(g))\) so \(A \subseteq V(f)\) or \(A \subseteq V(g)\). Thus \(f\in \sqrt{\left\langle{f}\right\rangle} = I(V(f)) \subseteq I(A)\) (similarly for \(g\)). \(\impliedby\): Suppose \(I(A)\) is a prime ideal and \(A = A_1 \cup A_2\) with \(A_j\) closed, so \(I(A) \subseteq I(A_j)\). Then \begin{align*} I(A) = I(A_1 \cup A_2) = I(A_1) \cap I(A_2) .\end{align*} If \(I(A_j) \subsetneq I(A)\) are proper containments, then one reaches a contradiction: if \(x\in I(A_1)\) and \(y\in I(A_2)\), use that \(xy\in I(A)\) to conclude \(x\in I(A)\) or \(y\in I(A)\). \end{proof} \begin{theorem}[?] Let \(X\in {\mathsf{Top}}\); TFAE: \begin{enumerate} \def\labelenumi{\arabic{enumi}.} \tightlist \item \(X\) is irreducible. \item Any two open nonempty sets intersect. \item Any nonempty open is dense in \(X\). \end{enumerate} \end{theorem} \begin{proposition}[?] \envlist \begin{enumerate} \def\labelenumi{\arabic{enumi}.} \item Any irreducible subset of \(X\) is entirely contained in a single irreducible component. \item Any space is a union of its irreducible components. \end{enumerate} \end{proposition} \begin{remark} \begin{itemize} \tightlist \item A space is Noetherian iff any descending chain of closed sets stabilizes, and if \(R\) is a Noetherian ring then \(X=\operatorname{Spec}R\) is a Noetherian space. Note that the converse may not hold in general! \item A Noetherian space has a unique decomposition into irreducibles. \item Any irreducible component is the closure of a point. \item Any nonempty irreducible closed subset \(A \subseteq \operatorname{Spec}R\) contains a unique generic point \(p = I(A)\). \end{itemize} \end{remark} \begin{remark} Coming up: \begin{itemize} \tightlist \item Group cohomology, the Hopf algebra structure on \(kG\) \item Cohomology using minimal resolutions \item \(R = H^0(G; k) = \operatorname{Ext} _{kG}^0(k, k)\) which is a Noetherian ring \item Use minimal resolutions to define \(c_{kG}(M)\), the rate of growth of a minimal projective resolution of \(M\) (1977) \item Support varieties: \(R\coloneqq\operatorname{Ext} ^i_{kG}(k,k)\curvearrowright\tilde M\coloneqq\operatorname{Ext} ^0_{kG}(M, M)\), let \(J = \operatorname{Ann}_R(\tilde M)\) and \(V_G(M) = \operatorname{Spec}(R/J)\). \item An equality of numerical invariants: \(c_{kG}(M) = \dim V_G(M)\). \item Paul Balmer's tensor triangular geometry. \end{itemize} \end{remark} \hypertarget{tuesday-march-22}{% \section{Tuesday, March 22}\label{tuesday-march-22}} \hypertarget{hilbert-serre}{% \subsection{Hilbert-Serre}\label{hilbert-serre}} \begin{remark} Setup: \(V\in {\mathsf{gr}\,}_{\mathbb{Z}}{\mathsf{k}{\hbox{-}}\mathsf{Mod}}\) a graded vector space, so \(V = \bigoplus _{r\geq 0} V_r\) with \(\dim_k V_r < \infty\). Define the \textbf{Poincare series} \begin{align*} p(V, t) = \sum_{r\geq 0} \dim V_r t^r .\end{align*} \end{remark} \begin{theorem}[Hilbert-Serre] Let \(R\in {\mathsf{gr}\,}_{\mathbb{Z}}\mathsf{CRing}\) be of finite type over \(A_0\) for \(A\in {{k}{\hbox{-}}\mathsf{Alg}}\) and suppose \(R\) is finitely generated over \(A_0\) by homogeneous elements of degrees \(k_1,\cdots, k_s\). Supposing \(V\in {\mathsf{A}{\hbox{-}}\mathsf{Mod}}^{\mathrm{fg}}\), \begin{align*} p(V, t) = {f(t) \over \prod_{1\leq j\leq s} 1-t^{k_j} }, \qquad f(t) \in {\mathbb{Z}}[t] .\end{align*} \end{theorem} \begin{proposition}[?] Suppose that \begin{align*} p(V, t) = {f(t) \over \prod_{1\leq j\leq s} 1-t^{k_j} } = \sum_{r\geq 0} a_r t^r, \qquad f(t) \in {\mathbb{Z}}[t], a_r\in {\mathbb{Z}}_{\geq 0} .\end{align*} Let \(\gamma\) be the order of the pole of \(p(t)\) at \(t=1\). Then \begin{enumerate} \def\labelenumi{\arabic{enumi}.} \item There exists \(K > 0\) such that \(a_n \leq K n^{\gamma-1}\) for \(n\geq 0\) \item There does \emph{not} exist \(k > 0\) such that \(a_n \leq k n^{\gamma - 2}\). \end{enumerate} \end{proposition} \begin{definition}[?] Let \(V\) be a graded vector space of finite type over \(k\). The \textbf{rate of growth} \(\gamma(V)\) of \(V\) is the smallest \(\gamma\) such that \(\dim V_n \leq C n^{\gamma-1}\) for all \(n\geq 0\) for some constant \(C\). \end{definition} \begin{remark} Compare this to the complexity \(C_G(M) = \gamma(P_0)\) where \(P^0 \rightrightarrows M\) is a minimal projective resolution. \end{remark} \hypertarget{finite-generation-of-cohomology}{% \subsection{Finite Generation of Cohomology}\label{finite-generation-of-cohomology}} \begin{remark} Fix \(G \in {\mathsf{Fin}}{\mathsf{Grp}}\). Recall that \({ {H}^{\scriptscriptstyle \bullet}} (G; k) { {\operatorname{Ext} }^{\scriptscriptstyle \bullet}} _{G}(k, k)\) has an algebra structure given by concatenation of LESs: \begin{center} \begin{tikzcd} {\xi_M:} & 0 & k & {M_1} & \cdots & {M_n} & k & 0 & {\in \operatorname{Ext} ^n_G(k, k)} \\ \\ {\xi_N:} & 0 & k & {N_1} & \cdots & {N_m} & k & 0 & {\in \operatorname{Ext} ^m_G(k, k)} \arrow[from=1-2, to=1-3] \arrow[from=1-3, to=1-4] \arrow[from=1-4, to=1-5] \arrow[from=1-5, to=1-6] \arrow[from=1-6, to=1-7] \arrow[from=1-7, to=1-8] \arrow["{\xi_M \cdot \xi_N}"{description}, color={rgb,255:red,92;green,92;blue,214}, dashed, from=1-7, to=3-3] \arrow[from=3-3, to=3-4] \arrow[from=3-4, to=3-5] \arrow[from=3-5, to=3-6] \arrow[from=3-6, to=3-7] \arrow[from=3-7, to=3-8] \arrow[from=3-2, to=3-3] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsMTgsWzEsMCwiMCJdLFsyLDAsImsiXSxbMywwLCJNXzEiXSxbNCwwLCJcXGNkb3RzIl0sWzUsMCwiTV9uIl0sWzYsMCwiayJdLFs3LDAsIjAiXSxbMiwyLCJrIl0sWzYsMiwiayJdLFszLDIsIk5fMSJdLFs1LDIsIk5fbSJdLFs0LDIsIlxcY2RvdHMiXSxbMSwyLCIwIl0sWzcsMiwiMCJdLFs4LDAsIlxcaW4gXFxFeHRebl9HKGssIGspIl0sWzgsMiwiXFxpbiBcXEV4dF5tX0coaywgaykiXSxbMCwwLCJcXHhpX006Il0sWzAsMiwiXFx4aV9OOiJdLFswLDFdLFsxLDJdLFsyLDNdLFszLDRdLFs0LDVdLFs1LDZdLFs1LDcsIlxceGlfTSBcXGNkb3QgXFx4aV9OIiwxLHsiY29sb3VyIjpbMjQwLDYwLDYwXSwic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fSxbMjQwLDYwLDYwLDFdXSxbNyw5XSxbOSwxMV0sWzExLDEwXSxbMTAsOF0sWzgsMTNdLFsxMiw3XV0=}{Link to Diagram} \end{quote} Recall that \(\operatorname{Ext} ^n_{G}(k, k) = \mathop{\mathrm{Hom}}_{kG}(P_n, k)\), providing the additive structure. Moreover, \(\operatorname{Ext} _{kG}(M, M)\) is a ring, and if \(N\in {\mathsf{kG}{\hbox{-}}\mathsf{Mod}}\), then \(\operatorname{Ext} _{kG}{N, M} \in {\mathsf{\operatorname{Ext} _{kG}(M, M)}{\hbox{-}}\mathsf{Mod}}\). Similarly \(\operatorname{Ext} ^0_{kG}(N, M) \in {\mathsf{ { {\operatorname{Ext} }^{\scriptscriptstyle \bullet}} (k, k)}{\hbox{-}}\mathsf{Mod}}\) by tensoring LESs. \end{remark} \begin{remark} There is a coproduct \begin{align*} kG &\xrightarrow{\Delta} kG \otimes_k kG \\ g &\mapsto g\otimes g .\end{align*} There is a cup product: \begin{center} \begin{tikzcd} {\bigoplus _{s+t=m} \operatorname{Ext} _{kG}^s(k, N) \otimes_k \operatorname{Ext} ^t_{kG}(k, M)} && {\operatorname{Ext} ^{m}_{kG{ {}^{ \scriptstyle\otimes_{k}^{2} } }}(k\otimes_k N, k\otimes_k M) } \\ \\ && {\operatorname{Ext} _{kG}^m(N, M)} \arrow["\cong", tail reversed, from=1-1, to=1-3] \arrow[from=1-3, to=3-3] \arrow["{(a, b)\mapsto a\smile b}"', from=1-1, to=3-3] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsMyxbMCwwLCJcXGJpZ29wbHVzIF97cyt0PW19IFxcRXh0X3trR31ecyhrLCBOKSBcXHRlbnNvcl9rIFxcRXh0XnRfe2tHfShrLCBNKSJdLFsyLDAsIlxcRXh0XnttfV97a0dcXHRlbnNvcnBvd2VyIGsgMn0oa1xcdGVuc29yX2sgTiwga1xcdGVuc29yX2sgTSkgIl0sWzIsMiwiXFxFeHRfe2tHfV5tKE4sIE0pIl0sWzAsMSwiXFxjb25nIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiYXJyb3doZWFkIn19fV0sWzEsMl0sWzAsMiwiKGEsIGIpXFxtYXBzdG8gYVxcY3VwcHJvZCBiIiwyXV0=}{Link to Diagram} \end{quote} It is a theorem that this coincides with the Yoneda product. \end{remark} \begin{theorem}[?] \envlist \begin{itemize} \tightlist \item \(H^0(G, k)\) is a graded commutative ring, so \(xy = (-1)^{{\left\lvert {x} \right\rvert} {\left\lvert {y} \right\rvert}} yx\) \item The even part \({ {H}^{\scriptscriptstyle \bullet}} ^{\text{even}}(G; k)\) is a (usual) commutative ring. \end{itemize} \end{theorem} \begin{theorem}[Evans-Venkov, 61] \envlist \begin{itemize} \tightlist \item \(H^0(G; k)\) is a finitely generated in \({\mathsf{Alg}_{/k} }\) \item If \(M\in {\mathsf{kG}{\hbox{-}}\mathsf{Mod}}\) then \(\operatorname{Ext} ^0_{kG}(k, M) \in {\mathsf{ { {H}^{\scriptscriptstyle \bullet}} (G; k) }{\hbox{-}}\mathsf{Mod}}\). \end{itemize} \end{theorem} \begin{remark} Quillen described \(\operatorname{mSpec} { {H}^{\scriptscriptstyle \bullet}} (G, k)^{ \text{red} }\) in the 70s. Idea: look at \(E \hookrightarrow G\) the elementary abelian subgroups, so \(E \cong C_p{ {}^{ \scriptscriptstyle\times^{m} } }\) where \(p = \operatorname{ch}k\), and consider \(V_G(k) = \displaystyle\bigcup_{E\leq G} V_E(k)/\sim\) the union of all elementary abelian subgroups, where \(V_G(k) \coloneqq\operatorname{mSpec} { {H}^{\scriptscriptstyle \bullet}} ^{}(G; k)^{ \text{red} }\). Note that in characteristic zero, this is semisimple and only \(H^0=k\) survives. \end{remark} \begin{example}[?] \envlist \begin{itemize} \item For \(A = C_p\) with \(\operatorname{ch}k = p > 0\), then \begin{align*} R \coloneqq H^0(C_p; k) \cong \begin{cases} k[x,y]/\left\langle{y^2}\right\rangle, {\left\lvert {x} \right\rvert} = 2, {\left\lvert {y} \right\rvert} = 1 & p\geq 3 \\ k[x], {\left\lvert {x} \right\rvert} = 1 & p = 2. \end{cases}, \qquad \operatorname{mSpec}R \cong {\mathbb{A}}^1_{/ {k}} .\end{align*} \item Dan's favorite: \(A = u({\mathfrak{g}})\) for \({\mathfrak{g}}= {\mathfrak{sl}}_2\) with \(\operatorname{ch}k = p \geq 3\) for \(u\) the \emph{small enveloping algebra}. Friedlander-Parshall show \(\operatorname{mSpec}R = k[{\mathcal{N}}]\) for \({\mathcal{N}}\coloneqq\left\{{M { \begin{bmatrix} {a} & {b} \\ {c} & {-a} \end{bmatrix} } {~\mathrel{\Big\vert}~}M\text{ is nilpotent}}\right\}\). This can be presented as \begin{align*} k[{\mathcal{N}}] \cong k[x,y,z] / \left\langle{z^2 + xy}\right\rangle, {\left\lvert {x} \right\rvert}, {\left\lvert {y} \right\rvert}, {\left\lvert {z} \right\rvert} = 2 ,\end{align*} and we'll see how finite generation is used in this setting. \end{itemize} \end{example} \hypertarget{tuesday-march-29}{% \section{Tuesday, March 29}\label{tuesday-march-29}} \begin{remark} Setup: for \(G \in {\mathsf{Fin}}{\mathsf{Grp}}, k\in \mathsf{Field}\) with \(\operatorname{ch}k = p \divides {\sharp}G\). For \(M\in {\mathsf{kG}{\hbox{-}}\mathsf{Mod}}\), we associate \(V_G(M) \subseteq \operatorname{mSpec}(R)\) for \(R\coloneqq H^0(G; k)\). There is a ring morphism \(\Phi_M: R\to \operatorname{Ext} ^0_{kG}(M, M)\), we set \(I_G(M) = \left\{{x\in R {~\mathrel{\Big\vert}~}\Phi_M(x) = 0}\right\}\) and define the support variety as \(V_G(M) = \operatorname{mSpec}(R/I_G(M))\). \end{remark} \begin{example}[?] Let \(G = C_p{ {}^{ \scriptscriptstyle\times^{n} } }\), then \begin{itemize} \tightlist \item \(H^2(G; k) = k[x_1, \cdots, x_{n}]\) for \(\operatorname{ch}k = p \geq 3\). \item \(\operatorname{mSpec}R = {\mathbb{A}}^n \supseteq V_E(M)\) \end{itemize} \end{example} \hypertarget{rank-varieties}{% \subsection{Rank Varieties}\label{rank-varieties}} \begin{definition}[Rank varieties] For \(kG = k[z_1,\cdots, z_n]/\left\langle{z_1^p,\cdots, z_n^p}\right\rangle\), let \(x_{\mathbf{a}} \coloneqq\sum a_i z_i\) for \(a_i\in k\). Define the \textbf{rank variety} \begin{align*} V_E^r(M) = \left\{{\mathbf{a} {~\mathrel{\Big\vert}~}\mathop{\mathrm{Res}}^{kG}_{ \left\langle{x_{\mathbf{a}}}\right\rangle } \text{ is not free} }\right\} \cup\left\{{0}\right\} .\end{align*} \end{definition} \begin{theorem}[Carlson] \begin{align*} V_E(M) \cong V_E^r(M) .\end{align*} \end{theorem} \begin{remark} Note that \(\operatorname{Ext} ^0(M, M)\curvearrowright\operatorname{Ext} ^0(M', M)\) by splicing, so we can define \(I_G(M', M) \coloneqq\operatorname{Ann}_R \operatorname{Ext} _{kG}^1(M', M)\) and the \textbf{relative support} variety \(V_G(M', M) = \operatorname{mSpec}(R/ I_G(M', M))\). This recovers the previous notion by \(V_G(M, M) = V_G(M)\). \end{remark} \begin{remark} Since \(I_G(M', M) \supseteq I_G(M) + I_G(M')\), \begin{align*} V_G(M', M) \subseteq V_G(M) \cap V_G(M') ,\end{align*} which relates relative support varieties to the usual support varieties. \end{remark} \begin{remark} If \(0\to A\to B\to C\to 0\) is a SES, there is a LES in \(\operatorname{Ext} _{kG}\) and by considering annihilators we have \begin{align*} I_G(A, M)\cdot I_G(B, M) \subseteq I_G(C, M) \implies V_G(C, M) \subseteq V_G(A, M)\cup V_G(C, M) .\end{align*} \end{remark} \begin{proposition}[?] Let \(M\in \mathsf{kG}{\hbox{-}}\mathsf{Mod}\), then \begin{align*} V_G(M) \subseteq \displaystyle\bigcup_{S\leq M \text{ simple}} V_G(S, M) .\end{align*} \end{proposition} \begin{proof}[?] Take the SES \(0\to S_1 \to M \to M/S_1\to 0\), then \(V_G(M) = V_G(M, M) \subseteq V_G(S_1, M) \cup V_G(M/S_1, M)\). Continuing this way yields a union of \(V(T, M)\) over all composition factors \(T\). Conversely, by the intersection formula above, this union is contained in \(V_G(M)\), so these are all equal. \end{proof} \begin{theorem}[?] Let \(M \in {\mathsf{kG}{\hbox{-}}\mathsf{Mod}}\), then \begin{enumerate} \def\labelenumi{\arabic{enumi}.} \tightlist \item \(c_G(M) = \dim V_G(M)\) \item \(V_G(M) = \left\{{0}\right\}\) (as a conical varieties) iff \(M\) is projective. \end{enumerate} \end{theorem} \begin{proof}[?] Note (2) follows from (1), since complexity zero modules are precisely projectives. Consider \(\Phi_M: R\to \operatorname{Ext} ^0_{kG}(M, M)\), which induces \(R/I_G(M) \hookrightarrow\operatorname{Ext} _{kG}^0(M, M)\) which is finitely generated over \(R/I_{G}(M)\). A computation shows \begin{align*} c_G(M) &= \gamma(\operatorname{Ext} _{kG}^0(M, M)) \\ &= \gamma( R/I_G(M) ) \\ &= \operatorname{krulldim}(R/I_G(M)) \\ &= \dim V_G(M) .\end{align*} \end{proof} \begin{remark} Consider a LES \(0\to M\to M_1\to \cdots \to M_n \to M\to 0 \in \operatorname{Ext} _{kG}^n(M, M)\). Apply \(\Omega^n({-})\), which arises from projective covers \({ {P}^{\scriptscriptstyle \bullet}} \rightrightarrows M\) and truncating to get \(0\to \Omega^n \to P^{n-1}\to \cdots \to P_0 \to M\to 0\). Similarly define \(\Omega^{-n}\) in terms of injective resolutions. There is an isomorphism \(\operatorname{Ext} _{kG}^n(M, M) \cong \operatorname{Ext} _{kG}^n(\Omega^s M, \Omega^s M)\) which is compatible with the \(R\) action. Thus \(V_G(M) \cong V_G (\Omega^s M)\) for any \(s\). Since \(kG\) is a Hopf algebra, dualizing yields \(\operatorname{Ext} _{kG}^n(M, M) \cong \operatorname{Ext} _{kG}^n(M {}^{ \vee }, M {}^{ \vee })\) and thus \(V_G(M) \cong V_G(M {}^{ \vee })\). \end{remark} \hypertarget{properties-of-support-varieties}{% \subsection{Properties of support varieties}\label{properties-of-support-varieties}} \begin{proposition}[?] \begin{align*} V_G(M_1 \bigoplus M_2) \cong V_G(M_1)\cup V_G(M_2) .\end{align*} \end{proposition} \begin{proof}[?] Distribute: \begin{align*} \operatorname{Ext} _{kG}^0(M_1 \oplus M_2, M_1 \oplus M_2) & \cong \operatorname{Ext} _{kG}^0(M_1, M_1) \oplus \operatorname{Ext} _{kG}^0(M_1, M_2) \oplus \operatorname{Ext} _{kG}^0(M_2, M_1) \oplus \operatorname{Ext} _{kG}^0(M_3, M_2) .\end{align*} Now \(I_G(M_1 \bigoplus M_2) \subseteq I_G(M_1) \oplus I_G(M_2)\), so \(V_G(M_1) \cup V_G(M_2) \subseteq V_G(M_1 \oplus M_2)\). Applying the 2 out of 3 property, \(V_G(M_1 \oplus M_2) \subseteq V_G(M_1) \cup V_G(M_2)\) since there is a SES \(0\to M_1 \to M_1 \oplus M_2 \to M_2\to 0\). \end{proof} \begin{theorem}[Tensor product property] Let \(M, N\in {\mathsf{kG}{\hbox{-}}\mathsf{Mod}}\), then \begin{align*} V_G(M\otimes_k N) = V_G(M) \cap V_G(N) .\end{align*} \end{theorem} \begin{remark} Conjectured by Carlson, proved by Arvrunin-Scott (82). Prove for elementary abelians, piece together using the Quillen stratification. \end{remark} \begin{theorem}[Carlson] Let \(X = \operatorname{mSpec}R\), which is a conical variety, and let \(W \subseteq X\) be a closed conical subvariety (e.g.~a line through the origin). Then there exists an \(M\in {\mathsf{kG}{\hbox{-}}\mathsf{Mod}}\) such that \(V_G(M) = W\). \end{theorem} \begin{remark} Take \(\zeta: \Omega^n k \to k\), so \(\zeta\in R/I_G(M)\), and define certain \(L_\zeta\) modules and set \(Z(\zeta) \coloneqq V_G(L_\zeta)\). \end{remark} \begin{theorem}[Carlson] Let \(M \in {\mathsf{kG}{\hbox{-}}\mathsf{Mod}}\) be indecomposable. Then the projectivization \(\mathop{\mathrm{Proj}}V_G(M)\) is connected. \end{theorem} \hypertarget{supports-using-primes}{% \subsection{Supports using primes}\label{supports-using-primes}} \begin{remark} As before, set \(R = H^{\text{even}}(G; k), X= \operatorname{Spec}R\), and now define \begin{align*} V_G(M) = \left\{{p\in X{~\mathrel{\Big\vert}~}\operatorname{Ext} _{kG}^0(M, M)_p \neq 0}\right\} .\end{align*} All of the theorems mentioned today go through with this new definition. \end{remark} \begin{exercise}[?] Let \(I_G(M) = \operatorname{Ann}_R \operatorname{Ext} _{kG}^0(M, M) {~\trianglelefteq~}R\), and show \begin{align*} V_G(M) = \left\{{p\in X{~\mathrel{\Big\vert}~}p\supseteq I_G(M) }\right\} = V(I_G(M)) \end{align*} is a closed set. \end{exercise} \begin{remark} Let \({\mathfrak{g}}\in \mathsf{Lie}{\mathsf{Alg}}_{/ {k}}\) with \(\operatorname{ch}k = p > 0\), e.g.~\({\mathfrak{g}}= {\mathfrak{gl}}_n(k)\). Then there is a \(p\)th power operation \(x^{{\left\lceil p \right\rceil}} = x\cdot x\cdots x\). The pair \(({\mathfrak{g}}, {\left\lceil p \right\rceil})\) forms a restricted Lie algebra. Consider the enveloping algebra \(U({\mathfrak{g}})\), and define \begin{align*} u({\mathfrak{g}}) \coloneqq U({\mathfrak{g}})/ \left\langle{x^p - x{ {}^{ \scriptstyle\otimes_{k}^{p} } } {~\mathrel{\Big\vert}~}x\in {\mathfrak{g}}}\right\rangle ,\end{align*} which is a finite-dimensional Hopf algebra: \begin{itemize} \tightlist \item The counit is \({\varepsilon}(g) = 0\) for \(g\in {\mathfrak{g}}\) \item The antipode is \(\theta(g) = -g\) \item The comultiplication is \(\Delta(g) = g\otimes 1 + 1\otimes g\). \end{itemize} The dimension is given by \(\dim u({\mathfrak{g}}) = p^{\dim {\mathfrak{g}}}\). \end{remark} \hypertarget{tuesday-april-05}{% \section{Tuesday, April 05}\label{tuesday-april-05}} \hypertarget{lie-theory}{% \subsection{Lie Theory}\label{lie-theory}} \begin{remark} Setup: \(k = { \mkern 1.5mu\overline{\mkern-1.5muk\mkern-1.5mu}\mkern 1.5mu }\), \(\operatorname{ch}k = p > 0\), \({\mathfrak{g}}\) a restricted Lie algebra (e.g.~\({\mathfrak{g}}= \mathsf{Lie}(G)\) for \(G\in{\mathsf{Aff}}{\mathsf{Alg}}{\mathsf{Grp}}_{/ {k}}\)). Write \(A^{{\left\lceil p \right\rceil} } = AA\cdots A\) and set \(A = u({\mathfrak{g}}) = U({\mathfrak{g}})/ J\) where \(J = \left\langle{x{ {}^{ \scriptstyle\otimes_{k}^{p} } } - x^{{\left\lceil p \right\rceil}}}\right\rangle\) which is an ideal generated by central elements. Note that \(A\) is a finite-dimensional Hopf algebra. Proved last time: \(H^0(A; k) \in {\mathsf{Alg}_{/k} }^{\mathrm{fg}}\), using a spectral sequence argument. From the spectral sequence, there is a finite morphism \begin{align*} \Phi: S({\mathfrak{g}}^+)^{(1)} \to H^0(A; k) ,\end{align*} making \(H^0(A; k)\) an integral extension of \(\operatorname{im}\Phi\). This induces a map \begin{align*} \Phi: \operatorname{mSpec}H^0(A; k) \hookrightarrow{\mathfrak{g}} .\end{align*} \end{remark} \begin{theorem}[Jantzen] \begin{align*} \operatorname{mSpec}H^0(A; k) \cong {\mathcal{N}}_p \coloneqq\left\{{x\in {\mathfrak{g}}{~\mathrel{\Big\vert}~}x^{{\left\lceil p \right\rceil}}}\right\} .\end{align*} \end{theorem} \begin{example}[?] For \({\mathfrak{g}}= {\mathfrak{gl}}_n\), \({\mathcal{N}}_p \leq {\mathcal{N}}\) is a subvariety of the nilpotent cone. Moreover \({\mathcal{N}}_p\) is stable under \(G = \operatorname{GL}_n\), and there are only finitely many orbits. There is a decomposition into finitely many irreducible orbit closures \begin{align*} {\mathcal{N}}_p = \displaystyle\bigcup_i \mkern 1.5mu\overline{\mkern-1.5muGx_i\mkern-1.5mu}\mkern 1.5mu .\end{align*} This corresponds to Jordan decompositions with blocks of size at most \(p\). \end{example} \begin{remark} Using spectral sequences one can show that if \(M, N \in {\mathsf{A}{\hbox{-}}\mathsf{Mod}}\) then \(\operatorname{Ext} ^0_A(M, N)\) is finitely-generated as a module over \(R\coloneqq H^0(A; k)\). So one can define support varieties \(V_{{\mathfrak{g}}}(M) = \operatorname{mSpec}R/J_M\) where \(I_M = \operatorname{Ann}_R \operatorname{Ext} ^0_A(M, M)\). Some facts: \begin{itemize} \tightlist \item \(V_{{\mathfrak{g}}}(M) \subseteq {\mathcal{N}}_p \subseteq {\mathfrak{g}}\) \item If \(M\) is a \(G{\hbox{-}}\)module in addition to being a \({\mathfrak{g}}{\hbox{-}}\)module, then \(V_G(M)\) is a \(G{\hbox{-}}\)stable closed subvariety of \({\mathcal{N}}_p\). \end{itemize} \end{remark} \begin{theorem}[Friedlander-Parshall (Inventiones 86)] Given \(M\in {\mathsf{u({\mathfrak{g}})}{\hbox{-}}\mathsf{Mod}}\), \begin{align*} V_{{\mathfrak{g}}}(M) \cong \left\{{x\in {\mathfrak{g}}{~\mathrel{\Big\vert}~}x^{[p]} = 0, M \downarrow_{U(\left\langle{x}\right\rangle)} \text{ is not free over } u(\left\langle{x}\right\rangle) \leq u({\mathfrak{g}}) }\right\} \cup\left\{{0}\right\} ,\end{align*} which is similar to the rank variety for finite groups, concretely realize the support variety. \end{theorem} \begin{remark} Here \(\left\langle{x}\right\rangle = kx\) is a 1-dimensional Lie algebra, and if \(x^{[p]} = 0\) then \(u(\left\langle{x}\right\rangle) = k[x] / \left\langle{x^p}\right\rangle\) is a PID. We know how to classify modules over a PID: there are only finitely many indecomposable such modules. \end{remark} \hypertarget{reductive-algebraic-groups}{% \subsection{Reductive algebraic groups}\label{reductive-algebraic-groups}} \begin{example}[?] For type \(A_n \sim \operatorname{GL}_{n+1}\), \(\alpha_0 = \tilde \alpha_n = \sum_{1\leq i \leq n} \alpha_i\) and \(h=n+1\). For \({\mathsf{G}}_2\), \(\tilde \alpha_n = 3\alpha_1 + 2\alpha_2\) and \(h=6\). \end{example} \begin{fact} If \(p\geq h\) then \({\mathcal{N}}_p({\mathfrak{g}}) = {\mathcal{N}}\). \end{fact} \begin{definition}[Good and bad primes] A prime is \emph{bad} if it divides any coefficient of the highest weight. By type: \begin{longtable}[]{@{}ll@{}} \toprule Type & Bad primes \\ \midrule \endhead \(A_n\) & None \\ \(B_n\) & 2 \\ \(C_n\) & 2 \\ \(D_n\) & 2 \\ \(E_6\) & 2,3 \\ \(E_7\) & 2,3 \\ \(E_8\) & 2,3,5 \\ \(F_4\) & 2,3 \\ \(G_2\) & 2,3 \\ \bottomrule \end{longtable} \end{definition} \begin{theorem}[Carlson-Lin-Nakano-Parshall (good primes), UGA VIGRE (bad primes)] \({\mathcal{N}}_p = \mkern 1.5mu\overline{\mkern-1.5mu{\mathcal{O}}\mkern-1.5mu}\mkern 1.5mu\) is an orbit closure, where \({\mathcal{O}}\) is a \(G{\hbox{-}}\)orbit in \({\mathcal{N}}\). Hence \({\mathcal{N}}_p({\mathfrak{g}})\) is an irreducible variety. \end{theorem} \begin{remark} Let \(X = X(T)\) be the weight lattice and let \(\lambda \in X\), then \begin{align*} \Phi_\lambda \coloneqq\left\{{ \alpha\in \Phi {~\mathrel{\Big\vert}~}{\left\langle {\lambda + \rho},~{\alpha {}^{ \vee }} \right\rangle} \in p{\mathbb{Z}}}\right\} .\end{align*} Under the action of the affine Weyl group, this is empty when \(\lambda\) is on a wall (non-regular) and otherwise contains some roots for regular weights. When \(p\) is a good prime, there exists a \(w\in W\) with \(w(\Phi_\lambda) = \Phi_J\) for \(J \subseteq \Delta\) a subsystem of simple roots. In this case, there is a \textbf{Levi decomposition} \begin{align*} {\mathfrak{g}}= u_J \oplus \ell_J \oplus u_J^+ .\end{align*} \end{remark} \begin{remark} On Levis: consider type \(A_5 \sim \operatorname{GL}_6\) with simple roots \(\alpha_i\). \includegraphics{figures/2022-04-05_10-34-18.png} \end{remark} \begin{remark} Consider induced/costandard modules \(H^0( \lambda) = \operatorname{Ind}_B^G \lambda = \nabla(\lambda)\), which are nonzero only when \(\lambda \in X_+\) is a dominant weight. Their characters are given by Weyl's character formula, and their duals are essentially \emph{Weyl modules} which admit Weyl filtrations. What are their support varieties? \end{remark} \begin{theorem}[Nakano-Parshall-Vella, 2008] Let \(\lambda\in X_+\) and let \(p\) be a good prime, and let \(w\in W\) such that \(w(\Phi_\lambda ) = \Phi_J\) for \(J \subseteq \Delta\). Then \begin{align*} V_{{\mathfrak{g}}} H^0( \lambda) = G\cdot u_J = \mkern 1.5mu\overline{\mkern-1.5mu{\mathcal{O}}\mkern-1.5mu}\mkern 1.5mu \end{align*} is the closure of a ``Richardson orbit''. \end{theorem} \begin{remark} \envlist \begin{itemize} \tightlist \item This theorem was conjectured by Jantzen in 87, proved for type \(A\). \item For bad primes, \(H^0(\lambda)\) is computed in one of seven VIGRE papers (2007). These still yield orbit closures that are irreducible, but need not be Richardson orbits. \end{itemize} Natural progression: what about tilting modules (good filtrations with costandard sections and good + Weyl filtrations)? We're aiming for the Humphreys conjecture. \end{remark} \begin{remark} Let \(T( \lambda)\) be a tilting module for \(\lambda \in X_+\). A conjecture of Humphreys: \(V_{{\mathfrak{g}}} T( \lambda)\) arises from considering 2-sided cells of the affine Weyl group, which biject with nilpotent orbits. \end{remark} \begin{example}[?] In type \(A_2\): \includegraphics{figures/2022-04-05_10-39-31.png} There are three nilpotent orbits corresponding to Jordan blocks of type \(X\alpha_1: (1,0)\) and \(X_\mathrm{reg}: (1,1)\) in \({\mathfrak{gl}}_3\). Three cases: \begin{itemize} \tightlist \item \(V_{{\mathfrak{g}}} T( \lambda) = {\mathcal{N}}= \mkern 1.5mu\overline{\mkern-1.5muG X_\mathrm{reg}\mkern-1.5mu}\mkern 1.5mu\) \item \(V_{{\mathfrak{g}}} T( \lambda) = \mkern 1.5mu\overline{\mkern-1.5muG X_{ \alpha_1}\mkern-1.5mu}\mkern 1.5mu\) \item \(V_{{\mathfrak{g}}} T( \lambda) = \left\{{0}\right\}\) \end{itemize} \includegraphics{figures/2022-04-05_10-44-03.png} \end{example} \begin{remark} The computation of \(V_G T( \lambda)\) is still open. Some recent work: \begin{itemize} \tightlist \item \(p=2, A_n\): done by B. Cooper, \item \(p > n+1, A_n\) by W. Hardesty, \item \(p \gg 1\), Achar, Hardesty, Riche. \end{itemize} \end{remark} \begin{remark} What about simple \(G{\hbox{-}}\)modules? Recall \(L(\lambda) = \mathop{\mathrm{Soc}}_G \nabla( \lambda) \subseteq \nabla( \lambda)\) -- computing \(V_G L( \lambda)\) is open. \end{remark} \begin{theorem}[Drupieski-N-Parshall] Let \(p > h\) and \(w( \Phi_ \lambda) = \Phi_J\), then \begin{align*} V_{u_q({\mathfrak{g}})} L( \lambda) = G u_J ,\end{align*} i.e.~the support varieties in the quantum case are known. This uses that the Lusztig character formula is know for \(u_q( {\mathfrak{g}})\). \end{theorem} \hypertarget{tuesday-april-12}{% \section{Tuesday, April 12}\label{tuesday-april-12}} \hypertarget{tensor-triangular-geometry}{% \subsection{Tensor triangular geometry}\label{tensor-triangular-geometry}} \begin{remark} Last time: tensor categories and triangulated categories. Idea due to Balmer: treat categories like rings. \end{remark} \begin{definition}[Tensor triangulated categories] A \textbf{tensor triangulated category} (TTC) is a triple \((K, \otimes, 1)\) where \begin{itemize} \tightlist \item \(K\) is a triangulated category \item \((K, \otimes)\) is a symmetric monoidal category \item \(1\) is a unit, so \(X\otimes 1 { \, \xrightarrow{\sim}\, }X { \, \xrightarrow{\sim}\, }1\otimes X\) for all \(X\) in \(K\). \end{itemize} \end{definition} \begin{remark} We'll have notions of ideals, thick ideals, and prime ideals in \(K\). Define \(\operatorname{Spc}K\) to be the set of prime ideals with the following topology: for a collection \(C \subseteq \operatorname{Spec}K\), define \(Z(C) = \left\{{p\in \operatorname{Spc}K {~\mathrel{\Big\vert}~}C \cap p = \emptyset}\right\}\). Note that there is a universal categorical construction of \(\operatorname{Spc}K\) which we won't discuss here. \end{remark} \begin{remark} TTC philosophy: let \(K\) be a compactly generated TTC with a generating set \(K^c\). Note that \(K\) can include ``infinitely generated'' objects, while \(K^c\) should thought of as ``finite-dimensional'' objects. Problems: \begin{itemize} \tightlist \item What is the homeomorphism type of \(\operatorname{Spc}K^c\)? \item What are the thick ideals in \(K^c\)? \end{itemize} Although not all objects can be classified, there is a classification of thick tensor ideals. Idea: use the algebraic topology philosophy of passing to infinitely generated objects to simplify classification. \end{remark} \begin{remark} We'll need a candidate space \(X\cong_{\mathsf{Top}}\operatorname{Spc}(K^c)\), e.g.~a Zariski space: Noetherian, and every irreducible contains a generic point. We'll also need an assignment \(V: K^c\leadsto X_{{ \operatorname{cl}} }\) (the closed sets of \(X\)) satisfying certain properties, which is called a \emph{support datum}. For \(I\) a thick tensor ideal, define \begin{align*} \Gamma(I) \coloneqq\displaystyle\bigcup_{M\in I} V(M) \in X_{\mathrm{sp}} ,\end{align*} a union of closed sets which is called \emph{specialization closed}. Conversely, for \(W\) a specialized closed set, define a thick tensor ideal \begin{align*} \Theta(W) \coloneqq\left\{{M\in K^c {~\mathrel{\Big\vert}~}V(M) \subseteq W}\right\} .\end{align*} One can check that a tensor product property holds: if \(M\in K^c\) and \(N\in \Theta(W)\), check \(V(M\otimes N) = V(M) \cap V(N) \subseteq W\). Under suitable conditions, a deep result is that \(\Gamma \circ \Theta = \operatorname{id}\) and \(\Theta \circ \Gamma = \operatorname{id}\). This yields a bijection \begin{align*} \left\{{\substack{ \text{Thick tensor ideals of } K^c }}\right\} &\rightleftharpoons \left\{{\substack{ \text{Specialization closed sets of } X }}\right\} \\ I &\mapsto \Gamma(I) \\ \Theta(W) &\mapsfrom W \end{align*} \end{remark} \begin{remark} Define \begin{align*} f: X\to \operatorname{Spc}K^c \\ x &\mapsto P_x \coloneqq\left\{{M \in K^c {~\mathrel{\Big\vert}~}x\not\int V(M)}\right\} .\end{align*} This is a prime ideal: if \(M\otimes N\in P_x\), then \(x\not \in V(M\otimes N) = V(M) \cap V(N)\), so \(M\in P_x\) or \(N\in P_x\). \end{remark} \hypertarget{zariski-spaces}{% \subsection{Zariski spaces}\label{zariski-spaces}} \begin{definition}[Zariski spaces] A space \(X\in {\mathsf{Top}}\) is a \textbf{Zariski space} iff \begin{enumerate} \def\labelenumi{\arabic{enumi}.} \tightlist \item \(X\) is a Noetherian space, and \item Every irreducible closed set has a unique generic point. \end{enumerate} Note that since \(X\) is Noetherian, it admits a decomposition into irreducible components \(X = \displaystyle\bigcup_{1\leq i \leq t} W_i\). \end{definition} \begin{example}[?] The basic examples: \begin{itemize} \tightlist \item For \(R\) a unital Noetherian commutative ring, \(X = \operatorname{Spec}R\) is Zariski. \item For \(R\) a graded unital Noetherian ring, taking homogeneous prime ideals \(\mathop{\mathrm{Proj}}R\). \item For \(G\in {\mathsf{Aff}}{\mathsf{Alg}}{\mathsf{Grp}}\) with \(G\curvearrowright R\) a graded ring by automorphisms (permuting the graded pieces), the stack \(X \coloneqq\mathop{\mathrm{Proj}}_G(R)\) (which is not Proj of the fixed points) is the set of \(G{\hbox{-}}\)invariant homogeneous prime ideals. There's a map \(\rho: \mathop{\mathrm{Proj}}R\to \mathop{\mathrm{Proj}}_G R\) where \(P\mapsto \cap_{g\in G} gP\) which gives \(\mathop{\mathrm{Proj}}_G R\) the quotient topology: \(W\in \mathop{\mathrm{Proj}}_G R\) is closed iff \(\rho\in R\) is close din \(\mathop{\mathrm{Proj}}R\). This topologizes orbit closures. \end{itemize} \end{example} \begin{remark} Notation: \begin{itemize} \tightlist \item \({\mathcal{X}}= 2^X\) for the powerset of \(X\), \item \({\mathcal{X}}_{{ \operatorname{cl}} }\) the closed sets, \item \({\mathcal{X}}_{{\mathrm{irr}}}\) the irreducible closed sets, \item \({\mathcal{X}}_{\mathrm{sp} }\) the specialization-closed sets. \end{itemize} \end{remark} \hypertarget{support-data}{% \subsection{Support data}\label{support-data}} \begin{remark} Recall \begin{itemize} \tightlist \item \(M = {\mathsf{kG}{\hbox{-}}\mathsf{Mod}}\) \item \(R = H^{\text{even}}(G; k)\) \item \(V_G(M) = \left\{{p\in \mathop{\mathrm{Proj}}R {~\mathrel{\Big\vert}~}\operatorname{Ext} _{kG}(M, M)_p\neq 0 }\right\}\). \end{itemize} Note that \(V_G(P) = \emptyset\) for any projective and \(V_G(k) = \emptyset\). In general, we'll similarly want \(V_G(0) = \emptyset\) and \(V_G(1) = X\). \end{remark} \begin{definition}[Support data] A \textbf{support datum} is an assignment \(V: K \to {\mathcal{X}}\) such that \begin{enumerate} \def\labelenumi{\arabic{enumi}.} \tightlist \item \(V(0) = \emptyset\) and \(V(1) = X\). \item \(V\qty{\bigoplus _{i\in I} M_i = \displaystyle\bigcup_{i\in I} V(M_i) }\) \item \(V(\Sigma M) = V(M)\) (similar to \(\Omega\)) \item For any distinguished triangle \(M\to N\to Q\to \Sigma M, V(N) \subseteq V(M) \cup V(Q)\). \item \(V(M\otimes N) = V(M) \cap V(N)\). \end{enumerate} We'll need two more properties for the Balmer classification: \begin{enumerate} \def\labelenumi{\arabic{enumi}.} \setcounter{enumi}{5} \tightlist \item Faithfulness: \(V(M) = \emptyset \iff M \cong 0\). \item Realization: for any \(W\in {\mathcal{X}}_{{ \operatorname{cl}} }\) there exists a compact \(M\in K^c\) with \(V(M) = W\). \end{enumerate} \end{definition} \begin{remark} Note that (6) holds for group cohomology, and (7) is Carlson's realization theorem. \end{remark} \begin{lemma}[?] Let \(K\) be a TTC which is closed under set-indexed coproducts and let \(V:K\to {\mathcal{X}}\) be a support datum. Let \(C\) be a collection of objects in \(K\) and suppose \(W \subseteq X\) with \(V(M) \subseteq W\) for all \(M\in C\). Then \(V(M) \subseteq W\) for all \(M\) in \(\mathsf{Loc}(C)\). \end{lemma} \begin{proof}[?] Note that \(\mathsf{Loc}(C)\) is closed under \begin{itemize} \tightlist \item Applying \(\Sigma\) or \(\Sigma^{-1}\), \item 2-out-of-3: if two objects in a distinguished triangle are in \(\mathsf{Loc}(C)\), the third is in \(\mathsf{Loc}(C)\), \item Taking direct summands, \item Taking set-indexed coproducts. \end{itemize} These follow directly from the properties of support data and properties of \(\mathsf{Loc}(C)\). \end{proof} \hypertarget{extension-of-support-data}{% \subsection{Extension of support data}\label{extension-of-support-data}} \begin{remark} Let \(X\) be a Zariski space and let \(K\supseteq K^c\) be a compactly generated TTC. Let \(V: K^c\to {\mathcal{X}}_{{ \operatorname{cl}} }\) be a support data on compact objects, we then seek an \emph{extension}: a support datum \({\mathcal{V}}\) on \(K\) forming a commutative diagram: \begin{center} \begin{tikzcd} K && {\mathcal{X}}\\ \\ {K^c} && {{\mathcal{X}}_{{ \operatorname{cl}} }} \arrow[hook, from=3-1, to=1-1] \arrow[hook, from=3-3, to=1-3] \arrow["V", from=3-1, to=3-3] \arrow["{\mathcal{V}}", from=1-1, to=1-3] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsNCxbMCwyLCJLXmMiXSxbMCwwLCJLIl0sWzIsMCwiXFxtY3giXSxbMiwyLCJcXG1jeF97XFxjbH0iXSxbMCwxLCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFszLDIsIiIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzAsMywiViJdLFsxLDIsIlxcbWN2Il1d}{Link to Diagram} \end{quote} \end{remark} \begin{definition}[?] Let \(K\) be a compactly generated TTC and \(V: K^c\to {\mathcal{X}}_{{ \operatorname{cl}} }\) be a support datum. Then \({\mathcal{V}}: K\to {\mathcal{X}}\) \textbf{extends} \(V\) iff \begin{itemize} \tightlist \item \({\mathcal{V}}\) satisfies properties (1) -- (5) above, \item \(V(M) = {\mathcal{V}}(M)\)for any \(M\in K^c\). \item If \(V\) is faithful then \({\mathcal{V}}\) is faithful. \end{itemize} \end{definition} \begin{remark} We'll need Hopkins' theorem to analyze such extensions. \end{remark} \hypertarget{tuesday-april-19}{% \section{Tuesday, April 19}\label{tuesday-april-19}} \hypertarget{hopkins-theorem}{% \subsection{Hopkins' Theorem}\label{hopkins-theorem}} \begin{remark} Let \(\mathsf{K}\) be a compactly generated tensor triangulated category with \(\mathsf{K}^c\) a subcategory of compact objects. Goal: classify \(\operatorname{Spc}\mathsf{K}^c\). A candidate for its homeomorphism type: we'll build a Zariski space \(X\) and a homeomorphism \(\operatorname{Spc}\mathsf{K}^c \to X\). We'll use support data \(\mathbf{V}: \mathsf{K}^c\to {\mathcal{X}}_{{ \operatorname{cl}} }\) which satisfies the faithfulness and realization properties. We'll extend this to \(\mathcal{V}: \mathsf{K} \to {\mathcal{X}}\). So we need \begin{itemize} \tightlist \item A Zariski space \(X\), \item Support data \(\mathbf V\), \item An extension \({\mathcal{V}}\). \end{itemize} \end{remark} \hypertarget{localization-functors}{% \subsection{Localization functors}\label{localization-functors}} \begin{remark} Let \(\mathsf{C} \leq \mathsf{K}\) be a thick subcategory for \(\mathsf{K}\in {\mathsf{triang}}\mathsf{Cat}\). A mysterious sequence: \begin{align*} \Gamma_c(M) \to M \to L_c(M) .\end{align*} Suppose \(W\in {\mathcal{X}}_{{\mathrm{irr}}}\) is nonempty and let \(Z = \left\{{x\in X{~\mathrel{\Big\vert}~}w\not\subseteq { \operatorname{cl}} _X\left\{{x}\right\}}\right\}\). Define a functor \(\nabla_W = \Gamma_{I_W} L_{I_Z}\) and \({\mathcal{V}}(M) \coloneqq\left\{{x\in X {~\mathrel{\Big\vert}~}\nabla_{\left\{{x}\right\}} (M) = 0}\right\}\). \end{remark} \begin{theorem}[Hopkins-Neeman] Let \(\mathsf{K}\) be a compactly generated tensor triangulated category, \(X\) a Zariski space, and \({\mathcal{X}}_{{ \operatorname{cl}} }\) the closed sets. Given a compact object \(M\in \mathsf{K}^c\), let \(\left\langle{M}\right\rangle_{\mathsf{K} ^c}\) be the thick tensor ideal in \(\mathsf{K}^c\) generated by \(M\). Let \(\mathbf V: \mathsf{K}^c\to {\mathcal{X}}_{{ \operatorname{cl}} }\) be support data satisfying the faithfulness condition and suppose \({\mathcal{V}}: \mathsf{K}\to {\mathcal{X}}\) is an extension. Set \(W = \mathbf V(M)\) and \(I_W = \left\{{N\in \mathsf{K}^c {~\mathrel{\Big\vert}~}V(N) \subseteq W}\right\}\). Then \begin{align*} I_W = \left\langle{M}\right\rangle_{\mathsf{K}^c} ,\end{align*} i.e.~this is generated by a single object. \end{theorem} \begin{proof}[?] Let \(I \coloneqq I_W\) and \(I' \coloneqq\left\langle{M}\right\rangle_{\mathsf{K}^c}\). \(I' \subseteq I\): If \(N\in I'\), then \(N\) is obtained by taking direct sums, direct summands, distinguished triangles, shifts, etc. These all preserve support containment, so \(\mathbf V(N) \subseteq W\) and \(N\in I = I_W\). \(I \subseteq I'\): Let \(N\in {\mathsf{K^c}}\). Apply the functorial triangle \(\Gamma_{I'} \to \operatorname{id}\to L_{I'}\) to \(\Gamma_I(N)\) to obtain \begin{align*} \Gamma_{I'} \Gamma_I N\to \Gamma_I(N) \to L_{I'} \Gamma_I N .\end{align*} From above, \(I' \subseteq I\) so the first term is in \(\mathsf{Loc}(I)\). Since the second term is as well, the 2-out-of-3 property guarantees that the third term satisfies \(L_{I'} \Gamma_I N \in\mathsf{Loc}(I)\). By the lemma, \(V(L_{I'} \Gamma_I N) \subseteq W\). There are no nonzero maps \(I' \to VL_{I'}\Gamma_I N\), therefore for \(S\in {\mathsf{K^c}}\), noting that \(S\otimes M \in I'\), \begin{align*} 0 = \mathop{\mathrm{Hom}}_{\mathsf{K}}(S\otimes M, L_{I'} \Gamma_I M) = \mathop{\mathrm{Hom}}_{\mathsf{K}}(S, M {}^{ \vee }\otimes L_{I'} \Gamma_I N) ,\end{align*} and since \(S\) is an arbitrary compact object, this forces \(M {}^{ \vee }\otimes L_{I'} \Gamma_I N = 0\). By faithfulness, and the tensor product property, \begin{align*} \emptyset &= {\mathcal{V}}(M {}^{ \vee }\otimes L_{I'} \Gamma_I N)\\ &= {\mathcal{V}}(M {}^{ \vee }) \cap{\mathcal{V}}(L_{I'}\Gamma_I N)\\ &= \mathbf{V}(M) \cap{\mathcal{V}}(L_{I'} \Gamma_I N)\\ &= W \cap{\mathcal{V}}(L_{I'} \Gamma_I N)\\ &= {\mathcal{V}}(L_{I'} \Gamma_I N) ,\end{align*} so by faithfulness (again) \(L_{I'} \Gamma_I N = 0\). Thus by the localization triangle, \(\Gamma_{I'} \Gamma_I N \cong \Gamma_I N\). Now specialize to \(N\in I\); the localization triangle yields \begin{align*} \Gamma_I N \to N \xrightarrow{0} L_I(N) \implies \Gamma_I N \cong N .\end{align*} Now replacing \(I\) with \(I'\) yields \(\Gamma_{I'} N \cong N\) since \(L_{I'} N \cong L_{I'} \Gamma_I N \cong 0\) by the previous part. Thus \(N\in \mathsf{Loc}(I')\) by applying a result of Neeman, implying \(N\in I'\) and \(I \subseteq I'\). \end{proof} \begin{remark} Many different takes on classification of thick tensor ideals: \begin{itemize} \tightlist \item Benson, Carlson, Rickard at UGA in the late 90s, for finite group representations (now extended). \item Benson, Iyengar, Krause: axiomatic approach and description of supports. \item Dell'Ambrogio \item Boe, Kujawa, Nakano \end{itemize} \end{remark} \begin{theorem}[?] Let \begin{itemize} \tightlist \item \(\mathsf{K}\) be a compactly generated tensor triangulated category, \item \(X\) be a Zariski space, \item \(\mathbf{V}: {\mathsf{K^c}}\to {\mathcal{X}}_{{ \operatorname{cl}} }\) be a support datum satisfying both the faithfulness \emph{and} realization properties, \item \({\mathcal{V}}: \mathsf{K}\to C\) be an extension of \(\mathbf{V}\). \end{itemize} Let \(\operatorname{Id}({\mathsf{K^c}})\) be the set of thick tensor ideals in \({\mathsf{K^c}}\), then there is a bijection \begin{align*} \operatorname{Id}({\mathsf{K^c}}) &\rightleftharpoons {\mathcal{X}}_{\mathrm{sp} } \\ I &\mapsto \Gamma(I) \coloneqq\displaystyle\bigcup_{M\in I} \mathbf{V}(I) \\ \Theta(W) = I_W \coloneqq\left\{{N\in {\mathsf{K^c}}{~\mathrel{\Big\vert}~}\mathbf V(N) \subseteq W}\right\} &\mapsfrom W .\end{align*} \end{theorem} \begin{exercise}[?] Show that \(I_W\in \operatorname{Id}({\mathsf{K^c}})\) is in fact a thick tensor ideal. \end{exercise} \begin{proof}[?] \(\Gamma \circ \Theta = \operatorname{id}\): Check that \begin{align*} \Gamma\Theta W = \Gamma(I_W) = \displaystyle\bigcup_{M\in I_W} \mathbf{V}(M) \subseteq W .\end{align*} For the reverse inclusion, let \(W = \displaystyle\bigcup_{j\in W} W_j\) where \(W_j\in {\mathcal{X}}_{{ \operatorname{cl}} }\). By the realization property, there exist \(N_j \in {\mathsf{K^c}}\) such that \(\mathbf{V}(N_j) = W_j\), so \(N_j\in I_W\). Now \(W \subseteq \displaystyle\bigcup_{M\in I_W} \mathbf{V}(M)\), so \(W = \displaystyle\bigcup_{M\in I_W} \mathbf{V}(M)\). \begin{center}\rule{0.5\linewidth}{0.5pt}\end{center} \(\Theta \circ \Gamma = \operatorname{id}\): For \(I\in \operatorname{Id}({\mathsf{K^c}})\), set \(W \coloneqq\Gamma(I) = \displaystyle\bigcup_{M\in I} \mathbf{V}(M)\), then \begin{align*} \Theta\Gamma I = \Theta(W) = I_W \supseteq I .\end{align*} For the reverse inclusion \(I_W \subseteq I\): let \(N\in I_W\). Since \(X\) is a Zariski space, \(X\) is Noetherian and there is an irreducible component decomposition \(V(N) = \displaystyle\bigcup_i W_i\) with each \(W_i\) irreducible with a unique generic point, so \(W_i = { \operatorname{cl}} _{W_i} \left\{{x_i}\right\}\). Since each \(W_i \subseteq W\), each \(x_i\in W = \displaystyle\bigcup\mathbf{V}(M)\), so there exist \(M_i\) with \(x_i \in \mathbf{V}(M_i)\). Since supports are closed, \(W_i = { \operatorname{cl}} _{W_i}\left\{{x_i}\right\} \subseteq \mathbf{V}(M_i)\). Setting \(M\coloneqq\bigoplus _i M_i\in I\) yields \(V(N) \subseteq \displaystyle\bigcup V(M_i) = V(M) \subseteq W\). \begin{claim} \begin{align*} N \in \left\langle{M}\right\rangle_{{\mathsf{K^c}}} .\end{align*} \end{claim} Proving the claim will complete the proof, since \(I\) is a thick ideal containing \(M\), so \(\left\langle{M}\right\rangle_{{\mathsf{K^c}}} \subseteq I\) and \(N\in I\). \begin{proof}[of claim] By Hopkins' theorem, \(\left\langle{M}\right\rangle_{{\mathsf{K^c}}} = I_Z\) where \(Z = \mathbf{V}(M)\). Since \(V(N) \subseteq V(M) = Z\), we have \(N\in I_Z = \left\langle{M}\right\rangle_{{\mathsf{K^c}}}\). \end{proof} \end{proof} \begin{remark} Next time: \begin{itemize} \tightlist \item Showing \(\operatorname{Spc}{\mathsf{K^c}}\underset{{\mathsf{Top}}}{\cong} X\) \item Examples: \({\mathsf{kG}{\hbox{-}}\mathsf{stMod}}\), \({\mathsf{u({\mathfrak{g}})}{\hbox{-}}\mathsf{stMod}}\), and \({\mathbb{D}}{\mathsf{R}{\hbox{-}}\mathsf{Mod}}\). \end{itemize} \end{remark} \hypertarget{thursday-april-21}{% \section{Thursday, April 21}\label{thursday-april-21}} \hypertarget{classification-theorem}{% \subsection{Classification theorem}\label{classification-theorem}} \begin{theorem}[?] Let \(\mathsf{K}\) be a compactly generated tensor-triangulated category and let \(X\) be a Zariski space. Suppose that \begin{enumerate} \def\labelenumi{\arabic{enumi}.} \tightlist \item \(\mathbf{V}: \mathsf{K}^c\to {\mathcal{X}}_{{ \operatorname{cl}} }\) is a support datum, \item \(\mathbf{V}\) satisfies the faithfulness property, \item \({\mathcal{V}}: \mathsf{K}\to {\mathcal{X}}\) extends \(\mathbf{V}\). \end{enumerate} Then there exists a bijective correspondence \begin{align*} \adjunction{\Gamma}{\Theta}{\operatorname{Id}(\mathsf{K}^c) }{{\mathcal{X}}_{\mathrm{sp}} } \end{align*} where \(\Gamma(I) \coloneqq\displaystyle\bigcup_{M\in I} \mathbf{V}(M)\) and \(\Theta(W) \coloneqq\left\{{N\in\mathsf{K}^c{~\mathrel{\Big\vert}~}\mathbf{V}(N) \subseteq W}\right\}\). \end{theorem} \begin{remark} This relies on Hopkins' theorem. \end{remark} \hypertarget{balmer-spectrum}{% \subsection{Balmer spectrum}\label{balmer-spectrum}} \begin{theorem}[?] Let \(\mathsf{K}\) and \(X\) be as in the previous theorem, satisfying the same assumptions. Then there exists a homeomorphism \(f: X\to \operatorname{Spc}\mathsf{K}^c\). \end{theorem} \begin{proof}[?] Since \(\mathbf{V}: \mathsf{K}^c\to {\mathcal{X}}_{{ \operatorname{cl}} }\) is a support datum, Balmer shows there exists a continuous map \begin{align*} f: X &\to \operatorname{Spc}\mathsf{K}^c \\ x &\mapsto P_x \coloneqq\left\{{M{~\mathrel{\Big\vert}~}x\not\in\mathbf{V}(M) }\right\} .\end{align*} Note that \(P_x\) is a prime ideal: \begin{align*} M\otimes N\in P_x &\implies x\not\in\mathbf{V}(M\otimes N) \\ &\implies x\not\in\mathbf{V}(M) \cap\mathbf{V}(N) \\ &\implies x\not\in \mathbf{V}(M) \text{ or } x\not\in \mathbf{V}(N) \\ &\implies M\in P_x \text{ or } N\in P_x .\end{align*} Applying the classification theorem, this yields a bijection. \end{proof} \begin{remark} Examples of classification: For \(G\in{\mathsf{Fin}}{\mathsf{Grp}}, \operatorname{ch}k = p\divides {\sharp}G\), take \(\mathsf{K} = {\mathsf{kG}{\hbox{-}}\mathsf{stMod}}\), \(R = H^{\mathrm{even}}(G; k)\), and \(X = \mathop{\mathrm{Proj}}R = \mathop{\mathrm{Proj}}(\operatorname{Spec}R)\). Checking that this satisfies the 4 properties in the theorem: \begin{enumerate} \def\labelenumi{\arabic{enumi}.} \item For \(M\in \mathsf{K}^c\), we take \(\mathbf{V}(M) = \left\{{p\in X{~\mathrel{\Big\vert}~} { {\operatorname{Ext} }^{\scriptscriptstyle \bullet}} _{kG}(M, M) \left[ { \scriptstyle { {p}^{-1}} } \right] \neq 0 }\right\}\). This yields a support datum. \item The tensor product property holds because \(\mathbf{V}_E(M) = \mathbf{V}_E^r(M)\) (the rank variety), and we showed that \(\mathbf{V}\) satisfies faithfulness and (Carlson) realization properties. \item We can use localization functors to define \({\mathcal{V}}: \mathsf{K}\to {\mathcal{X}}\) which satisfies the same support data properties. For this to be an extension, one should check that \end{enumerate} \begin{itemize} \tightlist \item \(\mathbf{V}(M) = {\mathcal{V}}(M)\) for every compact \(M\in \mathsf{K}^c\). \item \(\mathbf{V}(M\otimes N) = {\mathcal{V}}(M) \cap{\mathcal{V}}(N)\) for all \(M,N\in \mathsf{K}\) \item If \({\mathcal{V}}(M)\) is empty then \(M = 0\). \end{itemize} \end{remark} \begin{remark} To prove these properties, Benson-Carlson-Rickard start with \(E\) elementary abelian, so \(E = \left\langle{x_1,\cdots, x_n}\right\rangle \cong C_p{ {}^{ \scriptscriptstyle\times^{n} } }\) with \(o(x_i) = p\) for all \(i\). Set \(y_i = x_i-1 \in kE\), so \(y_i^p=0\), and define cyclic subgroups \(\mathbf{\alpha }= {\left[ {\alpha_1,\cdots, \alpha_n} \right]} \in L^n\) where \(L/k\) is a field of large transcendence degree. Define \(y_{\mathbf{\alpha}} \coloneqq\sum_{1\leq i\leq n} \alpha_i y_i\) and define a rank variety \begin{align*} {\mathcal{V}}_E^r(M) = \left\{{ \mathbf{\alpha }\in L^n {~\mathrel{\Big\vert}~}L\otimes_k M \downarrow_{\left\langle{y_{\mathbf{\alpha}}}\right\rangle} \text{ is not free } }\right\}\cup\left\{{0}\right\} .\end{align*} \end{remark} \begin{theorem}[?] Let \(E\) be as above and suppose \(\operatorname{trdeg}(L/k) \geq n\). Then if \(M\in \mathsf{K}\), \({\mathcal{V}}_E(M) \cong {\mathcal{V}}_E^r(M)\), and the three properties for (3) above hold for \(E\). \end{theorem} \begin{theorem}[?] Let \(A = kG\) for \(G\) a finite group scheme, and let \(R = H^{\mathrm{even}}(G; k)\) and \(X = \mathop{\mathrm{Proj}}(R)\). Then \begin{itemize} \item There is a bijective correspondence \begin{align*} \adjunction{\Gamma}{\Theta}{{\mathsf{kG}{\hbox{-}}\mathsf{stMod}}}{{\mathcal{X}}_{\mathrm{sp}}} .\end{align*} \item \(\operatorname{Spc}({\mathsf{kG}{\hbox{-}}\mathsf{stMod}}) \underset{{\mathsf{Top}}}{\cong} X\). \end{itemize} \end{theorem} \begin{remark} Some remarks: \begin{itemize} \item This theorem is an indication of why cohomology is central in understanding the tensor structure of representation categories. If \(G\in {\mathsf{Fin}}{\mathsf{Grp}}{\mathsf{Sch}}_{/ {k}}\) then the coordinate ring \(k[G]\) is a commutative Hopf algebra, so \(A = kG = k[G] {}^{ \vee }\) is a finite dimensional cocommutative Hopf algebra. So there is an equivalence of categories between \({\mathsf{Rep}}G\) and \({\mathsf{Rep}}A\) for \(A\) such a Hopf algebra. By a result of Friedlander-Suslin, \(R\) is finitely generated. \item The realization of \(\mathbf{V}\) and \({\mathcal{V}}\) for a general group scheme involve so-called \emph{\(\pi{\hbox{-}}\)points} developed be Friedlander-Pevtsovz and the construction of explicit rank varieties. \end{itemize} \end{remark} \begin{remark} A special case: let \({\mathfrak{g}}= \mathsf{Lie}G\) for \(G\in{\mathsf{Alg}}{\mathsf{Grp}}_{/ {k}}\) reductive and \(k\) positive characteristic. Let \(A = u({\mathfrak{g}})\), which is a finite-dimensional cocommutative Hopf algebra. If \(p > h\) for \(h\) the Coxeter number, \begin{align*} {\mathcal{N}}_p = \left\{{x\in {\mathfrak{g}}{~\mathrel{\Big\vert}~}x^{[p]} = 0 }\right\} = {\mathcal{N}}, \text{ the nilpotent cone} ,\end{align*} \(R = H^{\mathrm{even}}(u({\mathfrak{g}}); k) = k[{\mathcal{N}}]\), and \(X = \mathop{\mathrm{Proj}}(k[{\mathcal{N}}])\), then applying the theorem, \begin{itemize} \item There is a correspondence \begin{align*} \adjunction{}{}{{\mathsf{u({\mathfrak{g}})}{\hbox{-}}\mathsf{stMod}}}{{\mathcal{X}}_{\mathrm{sp}}} .\end{align*} \item There is a homeomorphism \begin{align*} \operatorname{Spc}\qty{ {\mathsf{u({\mathfrak{g}})}{\hbox{-}}\mathsf{stMod}} } \underset{{\mathsf{Top}}}{\cong} \mathop{\mathrm{Proj}}(k[{\mathcal{N}}]) .\end{align*} \end{itemize} \end{remark} \begin{theorem}[Arkhipov-Bezrukavikov-Ginzburg] Let \(\tilde {\mathcal{N}}\to {\mathcal{N}}\) be the Springer resolution. There is an equivalence of derived categories \begin{align*} {\mathbb{D}}^b {\mathsf{ u_\zeta({\mathfrak{g}})_0}{\hbox{-}}\mathsf{Mod}} { \, \xrightarrow{\sim}\, }{\mathbb{D}}^b {\mathsf{Coh}}^{G\times {\mathbb{C}}^{\times}} k[\tilde{\mathcal{N}}] { \, \xrightarrow{\sim}\, }{\mathbb{D}}^b \mathsf{Perv}({\Omega}{\operatorname{Gr}}) .\end{align*} where \(\mathsf{Perv}({-})\) is the category of perverse sheaves and \({\Omega}{\operatorname{Gr}}\) is the loop Grassmannian. \end{theorem} \begin{remark} For \(M\) a \(u_\zeta({\mathfrak{g}}){\hbox{-}}\)module and \(R = H^{\mathrm{even}}(u_\zeta({\mathfrak{g}}); M) = {\mathbb{C}}[{\mathcal{N}}] \cong {\mathbb{C}}[\tilde {\mathcal{N}}]\). There is an action of \(R\) on \({ {H}^{\scriptscriptstyle \bullet}} (u_\zeta({\mathfrak{g}}); M)\). Next time: examples for Lie superalgebras and Thomason's reconstruction theorem for rings. \end{remark} \hypertarget{tuesday-april-26}{% \section{Tuesday, April 26}\label{tuesday-april-26}} \begin{quote} See Boe-Kujawa-Nakano, Adv. Math 2017. \end{quote} \begin{remark} Setup: \(\mathsf{K}^c \leq \mathsf{K}\in {\mathsf{TTC}}\), \(X\) a Zariski space, \(V:\mathsf{K}^c\to {\mathcal{X}}_{{ \operatorname{cl}} }\) with an extension \({\mathcal{V}}:\mathsf{K}\to {\mathcal{X}}\). Let \({\mathfrak{g}}= {\mathfrak{g}}_{0} \oplus {\mathfrak{g}}_1\) be a Lie superalgebra with a \(C_2\) grading over \(k= {\mathbb{C}}\) where \({\mathfrak{g}}_0\curvearrowright{\mathfrak{g}}_1\), e.g.~\({\mathfrak{gl}}_{m, n} = {\mathfrak{gl}}_m \times {\mathfrak{gl}}_n\) with matrices \({ \begin{bmatrix} {{\mathfrak{g}}_0} & {{\mathfrak{g}}_1} \\ {{\mathfrak{g}}_1} & {{\mathfrak{g}}_0} \end{bmatrix} }\) with the bracket action. Write \(\mathsf{Lie}G_0 = {\mathfrak{g}}_0\), and note that \(G_0\) is reductive. Let \({\mathcal{F}}({\mathfrak{g}}, {\mathfrak{g}}_0)\) be the category of finite-dimensional \({\mathfrak{g}}{\hbox{-}}\)supermodules which are completely reducible over \({\mathfrak{g}}_0\). Take \(\mathsf{K}^c = {\mathsf{{\mathcal{F}}({\mathfrak{g}},{\mathfrak{g}}_0)}{\hbox{-}}\mathsf{stMod}} \leq \mathsf{K} = {\mathsf{C({\mathfrak{g}}, {\mathfrak{g}}_0)}{\hbox{-}}\mathsf{stMod}}\), where for \(C\) we drop the finite-dimensional condition. Set \(R = H^0({\mathfrak{g}}_1, {\mathfrak{g}}_0; {\mathbb{C}}) = \operatorname{Ext} ({\mathbb{C}},{\mathbb{C}}) \cong S({\mathfrak{g}}_0 {}^{ \vee })^{G_0}\). By a theorem of Hilbert, \(\operatorname{Ext} (M, M)\) is finitely generated over \(R\). Write \(V_{{\mathfrak{g}},{\mathfrak{g}}_0}(M) = \mathrm{sp}ec R/J_M\) -- for Kac modules \(K(\lambda) = U({\mathfrak{g}}) \otimes_{U(P^0)} L_0(\lambda)\), \(V = 0\) but not every \(K(\lambda)\) is projective. \end{remark} \begin{remark} Idea: use detecting subalgebras. For \({\mathfrak{g}}= {\mathfrak{gl}}_{n,n}\), let \(f_1\) be the ``torus'': \includegraphics{figures/2022-04-26_09-58-21.png} Then define \(f_0 = [f_1, f_1]\). \end{remark} \begin{remark} Let \(X = N\mathop{\mathrm{Proj}}(S^*(f_1 {}^{ \vee }))\) where \(S^*(f_1 {}^{ \vee }) \cong \operatorname{Ext} _{f_1, f_0}({\mathbb{C}}, {\mathbb{C}}) = R'\) and \(N = { N }_{G_0}(f_1)\), which is a reductive algebraic group. Define a support datum by \(\mathbf{V}(M) = \left\{{p\in X{~\mathrel{\Big\vert}~}\operatorname{Ext} _{f, f_0}(M,M)_p = 0}\right\}\). The goal is to construct \({\mathcal{V}}: K\to {\mathcal{X}}\) using localization functors -- one needs to show the tensor product formula, and the faithfulness and realization properties, which follows from Dede's lemma. It turns out that \(f_1\cong {\mathfrak{sl}}(1,1){ {}^{ \scriptscriptstyle\times^{m} } }\) and it suffices to define the rank variety on \(f_1\). Define \begin{align*} V_{f_1}^{\operatorname{rank}}(M) = \left\{{\mkern 1.5mu\overline{\mkern-1.5mux\mkern-1.5mu}\mkern 1.5mu = \tilde K\otimes_{\mathbb{Q}}f_1 {~\mathrel{\Big\vert}~}K\otimes_{\mathbb{C}}M\downarrow{\left\langle{\mkern 1.5mu\overline{\mkern-1.5mux\mkern-1.5mu}\mkern 1.5mu}\right\rangle} \text{ is not projective} }\right\} \end{align*} where \(\tilde K\supseteq{\mathbb{C}}\) is an extension with \(\operatorname{trdeg}_{\mathbb{C}}\tilde K \geq \dim f_1\). A theorem shows \({\mathcal{V}}(M) = V_{f_1}^{\operatorname{rank}}(M)\) for \(M\in K\). This yields a classification for \({\mathfrak{gl}}_{m, n}\) of thick tensor ideals in \(K^c\) in terms of \({\mathcal{X}}_{\mathrm{sp}}\). \end{remark} \begin{remark} What is the classification of other Lie superalgebras? This is an open problem. \end{remark} \hypertarget{noncommutative-theory}{% \subsection{Noncommutative theory}\label{noncommutative-theory}} \begin{remark} How does one extend this theory to noncommutative TTCs? See Nakano-Vashaw-Yakomov, to appear in Amer J. Math. \end{remark} \begin{remark} Let \(K\) be a compactly generated monoidal triangulated category, not necessarily symmetric. One approaches this via noncommutative ring theory, where e.g.~even the definition of prime ideals differs. We'll only consider 2-sided ideals. \end{remark} \begin{definition}[(Noncommutative) prime ideals] A thick triangulated subcategory \(P\) is a \textbf{completely prime} ideal iff \(M\otimes N\in P\implies M\in P\) or \(N\in P\). The ideal \(P\) is \textbf{prime} iff \(I\otimes J\subseteq P \implies I \subseteq P\) or \(J \subseteq P\), where \(I,J\) are themselves ideals. Define \(\mathrm{sp}c K\) to be prime ideals and \(\mathrm{CP}\operatorname{Spc}K\) to be completely prime ideals. \end{definition} \begin{example}[?] Let \(A\in \mathsf{Hopf}{\mathsf{Alg}_{/k} }^{{\mathrm{fd}}}\) where the coproduct \(\Delta: A\to A{ {}^{ \scriptstyle\otimes_{k}^{2} } }\) is not necessarily commutative, e.g.~in the setting of quantum groups. Some remarks: \begin{itemize} \tightlist \item Note that \(M\otimes N \not\cong N\otimes M\) in general. \item Here \(\mathrm{sp}c K^c\) is not known, but there is a conjectural answer. \item In general \(\mathrm{sp}c K^c\not\cong \mathop{\mathrm{Proj}}R\) for \(R = H(A; k)\). \item \(R\) is not known to be finitely-generated. Etingof-Ostrik conjecture this in the setting of finite tensor categories. \item The definition of prime ideals is due to Buan-Krause-Solberg in 2007. \item A weird example: there are nilpotents where \(M\neq 0\) (is not projective) but \(M{ {}^{ \scriptstyle\otimes_{k}^{2} } } = 0\) (is projective). \item Being a prime ideal \(P\) is equivalent to \(A\otimes C\otimes B \in P\) for all \(C\) \(\implies A\in P\) or \(B\in P\). \end{itemize} \end{example} \begin{definition}[(Noncommutative) support data] Let \(K\) be a monoidal triangulated category, \(X\) a Zariski space, and \({\mathcal{X}}= 2^X\) the subsets of \(X\). A map \(\sigma: K\to{\mathcal{X}}\) is a \textbf{weak support datum} iff \begin{itemize} \tightlist \item \(\sigma(0) = \emptyset\) and \(\sigma(\one) = X\) \item \(\sigma(A\otimes B) = \sigma(A) \cup\sigma(B)\) \item \(\sigma(\Sigma A) = \sigma(A)\) \item If \(A\to B\to C\) is exact then \(\sigma(A) \subseteq \sigma(B) \cup\sigma(C)\). \end{itemize} Set \(\Phi_\sigma(I) \coloneqq\displaystyle\bigcup_{M\in I} \sigma(I)\); Then \(\sigma\) is a \textbf{support datum} if additionally \begin{itemize} \tightlist \item \(\displaystyle\bigcup_{C\in K} \sigma(A\otimes C\otimes B)= \sigma(A) \cap\sigma(B)\) and \item \(\Phi_\sigma(I\otimes J) = \Phi_\sigma(I) \cap\Phi_\sigma(J)\). \end{itemize} \end{definition} \begin{remark} Next time: \begin{itemize} \tightlist \item Classification theorems \item The NVY conjecture for finite-dimensional Hopf algebras. \item Tensor product theorems. \item Examples of applications. \end{itemize} \end{remark} \addsec{ToDos} \listoftodos[List of Todos] \cleardoublepage % Hook into amsthm environments to list them. \addsec{Definitions} \renewcommand{\listtheoremname}{} \listoftheorems[ignoreall,show={definition}, numwidth=3.5em] \cleardoublepage \addsec{Theorems} \renewcommand{\listtheoremname}{} \listoftheorems[ignoreall,show={theorem,proposition}, numwidth=3.5em] \cleardoublepage \addsec{Exercises} \renewcommand{\listtheoremname}{} \listoftheorems[ignoreall,show={exercise}, numwidth=3.5em] \cleardoublepage \addsec{Figures} \listoffigures \cleardoublepage \newpage \printbibliography[title=Bibliography] \end{document}