# Tuesday, February 01 :::{.definition title="Additive categories"} A category $\cat C$ is **additive** iff - $\cat C$ has zero object - There exists a binary operation $+: \Hom(A, B)\cartpower{2}\to \Hom(A, B)$ for all $A, B\in \cat{C}$ making $\Hom(A ,B)$ an abelian group. - Distributivity with respect to composition: $(g_1 + g_2)f = g_1f + g_2 f$ - For any collection $\ts{A_1,\cdots, A_n}$, there exists an object $A$, projections $p_j: A\to A_j$ with sections $i_k: A_k\to A$ with $p_j i_j = \id_A$, $p_j i_k = 0$ for $j\neq k$, and $\sum i_j p_j = \id_A$. ::: :::{.definition title="Monomorphisms and epimorphisms"} A morphism: $k:K\to A$ is **monic** iff whenever $g_1, g_2: L\to K$, $kg_1 = kg_2 \implies g_1 = g_2$: \begin{tikzcd} L && K && A \arrow["k", from=1-3, to=1-5] \arrow["{g_1}", shift left=3, from=1-1, to=1-3] \arrow["{g_2}", shift right=3, from=1-1, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMCwwLCJMIl0sWzIsMCwiSyJdLFs0LDAsIkEiXSxbMSwyLCJrIl0sWzAsMSwiZ18xIiwwLHsib2Zmc2V0IjotM31dLFswLDEsImdfMiIsMCx7Im9mZnNldCI6M31dXQ==) Define $k$ to be **epic** by reversing the arrows. ::: :::{.definition title="Kernel"} Assume $\cat C$ has a zero object. Then for $f:A\to B$, the *morphism* $k: K\to A$ is the **kernel** of $f$ iff - $k$ is monic - $fk=0$ - For any $g:G\to A$ with $fg=0$, there exists a $g'$ with $g=kg'$. ::: :::{.example title="?"} For $f\in \rmod(A, B)$, take $k: \ker f\injects A$. If $g\in \cat{C}(G, A)$ with $f(g(x)) = 0$ for all $x\in G$, then $\im g \subseteq \ker f$ and we can factor $g$ as $G \mapsvia{g'} \ker f \injectsvia{k} A$. ::: :::{.definition title="Cokernel"} For $f: A\to B$, a morphism $c: B\to C$ is a **cokernel of $f$** iff - $c$ is epic, - $cf=0$ - For any $h\in \cat{C}(B, H)$ with $hf=0$, there is a lift $h': C\to G$ with $h=h'c$. ::: :::{.example title="?"} For $\cat{C} = \rmod$ and $f\in \rmod(A, B)$, set $c: B\to B/\im f$. ::: :::{.exercise title="?"} Show that kernels are unique. Sketch: - Set $k:K\to A$, $k': K'\to A$. - Factor $k=k' u_1$ and $k' = ku_2$. - Then $k\id = k(u_2 u_1) \implies \id = u_2 u_1$, similarly $u_1u_2=\id$. ::: :::{.definition title="Abelian categories"} $\cat{C}$ is **abelian** iff $\cat{C}$ is additive and - A5: Every morphism admits kernels and cokernels. - A6: Every monic is the kernel of its cokernel, and every epic is the cokernel of its kernel. - A7: Every morphism $f$ factors as $f=me$ with $m$ monic and $e$ epic. ::: :::{.example title="?"} For $f\in \rmod(A, B)$, - A5: Take $k: \ker f\injects A$ and $c: B\surjects B/\im f$ - A6: For $m: A\injects B$ monic, consider the composition $A\injects B \mapsvia{\coker m} B/A$ and check $A\cong \ker(\coker m)$. - A7: Use the 1st isomorphism theorem: \begin{tikzcd} A &&&& B \\ \\ & {A/\ker f} && {\im f} \arrow["f", from=1-1, to=1-5] \arrow["i"', two heads, from=1-1, to=3-2] \arrow["{\text{1st iso}}"', from=3-2, to=3-4] \arrow["m"', hook, from=3-4, to=1-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJBIl0sWzQsMCwiQiJdLFszLDIsIlxcaW0gZiJdLFsxLDIsIkEvXFxrZXIgZiJdLFswLDEsImYiXSxbMCwzLCJpIiwyLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV0sWzMsMiwiXFx0ZXh0ezFzdCBpc299IiwyXSxbMiwxLCJtIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XV0=) ::: :::{.remark} Some notes: - Recall the definition the category of chain complexes $\Ch(\cat C)$ over an abelian category: $d_i d_{i+1} = 0$, so $\im d_i \subseteq \ker d_{i+1}$. - Every exact sequence is an acyclic complex. - $\cat{C}\embeds \Ch(\cat C)$ by $M\mapsto \cdots \to 0 \to M \to 0 \to \cdots$. Note that this isn't an acyclic complex. - Morphisms between complexes: chain maps, just levelwise maps forming commutative squares, i.e. maps commuting with the differentials. - $\Ch(\cat C)$ is additive: given $\alpha_\bullet, \beta_\bullet\in \Ch\cat{C}( (A, d), (B, \delta) )$, check that $(\alpha_{i-1} + \beta_{i-1})d_i = \delta_i (\alpha_i + \beta_i)$. - There are direct sums: $(A \oplus B)_i \da A_i \oplus B_i$ with $d \da d_A + d_B$. - Define cycles as $Z_i \da \ker\qty{ C_i \mapsvia{d_i} C_{i-1}}$ for $C_\bullet \in \Ch(\cat C)$, and boundaries $B_i \da \im\qty{C_{i+1} \mapsvia{d_{i+1}} C_i} \subseteq \ker d_i$. - Define $H_i(C_\bullet )\da Z_i/B_i$. - Show that chain morphisms induce morphisms on homology: - Let $\alpha\in \Ch(\cat C)(C, C')$, then $\alpha_i(Z_i) \subseteq Z_i'$. - Check $d_2(a_i(Z_i)) = a_{i-1} d_i(Z_i) = 0$. - Factor $Z_i \mapsvia{\alpha_i} Z_i' \surjects Z_i'/B_i'$. - Show that $x\in B_i$ maps lands in $B_i'$ to get well-defined map on $H_i$. - Use $\alpha(B_i) \subseteq Z_i'$, so pull back $x\in B_i$ to $y\in C_{i+1}$. - Check $d_{i+1}(y) = x$, so $\alpha(d_{i+1}(y)) = \alpha(x)$. - The LHS is $d_{i+1}'(\alpha_{i+1}(y))$, so $\alpha_i(x) in \im d_{i+1}' = B_{i+1}'$ - Chain homotopies: for $\alpha, \beta\in \Ch(\cat C)(C, C')$, write $\alpha \homotopic \beta$ iff there exists $\ts{s_i: C_i \to C_{i+1}' }$ with $\alpha_i - \beta_i = d_{i+1}' s_i + s_{i-1} d_i$. \begin{tikzcd} \cdots && {C_{i+1}} && {C_{i}} && {C_{i-1}} && \cdots \\ \\ \cdots && {C_{i+1}'} && {C_{i}'} && {C_{i-1}'} && \cdots \arrow[from=1-1, to=1-3] \arrow["{d_{i+1}}", from=1-3, to=1-5] \arrow["{d_{i+1}}", color={rgb,255:red,92;green,92;blue,214}, from=1-5, to=1-7] \arrow[from=1-7, to=1-9] \arrow[from=3-1, to=3-3] \arrow["{d_{i}'}", from=3-5, to=3-7] \arrow["{d_{i+1}'}", color={rgb,255:red,214;green,92;blue,92}, from=3-3, to=3-5] \arrow[from=3-7, to=3-9] \arrow[from=1-3, to=3-3] \arrow["{\alpha_i-\beta_i}"{description}, color={rgb,255:red,92;green,92;blue,214}, from=1-5, to=3-5] \arrow[from=1-7, to=3-7] \arrow["{s_i}"{description}, color={rgb,255:red,214;green,92;blue,92}, from=1-5, to=3-3] \arrow["{s_{i-1}}"{description}, color={rgb,255:red,214;green,153;blue,92}, from=1-7, to=3-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTAsWzIsMCwiQ197aSsxfSJdLFs0LDAsIkNfe2l9Il0sWzYsMCwiQ197aS0xfSJdLFsyLDIsIkNfe2krMX0nIl0sWzQsMiwiQ197aX0nIl0sWzYsMiwiQ197aS0xfSciXSxbMCwwLCJcXGNkb3RzIl0sWzgsMCwiXFxjZG90cyJdLFswLDIsIlxcY2RvdHMiXSxbOCwyLCJcXGNkb3RzIl0sWzYsMF0sWzAsMSwiZF97aSsxfSJdLFsxLDIsImRfe2krMX0iLDAseyJjb2xvdXIiOlsyNDAsNjAsNjBdfSxbMjQwLDYwLDYwLDFdXSxbMiw3XSxbOCwzXSxbNCw1LCJkX3tpfSciXSxbMyw0LCJkX3tpKzF9JyIsMCx7ImNvbG91ciI6WzAsNjAsNjBdfSxbMCw2MCw2MCwxXV0sWzUsOV0sWzAsM10sWzEsNCwiXFxhbHBoYV9pLVxcYmV0YV9pIiwxLHsiY29sb3VyIjpbMjQwLDYwLDYwXX0sWzI0MCw2MCw2MCwxXV0sWzIsNV0sWzEsMywic19pIiwxLHsiY29sb3VyIjpbMCw2MCw2MF19LFswLDYwLDYwLDFdXSxbMiw0LCJzX3tpLTF9IiwxLHsiY29sb3VyIjpbMzAsNjAsNjBdfSxbMzAsNjAsNjAsMV1dXQ==) :::