# Tuesday, March 01 :::{.remark} Recall the definition of the localization of an $R\in \CRing^\unital$ at a submonoid $S \leq (M, \cdot)$, written $R\localize{S}$. Similarly for $M\in \rmod$, one can form $M\localize{S}$, and $(\wait)\localize{S}$ is a functor where the induced map on $M \mapsvia{f} N$ is $f_S(m/s) \da f(m)/s$. ::: :::{.proposition title="?"} For $I\in \Id(R)$, let $j(I) \da \ts{a\in R\st a/s\in I \text{ for some } s\in S}$ which is again an ideal in $R$. Then 1. $j(I)_S = I$, 2. $I_S = R_S \iff I$ contains an element of $S$. ::: :::{.proof title="of 2"} $\impliedby$: $I_S \subseteq R_S$ is clear. Let $x/t\in R_S$ and $s\in I \intersect S$, then ${sx\over st} = {x\over t}\in I_S$. $\implies$: Write $1=i/s$ to produce $t\in s$ with $t(s-i) = 0$. Then $z=ts \in S$ and $z=it\in I$ so $z \in I \intersect S$. ::: :::{.proposition title="?"} Let $P\in \spec R$ with $S \intersect p = \emptyset$, then $j(P_S) = P$. ::: :::{.proof title="?"} $\supseteq$: Clear. $\subseteq$: Let $a\in j(P_S)$, so $a/s=p/t$ for $s,t\in S, p\in P$ and $\exists u\in S$ such that $u(at-sp)=0\in P$, so $uat - usp\in P$ where $usp\in P$. Thus $uat\in P \implies a(ut)\in P\implies a\in P$, since $ut\in S$ and $ut\not\in P$. ::: :::{.proposition title="?"} There is an order-preserving correspondence \[ \ts{p\in \spec R \st p \intersect S = \emptyset} &\mapstofrom \spec R\localize{S} \\ P &\mapsto P\localize{S} \\ j(P') &\mapsfrom P' .\] ::: :::{.proof title="?"} We need to show 1. $P\localize{S} \in \spec R\localize{S}$ is actually prime. 2. If $P'\in \spec R\localize{S}$ then $j(P')\in \spec R$ with $j(P') \intersect S = \emptyset$. For one: \[ {x\over t}, {y\over t} \in P_S &\implies {xy\over st} \in P_S \\ &\implies xy \in j(P_S) = P \\ &\implies x\in P \text{ or } y\in P \\ &\implies x/s\in P \text{ or } y/s\in P .\] For two: \[ xy\in j(P') &\implies {xy\over s}\in P' \\ &\implies {x\over 1}{y\over s}\in P' \\ &\implies {x\over 1}\in P' \text{ or } {y\over s}\in P' \\ &\implies {x}\in P' \text{ or } {y}\in P' \\ .\] If $x\in j(P') \intersect S$ then ${x\over t}\in P'$ so ${t\over x}{x\over t}\in P'$. $\contradiction$ One can then check that these two maps compose to the identity. ::: :::{.exercise title="?"} Show that if $p\in \spec R$ then $R_p \in \Loc\Ring$ is local. Use that the image of $p$ in $R_p$ is $P_p = R_p\sm R_p\units$, making it maximal and unique. ::: :::{.exercise title="?"} Show that 1. $M=0 \iff M_S = 0$ for all $S$, 2. $M=0 \iff M_p = 0\, \forall p\in \mspec R$, 3. $M=0 \iff M_p = 0\, \forall p\in \spec R$, noting that this is a stronger condition than maximal. For (2), use that $\Ann_R(x)$ is a proper ideal and thus contained in a maximal, and show by contradiction that $x/1\neq 0\in M_p$. ::: :::{.exercise title="?"} Show that if $f\in \rmod(M, N)$ then - $f$ injective (resp. surjective) $\implies f_S$ injective (resp. surjective) - If $f_p$ is injective for all $p\in \spec R$, then $f$ is injective (resp. surjective) - If $M$ is flat then $M_S$ is flat - If $M_p$ is flat for all $p$ then $M$ is flat. ::: :::{.remark} Recall that for $A \subseteq R$, $V(A) \da \ts{p\in \spec R\st p\contains A}$. Letting $I(A)$ be the ideal generated by $A$, then check that $V(I(A)) = V(A)$ and $V(I) = V(\sqrt I)$. ::: :::{.exercise title="?"} Check that defining closed sets as $\ts{V(A) \st A \subseteq R}$ forms the basis for a topology on $\spec R$, and $V(p) \intersect V(q) = V(pq)$. ::: :::{.remark} Next time: generic points, idempotents, irreducible sets. :::