# Thursday, February 03 ## Projective Resolutions and Chain Maps :::{.remark} Also check that $\homotopic$ is an equivalence relation, i.e. it is symmetric, transitive, and reflexive. For transitivity: given \[ \alpha_i - \beta_i &= d_{i+1}' s_i +s_{i-1} d_i \\ \beta_i - \gamma_i &= d_{i+1}' t_{i} + t_{i-1} d_i ,\] one can write \[ \alpha_i - \gamma_i &= d_{i+1}'(s_i + t_i) + (s_{i-1} + t_{i-1} ) d_i .\] ::: :::{.theorem title="?"} Let $\alpha, \beta \in \Ch\cat C(A, B)$ with induced maps $\hat\alpha, \hat\beta \in \Ch\cat C(H^* A, H^* B)$ on homology. If $\alpha \homotopic \beta$, then $\hat \alpha = \hat \beta$. ::: :::{.proof title="?"} A computation: \[ \hat{\alpha}_{1}(&\left.z_{1}+B_{i}\right)=\alpha_{1}\left(z_{i}\right)+B_{i}^{\prime} \\ &=\beta_{i}\left(z_{i}\right)+\delta_{i+1}^{\prime} s_{1}\left(z_{i}\right)+s_{i-1}^{\prime \prime} \delta_{i}\left(z_{i}\right) + B_i'\\ &=\beta_{i}\left(z_{i}\right)+B_{i}^{\prime} \\ &=\hat{\beta}_{i}\left(z_{i}+B_{i}\right) \] ::: :::{.remark} Roadmap: - Homological algebra - Commutative rings - Support theory - Tensor triangular geometry ::: :::{.definition title="?"} Let $M\in \rmod$. A **projective complex** for $M$ is a chain complex $(C_i, d_i)_{i\in \ZZ}$, indexed homologically: \[ \cdots \to C_2 \mapsvia{d_2} C_1 \mapsvia{d_1} C_0 \mapsvia{d_0\da \eps} 0 .\] In particular, $d^2 = 0$, but this complex need not be exact. A **projective resolution** of $M$ is an *exact* projective complex in the following sense: - $H_{k\geq 1}(\complex{C}) = 0$ - $H_0(\complex{C}) = C_0/d(C_1) = C_0/\ker \eps \cong M$. ::: :::{.example title="?"} Some projective resolutions: - For $M\in \rmod$, projective resolutions exist since we can find covers by free modules: \begin{tikzcd} \cdots & {F_2} & {F_1} & {F_0} & M & 0 \\ && {\ker d_1} & {\ker \eps} \arrow[from=1-4, to=2-4] \arrow[from=2-4, to=1-5] \arrow[from=1-3, to=2-3] \arrow[from=2-3, to=1-4] \arrow[from=1-2, to=1-3] \arrow["{d_1}", from=1-3, to=1-4] \arrow["\eps", two heads, from=1-4, to=1-5] \arrow[from=1-5, to=1-6] \arrow[from=1-1, to=1-2] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsOCxbMCwwLCJcXGNkb3RzIl0sWzEsMCwiRl8yIl0sWzIsMCwiRl8xIl0sWzMsMCwiRl8wIl0sWzQsMCwiTSJdLFs1LDAsIjAiXSxbMywxLCJcXGtlciBcXGVwcyJdLFsyLDEsIlxca2VyIGRfMSJdLFszLDZdLFs2LDRdLFsyLDddLFs3LDNdLFsxLDJdLFsyLDMsImRfMSJdLFszLDQsIlxcZXBzIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV0sWzQsNV0sWzAsMV1d) - For $M\in \mods{Z}$, every module has a 2-stage resolution: \begin{tikzcd} 0 & {\ker \eps \cong \ZZ\sumpower{m}} & {\ZZ\sumpower{n}} & M & 0 \arrow[from=1-4, to=1-5] \arrow["\eps", two heads, from=1-3, to=1-4] \arrow[from=1-2, to=1-3] \arrow[from=1-1, to=1-2] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNSxbNCwwLCIwIl0sWzMsMCwiTSJdLFsyLDAsIlxcWlpcXHN1bXBvd2Vye259Il0sWzEsMCwiXFxrZXIgXFxlcHMgXFxjb25nIFxcWlpcXHN1bXBvd2Vye219Il0sWzAsMCwiMCJdLFsxLDBdLFsyLDEsIlxcZXBzIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV0sWzMsMl0sWzQsM11d) ::: :::{.theorem title="?"} For $\mu \in \cat C(M, M')$ and $C \da (\complex{C}, d) \surjects M, C' \da (\complex{C}', d')\surjects M'$, there is an induced chain map $\alpha \in \Ch\cat{C}(C, C')$. Moreover, any other chain map $\beta$ is chain homotopic to $\alpha$. > Note that $C$ can in fact be any projective complex over $M$, not necessarily a resolution. ::: :::{.proof title="?"} Using that $C_0$ is projective, there is a lift of the following form: \begin{tikzcd} {C_0} && M \\ \\ {C_0'} && {M'} \arrow["\mu", from=1-3, to=3-3] \arrow["\eps"', two heads, from=3-1, to=3-3] \arrow["\eps", two heads, from=1-1, to=1-3] \arrow["{\exists \alpha_0}"', dashed, from=1-1, to=3-1] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwyLCJDXzAnIl0sWzIsMiwiTSciXSxbMiwwLCJNIl0sWzAsMCwiQ18wIl0sWzIsMSwiXFxtdSJdLFswLDEsIlxcZXBzIiwyLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV0sWzMsMiwiXFxlcHMiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbMywwLCJcXGV4aXN0cyBcXGFscGhhXzAiLDIseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=) Now inductively, we want to construct the following lift: \begin{tikzcd} {C_n} && {C_{n-1}} && {C_{n-2}} \\ \\ {C_{n}'} && {C_{n-1}'} && {C_{n-2}'} \\ & {\im d_n' = \ker d_{n-1}'} \arrow["{d_n}", from=1-1, to=1-3] \arrow["{d_{n-1}}", from=1-3, to=1-5] \arrow["{\alpha_{n-2}}", from=1-5, to=3-5] \arrow["{d_{n-1}'}"', from=3-3, to=3-5] \arrow["{d_n'}"', from=3-1, to=3-3] \arrow["{\alpha_{n-1}}", from=1-3, to=3-3] \arrow["\exists"', dashed, from=1-1, to=3-1] \arrow[two heads, from=3-1, to=4-2] \arrow[hook, from=4-2, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNyxbMCwwLCJDX24iXSxbMiwwLCJDX3tuLTF9Il0sWzQsMCwiQ197bi0yfSJdLFs0LDIsIkNfe24tMn0nIl0sWzIsMiwiQ197bi0xfSciXSxbMCwyLCJDX3tufSciXSxbMSwzLCJcXGltIGRfbicgPSBcXGtlciBkX3tuLTF9JyJdLFswLDEsImRfbiJdLFsxLDIsImRfe24tMX0iXSxbMiwzLCJcXGFscGhhX3tuLTJ9Il0sWzQsMywiZF97bi0xfSciLDJdLFs1LDQsImRfbiciLDJdLFsxLDQsIlxcYWxwaGFfe24tMX0iXSxbMCw1LCJcXGV4aXN0cyIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFs1LDYsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFs2LDQsIiIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV1d) STS $\im \alpha_{n-1} d_n \subseteq \ker d_{n-1}'$, which follows from \[ d_{n-1}' \alpha_{n-1} d_n(x) = \alpha_{n-1} d_{n-1} d_n(x) .\] So there is a map $C_n \to \im d_n'$, and using projectivity produces the desired lift by the same argument as in the case case: \begin{tikzcd} {C_n} && {C_{n-1}} && {C_{n-2}} \\ \\ {C_{n}'} && {C_{n-1}'} && {C_{n-2}'} \\ & {\im d_n' = \ker d_{n-1}'} \arrow["{d_n}", from=1-1, to=1-3] \arrow["{d_{n-1}}", from=1-3, to=1-5] \arrow["{\alpha_{n-2}}", from=1-5, to=3-5] \arrow["{d_{n-1}'}"', from=3-3, to=3-5] \arrow["{d_n'}"'{pos=0.4}, from=3-1, to=3-3] \arrow["{\alpha_{n-1}}", from=1-3, to=3-3] \arrow[""{name=0, anchor=center, inner sep=0}, "{\exists \text{ by projectivity}}"', dashed, from=1-1, to=3-1] \arrow[two heads, from=3-1, to=4-2] \arrow[hook, from=4-2, to=3-3] \arrow[""{name=1, anchor=center, inner sep=0}, "\exists"{description}, curve={height=-18pt}, dashed, from=1-1, to=4-2] \arrow[shorten <=8pt, shorten >=8pt, Rightarrow, from=1, to=0] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNyxbMCwwLCJDX24iXSxbMiwwLCJDX3tuLTF9Il0sWzQsMCwiQ197bi0yfSJdLFs0LDIsIkNfe24tMn0nIl0sWzIsMiwiQ197bi0xfSciXSxbMCwyLCJDX3tufSciXSxbMSwzLCJcXGltIGRfbicgPSBcXGtlciBkX3tuLTF9JyJdLFswLDEsImRfbiJdLFsxLDIsImRfe24tMX0iXSxbMiwzLCJcXGFscGhhX3tuLTJ9Il0sWzQsMywiZF97bi0xfSciLDJdLFs1LDQsImRfbiciLDIseyJsYWJlbF9wb3NpdGlvbiI6NDB9XSxbMSw0LCJcXGFscGhhX3tuLTF9Il0sWzAsNSwiXFxleGlzdHMgXFx0ZXh0eyBieSBwcm9qZWN0aXZpdHl9IiwyLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzUsNiwiIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV0sWzYsNCwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMCw2LCJcXGV4aXN0cyIsMSx7ImN1cnZlIjotMywic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzE2LDEzLCIiLDEseyJsYWJlbF9wb3NpdGlvbiI6NjAsInNob3J0ZW4iOnsic291cmNlIjoyMCwidGFyZ2V0IjoyMH19XV0=) To see that any two such maps are chain homotopic, set $\gamma \da \alpha - \beta$, then \[ \eps'( \gamma_0) = \eps'( \alpha_i - \beta_i) = \mu\eps - \mu \eps =0 ,\] and \[ d_n'(\gamma_n) &- d_n'( \alpha_n - \beta_n) \\ &= d_n' \alpha_n - d_n' \beta_n \\ &= \alpha_{n-1} d_n - \beta_{n-1} d_n \\ &= \gamma_{n-1} d_n ,\] so $\gamma$ yields a well-defined chain map. We'll now construct the chain homotopy inductively. There is a lift $s_0$ of the following form: \begin{tikzcd} && {C_0} \\ \\ {C_1'} && {C'_0} & {M'} & 0 \\ & {\im d_1'} \arrow["{d_1'}"', two heads, from=3-1, to=4-2] \arrow[hook, from=4-2, to=3-3] \arrow["{\gamma_0}"', from=1-3, to=3-3] \arrow["{\exists s_0}"', dashed, from=1-3, to=3-1] \arrow[from=3-1, to=3-3] \arrow["{\eps'}", two heads, from=3-3, to=3-4] \arrow[from=3-4, to=3-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNixbMywyLCJNJyJdLFs0LDIsIjAiXSxbMiwyLCJDJ18wIl0sWzEsMywiXFxpbSBkXzEnIl0sWzIsMCwiQ18wIl0sWzAsMiwiQ18xJyJdLFs1LDMsImRfMSciLDIseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbMywyLCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFs0LDIsIlxcZ2FtbWFfMCIsMl0sWzQsNSwiXFxleGlzdHMgc18wIiwyLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzUsMl0sWzIsMCwiXFxlcHMnIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV0sWzAsMV1d) This follows because $\im d_1' = \ker \eps'$ and $\eps' \gamma_0 = 0$ by the previous calculation. Assuming all $s_{i\leq n-1}$ are constructed, set $\gamma_i = d_{i+1}' s_i + s_{i-1} d_i$. Setting $\gamma_n - s_{n-1}d_n: C_n \to C_n'$, then \[ d_n'( \gamma_n - s_{n-1} d_n) &= d_n' \gamma_n - d_n' s_{n-1} d_n \\ &= \gamma_{n-1} d_n - d_n' s_{n-1} d_n \\ &= (\gamma_{n-1} - d_n' s_{n-1})d_n \\ &= s_{n-2} d_{n-1} d_n \\ &= 0 ,\] using $d^2 = 0$. Now there is a lift $s_n$ of the following form: \begin{tikzcd} && {C_n} \\ \\ {C_{n+1}'} && {C_n'} && {C_{n-1}} \\ & {\im d_{n+1} = \ker d_n'} \arrow["{\gamma_n - s_{n-1} d_N}", from=1-3, to=3-3] \arrow["{d_n'}", from=3-3, to=3-5] \arrow[from=3-1, to=3-3] \arrow["{d_{n+1}}"', from=3-1, to=4-2] \arrow[from=4-2, to=3-3] \arrow["{s_n}"', dashed, from=1-3, to=3-1] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNSxbMiwwLCJDX24iXSxbMiwyLCJDX24nIl0sWzQsMiwiQ197bi0xfSJdLFswLDIsIkNfe24rMX0nIl0sWzEsMywiXFxpbSBkX3tuKzF9ID0gXFxrZXIgZF9uJyJdLFswLDEsIlxcZ2FtbWFfbiAtIHNfe24tMX0gZF9OIl0sWzEsMiwiZF9uJyJdLFszLDFdLFszLDQsImRfe24rMX0iLDJdLFs0LDFdLFswLDMsInNfbiIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==) Thus follows from the fact that $\im \gamma_n - s_{n-1} d_n \subseteq \ker d_n'$ and projectivity of $C_n$. ::: :::{.remark} Dually one can construct injective resolutions $0 \to M \injectsvia{\eta} \complex{D}$ ::: ## Derived Functors :::{.remark} Setup: $F: \rmod \to \zmod$ is an additive covariant functor, e.g. $(\wait) \tensor_R N$ or $M\tensor_R(\wait)$, and $\complex{C}\surjectsvia{\eps} M$ a complex over $M$. We define the left-derived functors as $(L_n F)(M) \da H_n(F(\complex{C}))$. :::