# Tuesday, February 08 :::{.remark} Defining derived functors: for $F$ an additive functor and $M\in \rmod$, take a projective resolution and apply $F$: \[ \cdots \to C_2 \mapsvia{d_2} C_1 \mapsvia{d_1} C_0 \mapsvia{\eps = d_0} M \to 0 \leadsto F(C_2) \mapsvia{Fd_2} F(C_1) \mapsvia{Fd_1} \cdots ,\] so $\complex{C} \covers F$. Define the left-derived functor \[ \LL F M \da H_n F\complex{C} .\] ::: :::{.remark} Any $\mu \in \rmod(M, M')$ induces a chain map $\hat \alpha \in \Ch\rmod(H_* F\complex C, H_* F\complex{C}' )$, where $\alpha$ is any lift of $\mu$ to their resolutions. \begin{tikzcd} {\complex{C}} && M \\ \\ {\complex{C}'} && {M'} \arrow["\eps", Rightarrow, from=1-1, to=1-3] \arrow["\mu", from=1-3, to=3-3] \arrow["{\eps'}"', Rightarrow, from=3-1, to=3-3] \arrow["\alpha"', from=1-1, to=3-1] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMiwwLCJNIl0sWzIsMiwiTSciXSxbMCwyLCJcXGNvbXBsZXh7Q30nIl0sWzAsMCwiXFxjb21wbGV4e0N9Il0sWzMsMCwiXFxlcHMiLDAseyJsZXZlbCI6Mn1dLFswLDEsIlxcbXUiXSxbMiwxLCJcXGVwcyciLDIseyJsZXZlbCI6Mn1dLFszLDIsIlxcYWxwaGEiLDJdXQ==) ::: :::{.exercise title="?"} Show that any two lifts $\alpha, \alpha'$ induce the same map on homology. ::: :::{.remark} Similarly, $\LL F(M)$ does not depend on the choice of resolution: \begin{tikzcd} {\complex{C}} && M &&&& {F\complex{C}} && {F(M)} \\ \\ {\complex{C}'} && M & \leadsto &&& {F\complex{C}'} && {F(M)} \\ \\ {\complex{C}} && M &&&& {F\complex{C}} && {F(M)} \arrow["{\id_M}", from=1-3, to=3-3] \arrow["{\id_M}", from=3-3, to=5-3] \arrow["\alpha", from=1-1, to=3-1] \arrow["\beta", from=3-1, to=5-1] \arrow["\eps", from=5-1, to=5-3] \arrow["\eps", from=3-1, to=3-3] \arrow["\eps", from=1-1, to=1-3] \arrow[from=1-9, to=3-9] \arrow[from=3-9, to=5-9] \arrow[from=5-7, to=5-9] \arrow[from=3-7, to=3-9] \arrow[from=1-7, to=1-9] \arrow["{F(\alpha)}", from=1-7, to=3-7] \arrow["{F(\beta)}"', from=3-7, to=5-7] \arrow["{\id_{\complex{C}}}"', curve={height=30pt}, from=1-1, to=5-1] \arrow["{\therefore \id_{F \complex{C}}}"', curve={height=30pt}, dashed, from=1-7, to=5-7] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTMsWzIsMCwiTSJdLFsyLDIsIk0iXSxbMiw0LCJNIl0sWzAsNCwiXFxjb21wbGV4e0N9Il0sWzAsMiwiXFxjb21wbGV4e0N9JyJdLFswLDAsIlxcY29tcGxleHtDfSJdLFszLDIsIlxcbGVhZHN0byJdLFs2LDAsIkZcXGNvbXBsZXh7Q30iXSxbNiwyLCJGXFxjb21wbGV4e0N9JyJdLFs2LDQsIkZcXGNvbXBsZXh7Q30iXSxbOCwwLCJGKE0pIl0sWzgsMiwiRihNKSJdLFs4LDQsIkYoTSkiXSxbMCwxLCJcXGlkX00iXSxbMSwyLCJcXGlkX00iXSxbNSw0LCJcXGFscGhhIl0sWzQsMywiXFxiZXRhIl0sWzMsMiwiXFxlcHMiXSxbNCwxLCJcXGVwcyJdLFs1LDAsIlxcZXBzIl0sWzEwLDExXSxbMTEsMTJdLFs5LDEyXSxbOCwxMV0sWzcsMTBdLFs3LDgsIkYoXFxhbHBoYSkiXSxbOCw5LCJGKFxcYmV0YSkiLDJdLFs1LDMsIlxcaWRfe1xcY29tcGxleHtDfX0iLDIseyJjdXJ2ZSI6NX1dLFs3LDksIlxcdGhlcmVmb3JlIFxcaWRfe0YgXFxjb21wbGV4e0N9fSIsMix7ImN1cnZlIjo1LCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=) ::: :::{.definition title="Projective resolution of a SES"} For $0\to M' \to M\to M'' \to 0$ in $\cat{C}$, a **projective resolution** is a collection of chain maps forming projective resolutions of each of the constituent modules: \begin{tikzcd} 0 && {\complex{C}'} && {\complex{C}} && {\complex{C}''} && 0 \\ \\ 0 && {M'} && M && {M''} && 0 \arrow[from=3-1, to=3-3] \arrow[from=3-3, to=3-5] \arrow[from=3-5, to=3-7] \arrow[from=3-7, to=3-9] \arrow[from=1-7, to=1-9] \arrow[from=1-5, to=1-7] \arrow[from=1-3, to=1-5] \arrow[from=1-1, to=1-3] \arrow[Rightarrow, from=1-3, to=3-3] \arrow[Rightarrow, from=1-5, to=3-5] \arrow[Rightarrow, from=1-7, to=3-7] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTAsWzAsMiwiMCJdLFsyLDIsIk0nIl0sWzQsMiwiTSJdLFs2LDIsIk0nJyJdLFs4LDIsIjAiXSxbMCwwLCIwIl0sWzIsMCwiXFxjb21wbGV4e0N9JyJdLFs0LDAsIlxcY29tcGxleHtDfSJdLFs2LDAsIlxcY29tcGxleHtDfScnIl0sWzgsMCwiMCJdLFswLDFdLFsxLDJdLFsyLDNdLFszLDRdLFs4LDldLFs3LDhdLFs2LDddLFs1LDZdLFs2LDEsIiIsMSx7ImxldmVsIjoyfV0sWzcsMiwiIiwxLHsibGV2ZWwiOjJ9XSxbOCwzLCIiLDEseyJsZXZlbCI6Mn1dXQ==) ::: :::{.exercise title="?"} Show that such resolutions exist. This involves constructing $\eps: C_0 \to M$: \begin{tikzcd} 0 && {C_0'} && {C \cong C_0' \oplus C_0''} && {C_0''} && 0 \\ \\ 0 && {M'} && M && {M''} && 0 \arrow[from=3-1, to=3-3] \arrow["\gamma", hook, from=3-3, to=3-5] \arrow["\sigma", two heads, from=3-5, to=3-7] \arrow[from=3-7, to=3-9] \arrow[from=1-7, to=1-9] \arrow["{p_0}", two heads, from=1-5, to=1-7] \arrow["{\iota_0}", hook, from=1-3, to=1-5] \arrow[from=1-1, to=1-3] \arrow["\eps"', from=1-3, to=3-3] \arrow["{\therefore \exists \eps}"', dashed, from=1-5, to=3-5] \arrow["{\eps''}"', two heads, from=1-7, to=3-7] \arrow["{\exists \eps^*}"', dashed, from=1-7, to=3-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTAsWzAsMiwiMCJdLFsyLDIsIk0nIl0sWzQsMiwiTSJdLFs2LDIsIk0nJyJdLFs4LDIsIjAiXSxbMCwwLCIwIl0sWzIsMCwiQ18wJyJdLFs0LDAsIkMgXFxjb25nIENfMCcgXFxvcGx1cyBDXzAnJyJdLFs2LDAsIkNfMCcnIl0sWzgsMCwiMCJdLFswLDFdLFsxLDIsIlxcZ2FtbWEiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFsyLDMsIlxcc2lnbWEiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbMyw0XSxbOCw5XSxbNyw4LCJwXzAiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbNiw3LCJcXGlvdGFfMCIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzUsNl0sWzYsMSwiXFxlcHMiLDJdLFs3LDIsIlxcdGhlcmVmb3JlIFxcZXhpc3RzIFxcZXBzIiwyLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzgsMywiXFxlcHMnJyIsMix7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFs4LDIsIlxcZXhpc3RzIFxcZXBzXioiLDIseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=) The claim is that $\eps(x, x'') \da \gamma \eps'(x') + \eps^*(x'')$ works. To prove surjectivity, use the following: ::: :::{.proposition title="Short Five Lemma"} Given a commutative diagram of the following form \begin{tikzcd} 0 && A && B && C && 0 \\ \\ 0 && {A'} && {B'} && {C'} && 0 \arrow[from=3-1, to=3-3] \arrow["s", from=3-3, to=3-5] \arrow["t", from=3-5, to=3-7] \arrow[from=3-7, to=3-9] \arrow[from=1-1, to=1-3] \arrow["p", from=1-3, to=1-5] \arrow["q", from=1-5, to=1-7] \arrow[from=1-7, to=1-9] \arrow["h"', from=1-7, to=3-7] \arrow["g"', from=1-5, to=3-5] \arrow["f"', from=1-3, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTAsWzAsMCwiMCJdLFsyLDAsIkEiXSxbNCwwLCJCIl0sWzYsMCwiQyJdLFs4LDAsIjAiXSxbMCwyLCIwIl0sWzIsMiwiQSciXSxbNCwyLCJCJyJdLFs2LDIsIkMnIl0sWzgsMiwiMCJdLFs1LDZdLFs2LDcsInMiXSxbNyw4LCJ0Il0sWzgsOV0sWzAsMV0sWzEsMiwicCJdLFsyLDMsInEiXSxbMyw0XSxbMyw4LCJoIiwyXSxbMiw3LCJnIiwyXSxbMSw2LCJmIiwyXV0=) If $g,h$ are mono (resp. epi, resp. iso) then $f$ is mono (resp. epi, resp. iso). ::: :::{.proof title="of surjectivity, alternative by diagram chase"} \envlist - Let $x\in M$ - Set $y=\sigma(x)$ - Find $z\in C_0$ such that $\eps'' p_0 (z) = y$. - Consider $\eps(z) - x$ and apply $\sigma$: \[ \sigma(\eps(z) - x) &= \sigma \eps(x) - \sigma(x) \\ &= \eps'' p_0(x) - \sigma(x) \\ &= y-y \\ &= 0 .\] - So $\eps(z) - x\in \ker \sigma = \im \gamma$ - Pull back to $w\in C_0'$ such that $\gamma \eps'(w) = \eps(z) - x$ - Check $\eps i_0 (w) = \gamma \eps'(w) = \eps(z) - x$, so $\eps(i_0(w) - z) = -x$. ::: :::{.proof title="of existence"} The setup: \begin{tikzcd} && 0 && 0 && 0 \\ \\ 0 && {\ker \eps'} && {\ker \eps} && {\ker \eps''} && 0 \\ \\ 0 && {C_0'} && {C_0} && {C_0''} && 0 \\ \\ 0 && {M'} && M && {M''} && 0 \arrow[from=7-1, to=7-3] \arrow["\gamma", hook, from=7-3, to=7-5] \arrow["\sigma", two heads, from=7-5, to=7-7] \arrow[from=7-7, to=7-9] \arrow[from=5-7, to=5-9] \arrow["{p_0}", two heads, from=5-5, to=5-7] \arrow["{\iota_0}", hook, from=5-3, to=5-5] \arrow[from=5-1, to=5-3] \arrow["{\eps'}"', from=5-3, to=7-3] \arrow["{\therefore \exists \eps}"', dashed, from=5-5, to=7-5] \arrow["{\eps''}"', two heads, from=5-7, to=7-7] \arrow["{\exists \eps^*}"', dashed, from=5-7, to=7-5] \arrow[from=3-1, to=3-3] \arrow["f", hook, from=3-3, to=3-5] \arrow["g", from=3-5, to=3-7] \arrow[from=3-7, to=3-9] \arrow[hook, from=3-7, to=5-7] \arrow[hook, from=3-5, to=5-5] \arrow[hook, from=3-3, to=5-3] \arrow[from=1-3, to=3-3] \arrow[from=1-5, to=3-5] \arrow[from=1-7, to=3-7] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTgsWzAsNiwiMCJdLFsyLDYsIk0nIl0sWzQsNiwiTSJdLFs2LDYsIk0nJyJdLFs4LDYsIjAiXSxbMCw0LCIwIl0sWzIsNCwiQ18wJyJdLFs0LDQsIkNfMCJdLFs2LDQsIkNfMCcnIl0sWzgsNCwiMCJdLFsyLDIsIlxca2VyIFxcZXBzJyJdLFs0LDIsIlxca2VyIFxcZXBzIl0sWzYsMiwiXFxrZXIgXFxlcHMnJyJdLFswLDIsIjAiXSxbOCwyLCIwIl0sWzIsMCwiMCJdLFs0LDAsIjAiXSxbNiwwLCIwIl0sWzAsMV0sWzEsMiwiXFxnYW1tYSIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzIsMywiXFxzaWdtYSIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFszLDRdLFs4LDldLFs3LDgsInBfMCIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFs2LDcsIlxcaW90YV8wIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbNSw2XSxbNiwxLCJcXGVwcyciLDJdLFs3LDIsIlxcdGhlcmVmb3JlIFxcZXhpc3RzIFxcZXBzIiwyLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzgsMywiXFxlcHMnJyIsMix7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFs4LDIsIlxcZXhpc3RzIFxcZXBzXioiLDIseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMTMsMTBdLFsxMCwxMSwiZiIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzExLDEyLCJnIl0sWzEyLDE0XSxbMTIsOCwiIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMTEsNywiIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMTAsNiwiIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMTUsMTBdLFsxNiwxMV0sWzE3LDEyXV0=) This is exact and commutative by a diagram chase: - $f = i \circ \downarrow_{\ker \eps'}$ shows $g(\ker \eps) \subseteq \ker \eps''$ - $g = p \circ \downarrow_{\ker \eps}$ shows $f(\ker \eps') \subseteq \ker \eps$. To show exactness along the top line: - $f$ is injective, since it's the restriction of an injective map. - $g$ is surjective: - Let $x\in \ker \eps''$, so $\eps''(x) = 0$. - $\exists y\in C_0$ with $p_0(y) = x$ by surjectivity of $p_0$. - Check $\eps''(p_0(y)) = \eps(x) = 0$ in $M''$, so $\sigma\eps(y) = 0$ - Thus $\eps(y)\in \ker \sigma = \im \gamma$ - By surjectivity there exists $w \in C_0'$ such that $\gamma( \eps'(w)) = \eps(y)$. - Use commutativity to verify \[ \eps(i_0(w) - y) &= \eps(i_0(w)) - \eps(y) \\ &= \gamma\eps'(w) - \eps(y) \\ &= \eps(y) - \eps(y) \\ &= 0 .\] - Then \[ g(i_0(w) - y) &= p_0(i_0 (w)) - g(y) \\ &= -g(y) \\ &= -p_0(y) \\ &= -x .\] - Exactness at the middle, i.e. $\im f = \ker g$: - $\im f \subseteq \ker g$ by exactness of the second row, so it STS $\ker g \subseteq \im f$. - Let $y\in \ker g$, then by commutativity $y\in \ker p_0 = \im i_0$. Note that $y\in \ker \eps$ by definition. - Write $y = i_0(x)$ for some $x\in C_0'$ - Note $\gamma \eps' (x) = \eps i_0(x) = \eps(y) = 0$ since $y\in \ker \eps$. - Since $\gamma'$ is mono, $\eps'(x) = 0$, so $y = i_0(x) = f(x)$. ::: :::{.proposition title="?"} For $F: \rmod\to\zmod$ additive and a SES \[ \xi: 0\to M' \mapsvia{f} M \mapsvia{g} M'' \to 0 ,\] note that there are morphisms \[ \LL F M'' \to \LL F M\to \LL FM' .\] There is a connecting morphism \[ \Delta: \LL F M'' \to \Sigma^{-1} \LL F M' ,\] which in components looks like \begin{tikzcd} 0 && {\LL_0 F(M'')} && {\LL_0 F(M)} && {\LL_0 F(M')} \\ \\ && {\LL_1 F(M'')} && {\LL_1 F(M)} && {\LL_1 F(M')} \\ \\ && {\LL_2 F(M'')} && \cdots \arrow[from=1-3, to=1-1] \arrow[from=1-5, to=1-3] \arrow[from=1-7, to=1-5] \arrow[from=3-3, to=1-7] \arrow[from=3-5, to=3-3] \arrow[from=3-7, to=3-5] \arrow[from=5-3, to=3-7] \arrow[from=5-5, to=5-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsOSxbMCwwLCIwIl0sWzIsMCwiXFxMTF8wIEYoTScnKSJdLFs0LDAsIlxcTExfMCBGKE0pIl0sWzYsMCwiXFxMTF8wIEYoTScpIl0sWzIsMiwiXFxMTF8xIEYoTScnKSJdLFs0LDIsIlxcTExfMSBGKE0pIl0sWzYsMiwiXFxMTF8xIEYoTScpIl0sWzIsNCwiXFxMTF8yIEYoTScnKSJdLFs0LDQsIlxcY2RvdHMiXSxbMSwwXSxbMiwxXSxbMywyXSxbNCwzXSxbNSw0XSxbNiw1XSxbNyw2XSxbOCw3XV0=) :::