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I Thursday, January 06

1 ‘ Thursday, January 06

Topics: Localization and completion, Nakayama’s
lemma, Dedekind domains, Hilbert’s basis theorem,
Hilbert’s Nullstellensatz, Krull dimension, depth and
Cohen-Macaulay rings, regular local rings.

Remark 1.0.1: References:

e Atiyah-MacDonald, Commutative Algebra. Be sure to check the erratum!

e Chambert-Loir, Mostly Commutative Algebra

Miles Reid, Undergraduate Algebraic Geometry
e Altman-Kleiman, A Term of Commutative Algebra
Example 1.0.2(?): Some examples of module morphisms:
. }%%?(Z, S) = {pt}, since 1 — 1 is necessary.

. %Qm(Z[x], S) = S. Why? Since 1 — 1 is forced, z — s can be sent to any s € S.
ing

+ Hom (WZ_[”;)?J]_D,S) = {(a,b) € 8~ ‘ a? — b =1}.

Hom(R/I,S) { f € Hom(R. ) | £(1) = o}
Ring Ring

Exercise 1.0.3 (?)

Show that 1d(R/I) = {J € Id(R) | J 2 I} using

II:R— R/I
x — [z]
U T) T

Show that 7 1(.J) is in fact an ideal, construct a proposed inverse II™!, and show IToII~! =
! oIl = id.

Exercise 1.0.4 (7)
Show that R is a field iff R is a simple ring iff any ring morphism R — S is injective. For
3 = 1, directly shows that every nonzero element is a unit.
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Thursday, January 13

Exercise 1.0.5 (7)
Chapter 1 of A&M:

. 1,8,10,13,15,16,19.

2 ‘ Thursday, January 13

Remark 2.0.1: Last time: fields are simple rings.

Exercise 2.0.2 (?)
Let k£ € Field and show that

o If f € R := k[x] is irreducible then (f) € Spec R.

(xy) € Id(k[x,y]) is not prime and not maximal.

e There exist nonzero non-prime maximal ideals.

o Show that I € Spec R <= A/I is an integral domain.
o Show that I € mSpec R <= A/I € Field.

Exercise 2.0.3 (?)
Prove that if f: R — S is a ring morphism then there is a well-defined map

f* :SpecS — Spec R
P f7H(p),

i.e. if p is prime in S then f~!(p) is prime in R. Show that this doesn’t generally hold with
Spec replaced by mSpec.

Exercise 2.0.4 (7)
Show that defining V(1) := {p € Spec R ‘ p2 I} as closed sets defines a topology on Spec R.
Show that Spec R is Hausdorff iff it’s discrete, and V is functorial.

Exercise 2.0.5 (?)
Describe

e Speck for k € Field

o SpecZ, show it is not Hausdorff, and (0) is a generic point, and the subspace topology
on its closed points is cofinite.

e Spec R for R a local ring.

e SpecR for R a DVR

o Speck[z,y]

o SpecR for R = Z[i].
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Thursday, January 13

e Spec Ok, the ring of integers of a number field K.
e Spec R for R a Dedekind domain

Show that every I € Id(R) is contained in some m € mSpec R.

Exercise 2.0.7 (7)
Show that the following rings are local:

o For p € Z prime, R :=Z[s-!] for S := {€ € Z prime ’ {# p}.
k € Field

k[x] with m = (x)

o k[x,y]. What is the maximal ideal?

| Exercise 2.0.6 (?)

Exercise 2.0.8 (?)
For (R, m) a local ring, show that m = R\ (R™).

Remark 2.0.9: Recall that

. Z I; is the smallest ideal containing all of the I;.
. ﬂ I; is again an ideal
o IJ = <xy ‘ zelye J> is an ideal

e IJCINJ.
e +/0p is the set of nilpotent elements.

Theorem 2.0.10(?).
Show that /0p is the intersection of all prime ideals.

Slogan 2.0.11
Regarding elements f € R as functions on Spec R, f nilpotent is like being zero at every point of
Spec R.

Exercise 2.0.12 (?)
Show that z € J(R) <= 1—xzy € R* for all y € R.
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I Tuesday, January 18

3 ‘ Tuesday, January 18

Remark 3.0.1: A reference for pictures: Mumford’s red book. Note the typo in A&M problem 10:
it is false for the zero ring.

Recall some definitions:

e R-modules, what are some examples?

¢ Submodules and quotient modules.

e The submodule generated by a subset.

o A morphism of modules and the R-module structure on H%m(M, N), (rf)(z) =r- f(x).

— This makes R-Mod into a category enriched over itself.

e im f,ker f, coker f.

® H Mi, @ M’L

Exercise 3.0.2 (Module structure on quotients)

Show that if M < N € R-Mod, then the following action makes M /N into an R-module:
r- 2] = [ra],

i.e. that if [x] = [y] then r - [x] =7 [y].

Exercise 3.0.3 (Universal properties of kernels and cokernels)
Show the universal properties of kernels and cokernels: given f: M — N and @) € R-Mod,

H%m(Q,ker f) = {s € H%m(Q,M) ‘ fos= 0}

H%m(coker £,Q) = {t € H%m(N, Q) ‘ tof= 0} .

Exercise 3.0.4 (Direct sum and product coincide for finite index sets)
Show that if [ is a finite indexing set, there is an isomorphism

D = [ M.
el iel
and that
Hom (7, T] M;) = [ Hom (T, M;)
R i€l R

Hom (€D M;, T) = @) Hom (M;, T).

Show that by Yoneda, this satisfies the universal property.

Tuesday, January 18 8



I Tuesday, January 18

Solution:
Sketch:

» Define projections ; : H M; — M;.
e Send f € Hom(T,HMi) tomjo fe HHom(T, M;)
o For the other direction, given (f;) € HHom(Mi,T), send (f;) to Z fi-

(2

Exercise 3.0.5 (Modules have products and coproducts)
Show that H is a categorical product and @ is a categorical coproduct. What are the product
and coproduct in Top?

Definition 3.0.6 (Colon ideals and annihilators)
Given N < M € R-Mod, define the colon ideal

(N:M)={acR|aMC N}
and the annihilator of M

Ann(M) = (0: M) = {a € R | aM =0}

Example 3.0.7 (Annihilators): Some annihilators:

o C, € Z-Mod, so Ann(C),) = nZ = (n).
e Again in Z-Mod, Ann(C,, & Cy,) = nZ N mZ = lem(m,n)Z. s

Remark 3.0.8: An R-module is free iff R = @ R, where I can be infinite but (importantly) we
need the direct sum instead of the direct prod;i[t. Note that generally H R may not be free as an
R-module. !

A module is finitely generated if there exists a generating set X := {xl}zgn C M such that any

submodule containing X is all of M, or equivalently t € M = z = Z r;x; for some r; € R. e

Exercise 3.0.9 (Finitely generated iff surjective image of a free module)
Show that M is finitely-generated iff there is a surjective morphism R"™ — M for some n € Zx>o.

Solution:
Sketch:

o finitely-generated = surjection:
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I Thursday, January 20

— Take ¢; ={0,---,1,---,0} € R" and define f(e;) == z;
— Use the universal property of the direct sum.

° L=

— Show that the f(e;) generate M: by surjectivity, m = f(x) = f(Zriei) =

Zh‘f(ei)-

Remark 3.0.10: Thus every M € R-Mod is the quotient of a free module: find a surjection f :
F — M, so im f = M, then use that im f = /ker f. For example, one can take F := @ R— M.
meM

Recall

e The definition of exact sequences

e 05 AL Bis exact iff f is injective,

e AL B o f is surjective,

c0 AL B0 f is an isomorphism,

e 0> A— B — C — 0is called a short exact sequence.

Exercise 3.0.11 (Direct sums are exact)
Check that (—) @ M is exact.

Exercise 3.0.12 (Left exactness of hom)
Show that Hom(/NV, —) and Hom(—, N) are both left-exact for any N € R-Mod, where 0 —

AL BS% 0 0issent to0 = Hom(N, A) Jom, .. Givean example of when right-exactness
fails.

Hint: try 0 — Z 27 - Cy — 0 and apply
H%m(—,Cg),

Remark 3.0.13: Recall that Hom (Z, —) = id and Hom (C),, —) = (—)[n] picks out the n-torsion.
Z~-Mod Z~Mod

4 ‘ Thursday, January 20

Remark 4.0.1: Last time: Hom(N, —) and Hom(—, N) are left exact. We can explicitly describe
Hom(A/I, M) = {meM |im=oviel},

which is the I-torsion in M. Using that 0 — I — A — A/I — 0 is short exact, we’ll get a long
exact sequence

0 — Hom(I, M) — Hom(A, M) ER {I-torsion in M} — Exty (I, M) — -- -,

Thursday, January 20 10



Thursday, January 20

where the Ext term measures failure of surjectivity of f.

Exercise 4.0.2 (7)
Show that Hom(N, —) and Hom(—, IV) are left exact.

Remark 4.0.3: Recall the snake lemma:

0 —— kera —— kerb ——— kerc

0 A1 B1 /’/ CI 0
a /// b c
0 Ay —F By Cy 0

cokera —— cokerb —— cokerc —— 0

Link to Diagram

The recipe for the connecting morphism:

Start with = € ker(Cy — C3), choose a preimage in B
e Push to By

o Use exactness to pull to As

o Project along As — coker(A4; — Asz)

Definition 4.0.4 (Finite presentation)

An object M € R-Mod is of finite presentation iff there is an exact sequence
R™— R"— M — 0,

i.e. there are finitely many generators and finitely many relations.

Remark 4.0.5: A nice application of the snake lemma: for finitely presented modules M, N, one
can extend a morphism M — N to

0 R™ R™ M
f
0 R™2 R"™ N

Thursday, January 20 11
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Tuesday, January 25

Link to Diagram

Since R € R-Mod is free, the extended maps can be represented by matrices, which is a significant
simplification. In fact, f can be recovered uniquely by knowing the map on generators.

Exercise 4.0.6 (7)
Prove the snake lemma, and show exactness at all 6 places.

Remark 4.0.7: Recall the universal property of M ® g N in R-Mod in terms of bilinear morphisms.

Exercise 4.0.8 (7)
Prove uniqueness of any object satisfying a universal property using the Yoneda lemma.

Exercise 4.0.9 (?)
Prove using universal properties:

e R®pr R= R, using universal properties. Why is this unique?
e ROp M = M.
o (Mi® M) ®rN = (M ®rN)& (M2 ®rN).

5 ‘ Tuesday, January 25

Exercise 5.0.1 (?)

Do A&M:
o 2.12, 24, 25
.« 3.1, 4,12

See website: https://www.daniellitt.com/commutative-algebra

Remark 5.0.2: Last time:

e Defined M ®pr N, need to show it exists.
e Showed Rr M = M
¢ Showed sums commute with tensor products

Exercise 5.0.3 (?)

Show that if A i) B % C — 0is exact and A®p N, B®p N exist, then C @z N also exists.
Hint: Use the universal property to produce a map
Y: AR N — B® N and set C ® N = coker 1.

Tuesday, January 25 12
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Tuesday, January 25

Exercise 5.0.4 (7)
Prove that M ®p N exists by constructing it.

Solution:

I J
Some hints: Construction 1: use 0 — ker f — R® EN Vi 0, and find R®" — ker f to
assemble an exact sequence

R LS RY 5 M 0.

Now apply (—)®gN to exhibit M @ g N as a cokernel N 5 N®' 5 M@grN — 0. Separately,
use the hands-on construction and prove it satisfies the universal property.

Exercise 5.0.5 (7)
Prove Cs ®7 C3 = 0 using construction 1 above.

Solution:

Sketch:

Take Z =% 7 — Cy — 0, apply (—) ® Cs, and check that coker(Cs 2, C3) = 0 since
multiplication by 2 is invertible. Alternatively, use bilinearity:

B(z,y) = 3B(z,y) — 2B(x,y) = B(«x,3y) — B(2z,y) = B(x,0) — B(0,y) = 0.

Exercise 5.0.6 (7)
Show that

e (—)®pg N is right exact

o Tensoring is associative, distributive, commutative

o There is a canonical isomorphism R ®r M — M induced by r ® m — r.m.

e Morphisms f : A — B € CRing induce functors f* : A-Mod — B-Mod. Also show that
M ®4 B has a B-module structure given by by (m ® be) := m ® (b1bs).

o For N € B-Mod, there is an isomorphism H(f)‘m(M, N)= H%m(M ®4 B, N).

— Use f—= (m®b— bf(m)) € Bilg(M x B, N), with inverse Q — Q(—,1).

o Show that M ®r R/I = M/IM, using R/I = coker(I — R) and applying (—)®@ M. Also
show that I @ g M = IM canonically.

« Show that k[]*° ® LGRS (k[t]> @’

k[t] (t2) (2) :

. R/I _ R

o Show that R/I ®r R/J = T RiJ - T+7
o Tensoring need not be left exact.
e Cp ¢ Z-Mod’ .
« R € R-Mod.
¢ R-Mod’ is closed under ®pg and @.
e Q € Z-Mod’ but not in Z-Mode

Tuesday, January 25 13



I Thursday, January 27

Definition 5.0.7 (A-algebras)
Alg,, is the coslice category CRing,,: objects are rings B equipped with ring morphisms
A — B, and morphisms are cones under A:

A

B——C

Link to Diagram

Example 5.0.8(%): Examples of algebras:

« Re CRing = R € Alg;
 Every B € Alg,, is a quotient of some polynomial algebra A[t, - - -] on potentially infinitely

many generators.

Definition 5.0.9 (Finiteness)

An object B € Alg, 4 is finitely generated if it is a quotient of some A[ty, - - -, ¢,]. Equivalently,
there exist x1,- - ,x, € B such that any subring containing the x; and the image of A is all
of B.

B is finite if B € A-Mod'®.

Example 5.0.10(%): Examples:

k[t] € Alg . is finitely generated but not finite.
o kt]/ <t2> € Alg;, is finitely generated and finite.
o (m)®a(—) € Fun(AIg/AXQ,AIg/A), defined by (b1 ® ¢1)(b2 ® ¢2) == b1b @ c1ca.
. IAIISE(B®AC,S):{f:B—>S,g:O—>S‘ fla=gla}-

o k[t1] @ Ek[ta] = k[t1,t2] is not isomorphic to k[t1] x k[te] via (f(t1), g(t2)) — f(t1) - g(t2), since
e.g. h(ti,t2) == t1 + t2 is not in the image of this map.

6 ‘ Thursday, January 27

Remark 6.0.1: Nakayama: called a lemma, but arguably the most important statement in com-
mutative algebra! Recall that J(A4) = Nmemspec AM, and being zero mod every m € mSpec A means
being zero mod J(A).
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n Thursday, January 27

Theorem 6.0.2(Nakayama’s Lemma).
Let A € CRing with I C J(I) and let M € A-Mod®. Then

M=IM — M =0.

Example 6.0.3(?): This reduces statements about local rings to statements about fields. Com-
monly used examples:

o I =+/0g.

e A € LocRing with I = m4 its maximal ideal.

Corollary 6.0.4(?).
If A is local and M € A-Mod'®,

M/msM =0 <= M =0.

Remark 6.0.5: M yields a sheaf (or vector bundle) on Spec A, so think of m € M as a function
on Spec A in the following way: if m € M,

m:p+— mmodp € M/pM.

\

N
=

V
(

N
N
BN
N\
N
\

AN

&
7
/)

F

—
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I Thursday, January 27

Proposition 6.0.6 (Equivalent formulation of Nakayama).
If n € N € A-Mod™® and n = 0modm for all m € mSpec 4, then M = 0.

Exercise 6.0.7 (7)
Show that if A € LocRing and M € A-Mod®® with {2;},,, € M, then
(X1, ,xn) =M <= (T1, - ,Tn) = M/mM, T; = x; mod m.

Solution:
—: If g€ M/mM, lift to y € M to write y = Zcixi and thus § = ZCZE

<= Present M by A" fom o= coker f — 0 where f(e;) = x; — we want to show C' = 0.
Reduce mod m by applying (—) ® 4 A/m to get

(A/m)" L M/mM = C/mC = 0.

This is surjective so C'/mC = 0. By Nakayama, C = 0.

Example 6.0.8(?): Let the local ring R = k[t] with mp = (t), and let M = R®’. Consider
10
[1 + 3440+ t2,t3], [t”, 149,410 4 tww}, [1 N R S Ry
which reduced modt yields

[1,0,0],[0,1,0],[1,1,1].

So the original elements generate M.

Remark 6.0.9: Next goal: proving Nakayama. We’ll need a version of Cayley-Hamilton. Recall
the definition of multiplicative subsets and localization, along with its universal property.

Example 6.0.10 (of multiplicative sets S): Examples:

o For any element f, S := {l,f, fz,"'}

o For A an integral domain, S := A\ {0}
e All nonzero zero divisors.

Exercise 6.0.11 (?)
Prove S™'A exists and is unique for A € CRing. Give an example where s'a = sb is not
sufficient.

Remark 6.0.12: Remarks on localization:

=— = s"s'a — §"sb for some s” € S — this is needed because it will hold in S~ A4, since
s

a b
s

s" € (S7TA)* for any s” € S by construction.
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I Thursday, January 27

= 0 iff a is annihilated by an element of S.

® |

e Producing the actual map for the universal property: if f : A — B sends S to invertible
elements,

A—1 . Fa)f(s)™!
//w
L //’//
S1A
a \//
S

Link to Diagram

e Ap = S71A for S = {l,f, f2,---}. For A = Z and f = p a prime, Z; = Z[%} C Q are
fractions whose denominator is a power of p.

« For A an integral domain and S = A\ {0} yields S™'A = ff(A) the fraction field.

o For p e SpecA, S:= A\ p, then A, = S~1A is localization at a prime ideal

o Ly = Z[%] fractions in Q with denominators not divisible by p.

P) {+#p prime’

Exercise 6.0.13 (7)
Some exercises:

o Use the universal property to show (Z/15Z)s = 7. /3Z.
o Show that for M € A-Mod, S~'M exists and is unique.
o Show that S™'A ~ S~ M.
o Show that S™'M = M ®4 S~ A using the universal property. Use
g —1/_
M=Meo, A28 O e, 5714
where m — m ® 1 For f : M — N where s acts invertibly on N, produce a map
M x ST'A — N where (m,a/s) — as 'f(m) where s~! is the inverse of the action
s: N — N.
o Show that (—) ®4 S™1A is left exact and thus exact.

m
— Injectivity: use that — + 0 <= s'f(m) = 0 for some s’ € S.
s

« Show that S~*A4 € A-Mod’.
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https://q.uiver.app/?q=WzAsNSxbMCwwLCJBIl0sWzIsMCwiQiJdLFswLDIsIlNcXGludiBBIl0sWzAsMywie2FcXG92ZXIgc30iXSxbMywwLCJmKGEpZihzKVxcaW52Il0sWzAsMiwiXFxpb3RhIl0sWzAsMSwiZiJdLFsyLDFdLFszLDQsIiIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Im1hcHMgdG8ifSwiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV1d

I Tuesday, February 01

7 ‘ Tuesday, February 01

Proposition 7.0.1(Cayley-Hamilton).
For A € CRing, M € A-Mod'®, a € Id(A), and ¢ : M — aM C M, there exists {ai}z‘gn Ca
such that

O +ar" 4 +a,id =0.

Proof (Cayley-Hamilton: Reductions).
Reduce to showing this for M = A" a free module. Use the diagram:

e; 4T M 0
f ¢
ai" \aM 0
a;

Link to Diagram

Lift by sending e; to any element a; € a. Then: STS f satisfies some polynomial, since
© will satisfy the same polynomial and map to zero by commutativity of the square above.
f: A" — A" can be written as a matrix (a;;). Now reduce to C: consider the map

Z[{xij}mgr] - A
Tij = Q5.
Forming the matrix M = (x;;) yields a commutative diagram:
Z[{xij}mgr]xr — A
M=(z;;) f=(aij)

Zl{zij}i,j <7 ———— A"

Link to Diagram
Since Z[{z;;}] is an integral domain, we can pass to the fraction field Q({z;;}), where by linear
algebra M has a characteristic polynomial in the z;;. So for some homogeneous polynomials
p; in the x;;, we have

fr +p1(35ij)fr_1 + -+ pr(zi5) = 0.

Now choose an arbitrary embedding Q(z;;) — C, and prove Cayley-Hamilton here using (e.g.)
Jordan normal form.
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Exercise 7.0.2 (Fun, everyone should have a proof!)
Write a careful proof of Cayley-Hamilton for arbitrary fields.

Remark 7.0.3: Useful strategy: reduce to the “universal matrix”.

Proof (Cayley-Hamilton for arbitrary fields, sketch).
Recall that there exists an adjugate of any square matrix satisfying M adJ(M ) =adj(M)M =
det(M)id. Apply this to M = tI — f € EI[l]d(A( t)*"). Write adj(tI — ZB t' with

B; € Mat,,xn(A). We have
(t1 = f)adj(tI - f) = det(f)1,

but we can’t plug in f here because we don’t know if this lands in a commutative ring, so
e.g. tmt” # mt"! doesn’t necessarily hold.

Note that B; commutes with tI — f <= B; commutes with f, e.g. by equating coefficients.
Write R = Z(f) for the centralizer, those matrices commuting with f. Then (tI — f) € R[t],

which reduces us to the world of commutative rings. Then det(tl — f )‘ =(f-f)-g=0.
|

Exercise 7.0.4 (7)
Show that if M € A-Mod® and a € Id(A),

M = aM = Jz = la-Mod such that zM = 0.
Hint: apply Cayley-Hamilton to idyy.
Theorem 7.0.5(Nakayama).
For M € A-Mod®®, T € Td(A) with I € J(A),
M=IM — M =0.
Remark 7.0.6: Apply the corollary to get z = 1mod I with M = 0. But then x = 1 mod J(A),

so x is a unique and xM = M.

Alternatively, pick a minimal set of generators {x;} of M, som = Z a;x; with a; € I since M = I M.
Since 1 — a,, € J(A) and is a unit, so

(1 —ap)x, = Z a;z; = xp=(1—ap)” Z a;T;.

i<n—1 i<n—1

Remark 7.0.7: Notes:

« Proved last time: A € LocRing, M € A-Mod'®, if X = {2;} C M with {7;} generating M /mM,
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then X generates M. B
o Suppose f € A-Mod(M, N) with f: M/msM — N/myN an isomorphism — f is not neces-
sarily an isomorphism.
— Counterexample: k[[z]] — k is not an isomorphism in k-Mod but reduces mod z to
kS k.

o Show that f need not be injective, but is always surjective.

— For surjectivity: use M i> N — C — 0, use that C/mC = 0 to conclude C = 0 by
Nakayama.

— For injectivity: use 0 - K — M o N = 0 and try to show K = 0. Not true, take
0 — (x) — Kk[[x]] = k — 0 and apply (—) @] k to get k 59 ko

e The special SES0 - M — M & N — N — 0 has a left-section s : M & N — M; applying
(—)®aS or H%m(S, —) actually produces a SES, since this induces left sections on the resulting
sequences.

e Prove that free modules are projective.

e Prove that divisible abelian groups are injective in Z-Mod.

— Prove that Q and Q/Z are injective.

o Show that a SES splits iff it admits a right section or a left section.
e Show that 0 - I — M — P — 0 splits if either P is projective or [ is injective.
e Show that (—) ®4 S, H%m(—, S),H%m(S, —) are exact on SES’s 0 -+ A — B — P — 0 with

P projective.

8 ‘ Thursday, February 03

Remark 8.0.1: Exercises:

e Find a way to remember which hom is covariant vs contravariant.

o Show P is projective <= Hom(P, —) is exact, I is injective <= Hom(—, I) is exact (sends
injections to surjections).

e Find a non-free projective module.

e Show that P is projective iff P is a direct summand of a free module. Use that 0 — K —

A" 5 P 0 and lift P 92 P to get A" = K @ P. For the other direction:

I by freeness o N

m

N
0

R

el
S

s
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Link to Diagram

o Show that in Z-Mod, I is injective iff divisible.

— For one direction, show ni’ = i using the following diagram:

Link to Diagram

e For the other direction, produce a map:

Link to Diagram

« Use Zorn’s lemma on pairs (Y, f) where (Y, f) < (Y',g) <= Y C Y’ and g|y, = f. Show
every chain has an upper bound by setting Y, = UYz and foo = Uf;, thus producing
Yiaxs fmax Take a SES 0 — (y) = (¥, Yimax) = (¥, Ymax) / (y) — 0 and map the last term to
1.

e Recall that projective resolutions are complexes P, = --- P — Py — 0 with H;~oP, = 0 and
HyP, = M, equivalently an exact complex --- — P, - Py — M — 0.

« Find a projective resolution of Cy € Z-Mod and k|t]/ <t2> € k-Mod. Why must the latter
necessarily be infinite length?

« Compute TorZ(Cs, Cy) € Z-Mod and Tor%(Z@Q, Cy).

o Show Torf'(k, k) = @k for R = k[t]/ <t2>? Use the resolution P; = k[t]/ <t2> with maps
i>0
(=) x t, using that ¢ ~ k by zero.

o Show that if f ~ g, then f — g induces the zero map in homology. Use d;11s; + si—1d; :
HZ(C) — HZ(D), pick T € C; with d;z = 0 and check (diJrlSrL' + Sifldi).’f €imd;y. o
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9 ‘ Tuesday, February 08

Exercise 9.0.1 (?)
Show that chain-homotopic maps induce the same map in homology.

Corollary 9.0.2(?).

Tor, R'M°d(M ,N) for M, N € R-Mod is well-defined, since the identity M MMy A1 induces an
isomorphism on P, ® N — P, ® N for any two projective resolution P,, P,/ = M.

Proposition 9.0.3(%). )
If f € R-Mod(M, N), then there is an induced morphism f € ChR-Mod(P,M™ P,V between
resolutions P,” = M, P, = N, where f is unique up to homotopy.

Proof (Hint).
For existence, use projectivity to lift through surjections onto kernels. For uniqueness, create sqg
such that dysg = dg — go and check that im fy — go C ker dy after lifting through PlN — ker dp:

Link to Diagram

Exercise 9.0.4 (?)
Show that a SES of modules induces a SES of chain complexes between their projective
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resolutions.
Hint: use the following diagram.

P21 P23
0—>P11L ********** >P11@P13 *********** »P13—>0
v k,’//
0 A B C 0

Link to Diagram

Exercise 9.0.5 (?)

Show that a SES of chain complexes induces a LES in their homology. There are about eight
conditions one needs to check here (as in the snake lemma, of which this is a special case for
two-term complexes).

Exercise 9.0.6 (?)
Show that given 0 — M; — My — M3 — 0, taking projective resolutions and applying (—)® N
yields a SES

0-P'®N—>P2@N P3N =0,

so there is an induced LES in Tor,X"Mod,

Exercise 9.0.7 (7)
Show

o TorRMed(M N) =M @ N
. Tleor.R'M°d(M, N) =0 if either M or N is projective.
o Tor,®*(M, N) is uniquely determined by these properties.

Tuesday, February 08
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Remark 9.0.8: Hint:

Tork™Med (M, N) = Hy(P.M @, N)
= coker (P, ® N — Py ®gr N)
= coker(P; — Py) @z N
=M KRnr N.

For vanishing, use that projective implies flat and exact complexes have zero higher homology. Note
that if M is projective, it is its own projective resolution.
For uniqueness, induct on ¢: write 0 - K — R 5 M — 0, use that free implies projective, and

consider the LES:

0 Torf (M, N) = ker f

Tory (K, N) —— Tory(R®',N) =0 ——— Torf (M, N) = ker f

K®rN R @ N M®p N

Link to Diagram

Now induct up using the isomorphisms in the LES.

Exercise 9.0.9 (7)
Show that

Tor,FMed(M, NY = H,(P,™ ®p N) = H,(M ®g P,V) = Tor,F"Med( N, M).
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10 ‘ Thursday, February 10

Exercise 10.0.1 (?)
Let R = k[z,y] and M = k = k[z,y]/ (z,), and compute Tor,XMd(k k).

Solution:
Hint: use the following resolution

l— (y,—2x) l—1
0 — klz,y) ——— k[z,y]®% —— k[z,y] k 0
er ¢ x
€2 ¢ Yy

Link to Diagram

Exercise 10.0.2 (?)
Compute Tor,F"Mod(k k) for R = k[z1, -+ , @] and M =k = k[z1, -, %n]/ (z1, - , Zp).

Remark 10.0.3: Tor measures failure of injectivity of tensoring against a module M, Ext® measures
failure of surjectivity when mapping against M. e

Exercise 10.0.4 (?)
Show that for R € CRing, every M € R-Mod admits an injective resolution.
Hint: it suffices to show any M injects into an injective object. Use the following diagram:
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0 M - 1° 1°/M 0
\\\.\'.EI 3
P I/
3
3 \\J
coker f ——————5 I?

Link to Diagram
First show this for R = Z using that Q°’ /K is divisible and thus injective:

0 0 0

0 K ¥ K = 0

0 z®’ __?_u~*” Q% — 5 cokerg
0— s kerf —— M ! Q°’ /K —— coker f

Link to Diagram
Now reduce to R = Z using that M < D for D a divisible abelian group, and show M < [ :=
%—Il(\)/lné(R’ D) € R-Mod. Form the map as the composition:
— VIO
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0 M g » D
. “HomZ(R,—)
.................................... * s
oo » M =2 Hom(R, M) ———— Hom(R, D)

m ———  mult,, : r — rm

f iof

Link to Diagram
Then show that I := Hom (R, D) is injective using the universal property:

Z-Mod
0 » X Y
.
o

Hom (R, D)

Z~Mod
Hom (Y, Hom (R, D)) Hom(Y, D)
R-Mod Z~-Mod Z

f y = fly)(1)

Yy (r=g(ry)) < 1 g

Link to Diagram

Exercise 10.0.5 (?)
Show Z € Z-Mod has an injective resolution.

Solution:

0—-Z—=Q—Q/Z— 0.
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Exercise 10.0.6 (7)

Show EXt'Z_MOd(Cg,Z> = 03[1].
Hint: apply %{_&r&(cg, —) to the above resolution
and use %—I_&r(g(C;;,@/Z) =~ (s

Exercise 10.0.7 (?)
Show that if f € R-Mod(M, N) then there is an induced chain map f € ChR-Mod(I*y/,1°x)
which is unique up to homotopy. Conclude that Ext*r-mod(M, N) is independent of injective
resolution.

Hint: take f =idy;.

Exercise 10.0.8 (7)
Show that if 0 -+ A —+ B — C' — 0 is a SES in R-Mod with I*4 &= A, I°¢ & B, then there is
a complex I°g & B making 0 — I*4 — [*g — [°c — 0 a SES in ChR-Mod.

Exercise 10.0.9 (?)

Show that a SES in R-Mod induces a LES in Ext®r-moq. Do this for both homs: start with

0—+A— B — C — 0, and produce a LES for Ext*r-mod(M, —) and Ext*r-mod(—, M).
Hint: for the first case, apply E&%(M, —) to the
SES of chain complexes of injective resolutions,
and use that if I is injective then the SES splits.

For the second, use that Hom(—,I) is exact iff I
is injective and take an injective resolution of M.

Exercise 10.0.10 (?)
Show that Ext*r-mod(M, N) is uniquely characterized by

L EXt%—Mod(M7N) = FI{—IF\)/Im (Ma N)
-Mod

2. 7>1Ext*r-Mod (M, N) = 0 if M is projective or N is injective.
3. The two LESs above exist.

Solution:
Hints:

e Resolve I*y & N, apply gl(\)ﬂrgé (M, —), and identify ExtR_yoq as a kernel.

o N is its own injective resolution when N is injective.

. |%LI'(\)/lnzj (M, —) is exact when M is projective.
— Vo

e For uniqueness, use that if 0 - N — I — C — 0 with [ injective, then the middle terms
in the LES vanish to get isomorphisms.
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Exercise 11.0.1 (?)
Check that Extz (M, —) is independent of injective resolutions, and Extz(—, V) is independent
of projective resolutions.

Exercise 11.0.2
Check that Ext® is determined by
o Ext’ = Hom

o Ext®™%(P,I) = 0 if P is projective or I is injective.
o It extends SESs to LESs

Exercise 11.0.3 (?)
Show

EXt.k[t]/(tQ) (k, k‘) = @ ]{3[2]

i>0

Use the projective resolution with entries k[t]/ <t2> with differential 0 = -¢

Exercise 11.0.4 (7)
Compute Ext*y(y, .. z,](k, k) using the Koszul resolution /\'k[g;17 e xn) =k

Remark 11.0.5: Defining Noetherian rings and modules:

« A € CRing is Noetherian iff every Id(A) C R-Mod®.
o M € A-Mod is Noetherian iff every N < M satisfies N € A-Mod'®

Thank you Emmy Noether!!

Exercise 11.0.6 (?)
Show that TFAE:

e R is Noetherian
o Every M € R-Mod'® is Noetherian.

Solution:
For 1 = 2, it STS that R" is Noetherian. To reduce, use the diagram
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R" B M
N

Link to Diagram

To show R™ is Noetherian, use induction since we know R! is Noetherian. Use the following
diagram, using the snake lemma on s1, s3 to show sg is surjective:

I R 1) S

0——— 5 Rt R" R
00— s NNR"! N N
. NN Rr1
o1 fg by IH 52 s g %~ fg as a submodule of R
0 R® RaJr/b Rb 0

Link to Diagram

Exercise 11.0.7 (?)
Show TFAE:

e M € A-Mod is Noetherian.
e The ACC for submodules.

Solution:
Hint: for1 = 2, set My, = UMl < M € A-Mod. Write M; = (x1,--- ,x,) and use that each

xy € M;, to choose N > 1 Witlh My = Mpy. For 2 — 1, for M non-Noetherian find S < M
infinitely generated as S = (z1,--) and take the chain {Sk},~, where Sy = (z1,- -+, 7).

Exercise 11.0.8 (7)
Show that the following are Noetherian:

o Fields
e PIDs
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o For A Noetherian, A[z] (Hilbert’s basis theorem).®
— Similarly A[[z]].

e Localizations of Noetherian rings

“A very important result! Marks the end of invariant theory historically.

Theorem 11.0.9(?). .
If A a Noetherian local ring and M € A-Mod™®P™ then M is free.

Exercise 11.0.10 (?)
Prove this!

‘ e R/I for R Noetherian and I arbitrary

Solution:
Hints:

e Surjectivity:

— Choose a basis M /mM = <{:f}k§n> and lifts zj to M.
— Take a surjective map A" — M where ¢; — ;.

— Take the SES A" & M — coker f — 0 and apply (—) ®4 A/m; use that
(A/m)" = M/mM and apply Nakayama.

o Injectivity:
— Write 0 - K =ker f — A" Iy M = 0and apply (—) ®4 A/m to get
oo = Tor®(M, Ajm) - K/mK — (A/m)" = M/mM — 0,

then K/mK = 0 and apply Nakayama to conclude K = 0.

Remark 11.0.11: Try an example: k[x] € k-Mod, which is free after reduction mod m = (x) but
not free before reduction.

Remark 11.0.12: Note that this works with projective replaced by flat.

Remark 11.0.13: Why care about Noetherian rings? Hilbert studied group actions G on modules
over (say) polynomial rings and wanted to find the submodules of G-invariants. There was an
industry of writing down generating sets in order to show existence and finiteness, and the basis
theorem (which is partially effective) showed that this is no longer necessary — finite generating sets
always exist.

Theorem 11.0.14 (Hilbert’s basis theorem).
If A is Noetherian then A[x] is Noetherian.

Tuesday, February 15 31



I Thursday, February 17

Proof (?).

Fix U C Alz| an ideal, so I = {f el ‘ = Zaﬁﬂi}- Write J = (afqeq ) be the ideal
generated by all leading coefficients of elements in I. Since A is Noetherian, J is finitely-
generated, so write J = (a1, -+ ,a,) and choose {f1,--- , f,} so that a; is the leading coefficient
of f;. Note that these exist since J = A{ai,--- ,a,} (i-e. these already form an ideal). Consider
L = I N A[z]%e=?: since A is Noetherian, A[z]48=? ¢ A-Mod®, and L also forms a finitely
generated A-module. Write the generators as L = {g1,- -+ , gm }-

Claim:
I:Ifg = <f17"' 7fnagl7"' 7gm>-

Proof (?).
If not, pick f € I'\ Iy, of minimal degree. Then deg f > d by construction of L. Write
f= Z b;x* where O = Z cia;, and check f — Z c;f;zdeef—deetfi ¢ 1,

|

Remark 11.0.15: Idea: the fj take care of low degree elements, the g; knock things down in
degree. Vs

Corollary 11.0.16(?).
Any quotient k[xq,--- ,x,]|/I is Noetherian, as is Z[x1, -+, x,]/1.

Example 11.0.17 (Non-Noetherian rings): Some examples:

o k[xi,---,] is not Noetherian: take I = (x1,--).
1 1 1
o k[ttz,t5,63,--].
. Z[ 2%} } Note this is countable!
n>0 /ﬂ
Remark 11.0.18: Next time: other finiteness conditions, integrality, the Nullstellensatz. o~

12 ‘ Thursday, February 17

Exercise 12.0.1 (?)
Prove the correspondence theorem between Id(A) and Id(S~'A).
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Link to Diagram
Use that

o T e1d(A)

o 1(t71(I)) generates I.
a la a . .
3 =31 and 1 isin the image of the lower map.
s s

At 5714
) ———— T

Exercise 12.0.2 (7)
Show that the localization of any Noetherian ring is again Noetherian.

Exercise 12.0.3 (?)
Say M € R-Mod™ iff there is an exact sequence R* — R® — M — 0. Show that if R is
Noetherian, R-Mod™® = R-Mod'®.

For f € CRing(A, B) and b € B define

fb:A[:z:]—>B
T+ b

Zaixj — Zf(ai)bi.

The element b is integral over A iff im f;, € A-Mod™®. The ring B is integral over A iff every
b € B is integral over A as above.

| Definition 12.0.4 (Integrality)

Exercise 12.0.5 (7)
Show that Z[1] C Q is not integral.

Exercise 12.0.6 (?)
Show TFAE:

e b is integral over A
n

o b satisfies a monic polynomial over A, so b" + Z a;b"t = 0.
i=1
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I Toward the Nullstellensatz

Solution:
Hints:

o Write im f, = I = <1, b, ,b”*1>, suppose b" € I, and show b"*! € I by expanding as
a sum. '
e Set M; = <1, b, ,b’> and use that these stabilize to conclude b" € M,,_1 for some n.

/\Warning 12.0.7
B Noetherian over A does not imply B is Noetherian! Consider Z, the algebraic integers, which is
1
integral over Z. Note that <25> is not finitely-generated.

13 ‘ Toward the Nullstellensatz

Remark 13.0.1: Idea: there is a dictionary between k[z1,- - ,z,] and A’;k for k = k:

o+ Points in A" correspond to maps k[xy, - ,x,] = k given by x; — ¢; € k.
e Rings R correspond to their prime spectra Spec R.
e Kernels correspond to maximal ideals

o Ideals I € Id(R) correspond to V(I) = {m ‘ IC m}
o Ideals I € Id(k[z1,- - ,x,]) correspond to V(1) = {c € k"

f(c) :OVfGI}.

Theorem 13.0.2 (Nullstellensatz V1).

Any m € mSpeck[zy,--- ,zy,] is given by ker 7, for some morphism
mp i klzy, - xn] > k
ZT; = C;
for some p = [c1,- -+ ,¢p] € K*". Equivalently, m = (z; — ¢, ,Zp — Cp).

Theorem 13.0.3 (Nullstellensatz).
If f € klxy,- -, x| satisfies f|V(I) =0 for a fixed I € Id(k[z1,- - ,zp]), then f™ € I for some

n > 0. Le. there is a bijective correspondence I = V (I) for radical ideals VI = I.

Example 13.0.4(?): Necessity of conditions:
o Why k =k is needed: take (z~2) € Q[z], this is a maximal ideal but V(I) = 0.

o Why the radical condition is needed: take I = <x10> so V(I) = {0} C k, but [y, = 0.
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Corollary 13.0.5(7).
For k =k and R € Alg/kfg,

mSpec R = Hom(R, k).
Alg

Corollary 13.0.6(%).
V(f)=k" =V(0)iff f € VOR.

Corollary 13.0.7(%).
Let R € Alg/kfg, so R = k[, -+ ,x,]/I for some n, and let V(I) € k*". Given J C R radical,
V(J) CV(I), and f € R vanishes on V(J) iff f* € J for some n > 0.

Theorem 13.0.8 (Maximal idealansatz).
For k=Fk and A € Alg/kfg with m € mSpec A,

A/m = k.
Theorem 13.0.9 (Maximal idealansatz 2).
For k an arbitrary field and A € Alg /kfg with m € mSpec A,
A/m is a finite extension of k.

Theorem 13.0.10(EEKS / proto Zariski’s lemma).
If kK C F fields with F' € Alg /kfg, then Fy is a finite extension of fields.

Corollary 13.0.11(?).
IfRe Alg/Zfg and m € mSpec R, then R/m is finite.

Proof (?).
Check mNZ =p € SpecZ and R/m is a finitely generated extension of F, and hence finite.
[ |

.

Lemma 13.0.12(Zariski).

If A e CRing™°*" and A C B C C with

e C e A-Alg® and
e C € B-Mod,

then B € A-Alg'.
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Proof (?).

Sketch:
e Choose 1, - ,x, generating C' as an A-algebra
e Choose y1,- - ,ym generating C' as a B-module.

o Write z; = Zbijyj with bij €B

J
o Write Tixj = Z bijkyk with bijk €B

e Let B C B bekthe A-algebra generated by the b;; and b,y

e Observe that By is Noetherian by the Hilbert basis theorem since it’s finitely generated
as an A-algebra.

e For any c € C, write ¢ = Z b;y; since the y; generate C' as a By module.

e Idea: can rewrite in terms lof lower degree monomials?
e Since each b; = Z a?wl, we have ¢ = Z Z aﬁlyi, which is a polynomial in Z bijy;.
i1

e Then y;---y;, = zzpsyS where the ps are polynomials in the b;;z?

e Since By is Noetherian and B C (', B is finitely generated as a By module and thus as
a By algebra.

e Since A C By C B and By is finitely-generated as an A algebra and B is finitely-generated
as a By algebra, we have that B is finitely-generated as an A algebra.

]_4 ‘ Thursday, February 24

— 14.1 Going up, going down ~

Theorem 14.1.1(Going Up I).
Let A C B € CRing with B integral over A. Then for every p € Spec A there is a q¢ € Spec B
with p= ANg.

Remark 14.1.2: Idea: Spec B — Spec A has finite fibers.

Lemma 14.1.3(%).
If A — B is an integral extension, then A € Field <= B € Field.

Proof (of lemma).
= : Last time.
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<= : Given 2 € A we have 7' € A. Then if f(z) = 2" + Z arx ™", with f(x) = 0,
0<k<n—1
then 2" 1 f(z) =0 = 27! = — Zakxk €A

Proof (of Going Up).

Note A [p—1] = B [p~1] is still integral, and let ¢’ € mSpec B [p~—1] # (). Write p for the maximal
ideal of A, then (claim) A [p=1]N¢’ = p. STS A[p~1]N ¢ is maximal, since these are local rings,
and so it’s ETS A[p1] /(A[p~'] N ¢') € Field. Since this is integral iff B [p~!] /¢ is integral,
which it is, by the lemma this is a field too.

Exercise (?)

Show tat taking the preimage of ¢’ in B works.

|

Theorem 14.1.5(Going Up II: partial lifts of chains of primes extend).
Given A — B integral and

p1 Cp2 C -+ Cpp € Spec A

@1 C€q C---Cgm € SpecB
where p; = ¢; N A and e.g. with m < n, then there exist ¢y,4+1, -, ¢, With ¢; C ¢j+1 and
¢ NA=p;.
Proof (?).

Note that it’s enough to lift one stage and induct. So given q1 C - - - g, it’s ETF ¢mni1 2 gm
with ¢pe1 N A = ppy1. Strategy:

o Replace A with A/p, and B with B/q,.
o Find g € B/qy, with gn A/p,, the image of p, 11
e Use that g exists by Going Up 1.

Remark 14.1.6: The geometry: A — B ~s SpecB 5 Spec A. Increasing chains p; means
Pi+1 € clspec aPi, and “going up” means sequences can be completed with points in closures in
Spec B Le. m is a closed map, i.e. closed under specialization (passing to a point in the closure).
Idea: covering map, possibly with ramification or splitting.
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Example 14.1.7(?): Consider k[z] — k[z,y]/ <y2 - x> over chk =0 and k = k. Take p = (v — 2)
and g = <y — \/§> or <y + \/§> extend p.

Similarly, take Z < Z[i] and consider how primes lift (see inert, split, ramified).

Definition 14.1.8 (Integrally closed)
For A C B, say A is integrally closed in B iff A contains every element of B which is integral
over A.

Example 14.1.9(9): k[z] C k[x,y] is integrally closed, but k[z] C k[x,y]/ <y2 - a:> is not.
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Theorem 14.1.10 (Going Down).
For A < B € IntDom with A integrally closed in ff(A) and B integral over A. If

p12p22 -+ 2 pp € Spec A
g1 2q22 - 2 ¢qm € Spec B

with ¢; N A = p;, then there exist ¢ 2 gm+1 2 -+ 2 Gn+1 2 ¢n With ¢; N A = p;.

Proof (?).
See A&M, similar to proof of going up.
[ |

Remark 14.1.11: Idea: closed under generization (opposite of specialization, given z finding a
point y with x € cly), so the geometric map is almost open.

Example 14.1.12(?): Being integrally closed corresponds to a variety being normal and is a
smoothness condition.

Exercise 14.1.13 (Challenge)

Use k[z,y]/ <y2 — a:3> >~ k[2?, 2%] < K[z, y] to construct a counterexample to the going down
theorem when A — ff(A) is not integrally closed.

o 14.2 Local Properties ~

Remark 14.2.1: On local properties: for M € R-Mod®Noeth 5 HW problem shows if p € Spec A
and M [p=1] = 0 then M [f~*] = 0 for some f. This says that the property of being zero extends:
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Definition 14.2.2 (Local)
A property @ is local iff given M € A-Mod, TFAE:

e () holds for M
e @ holds for M [f;~!] for every {f;} with ({f;}) = (1).

Slogan 14.2.3
Local properties can be checked on an open cover of Spec A, and A-Mod corresponds to QCoh(Spec A).

Remark 14.2.4: One can always take the set {f;} to be finite since if such a collection generates
the unit ideal, there is some finite sum Z a; fi = 1. One can also reformulate the second condition
as follows: for each p € Spec A, there exists some f,, € p such that every M [f,~!] satisfies Q. = :
Check that ({f,}) = (1); if not then there exists some m € mSpec A with {f,} C m which is
maximal and hence prime.

<= The claim is that given p there exist f; € p. If not, {f;} Cpand 1 € p.

Corollary 14.2.5(?).
If ({fi}) =1 then Spec A[f,~'] = Spec A\ V(f;) C Spec A is an open cover of Spec A. Thus
Spec A is quasicompact for any ring A.

Remark 14.2.6: Some local properties:

e Being zero

Being injective/surjective/bijective
 Being finitely generated (and projective)
e Being flat

15 ‘ Tuesday, March 01

Remark 15.0.1: A property is local on A if it can be checked on an affine open cover of Spec A.
Note that e.g. A?k is affine but Spec k[z,y]/ (x,y) = A?k \ {0} is not an affine open subset.

Exercise 15.0.2 (7)
Show that the property of being zero is local.
Hint: My, =0 = for every m € M there is an

n; with f""m = 0, write Z a; fi = 1, and consider
(Z aif;)Nm for N > 1.

Tuesday, March 01 40



Tuesday, March 01

Hint: localization is exact, so take the SES 0 —
kerg — M 2 N — coker g — 0.

Exercise 15.0.4 (?)
Show that being finitely generated is local.

Hint: tensor a presentation. For the other direc-
tion, take generators My, = ol Te L, Cin
Qi1 " Q2 Qin
for {f1, -+, fm}, where without loss of generality
a;j = 1, and take {x;;} and check surjectivity lo-
cally.

Exercise 15.0.3 (7)
Show that being injective/surjective/bijective is local.

Exercise 15.0.5 (?)

Show that flatness is local, i.e. if M € A-Mod’ then My € A¢-Mod”.
Hint: to show My is flat assuming M is flat, show
that Torff (Af/a,My) =0 by taking P* — M and
P*y — My. Then compute

Tory(My, Ag/a) = Hi(P*s ® Ay /a)
=H(P*®A/d ® Ay)
=Hi(P°®A/d)Q Ay
=0 A; =0,

using that localization is exact and thus commutes
with taking homology. In the other direction, show

that for 0 — A Ls B — C = 0 leads to A@ M %
B ® M, and injectivity can be checked locally.

Remark 15.0.6: Define the support of M as supp(M) = {p € Spec A ’ M, # O}, thought of as
points where “functions on A” defined by M do not vanish.

Exercise 15.0.7 (7)
Show that if M € A-Mod® then suppM = V(Anny(M)) where Anny(M) =

{aeA‘am:OVmEM}.

Exercise 15.0.8 (?)
Show that for M € A-Mod®™ with A Noetherian, M = 0 <= supp M = 0.

Remark 15.0.9: Modules give sheaves over Spec A, and the following theorem is a special case of
faithfully flat descent:
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00— M — @Mfi —)@Mfifi
fi
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with the positive sign in the ith component and the negative in the jth.

l‘GMfil—>

Exercise 15.0.11 (?)
Prove this: check injectivity locally, and use that localization commutes with direct sums. Note
that essentially the same proof goes through for faithfully flat descent.

Theorem 15.0.12 (Classification of flat finitely-generated modules over a Noetherian
ring).
If M € A-Mod”'® for A Noetherian, then M is locally free, i.e. there exist f; generating the

Theorem 15.0.10(Serre).
If M € A-Mod®® and {fi} is a finite generating set, then the following sequence is exact:
| unit ideal with My, free for all i.

Proof (?).
Philosophy: reduce to local case.

1. For A local: finitely-generated flat flat modules over a Noetherian local ring is free.

2. Hence M), is free over A, for all p € Spec A.

3. Spreading out: by the HW, there exist f’ not in p such that M P is free and equals
M.

4. The finite collection {P*} generated the unit ideal.

Remark 15.0.13: Next: Artinian, local, complete local rings, DVRs, etc — the building blocks of
the theory of local rings! Vs

16 ‘ Thursday, March 03

Remark 16.0.1: Next topic: Artin rings. The general way we reduce the study of arbitrary rings:
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CRing

Checking on covers by Spec A

-

LocCRing

LocCRin gcomplete

ArtCRing

Field

Link to Diagram

e Recall that Artin rings are defined by the DCC condition on ideals.
e The length of a module is the maximal length of a strictly increasing filtration.

Exercise 16.0.2 (?)
Show the following;:

o CJt]/ (t") is Artin.

o Cpn is Artin.

e Z is Noetherian but not Artin.

e Any finite product of fields is Artin.
e An Artin domain is a field.

e Prime implies maximal in any Artin ring.

Hint: quotient by the prime, and use that any el-
ement a satisfies a™ = ba" "1 for some n and b to

produce an inverse.
o Spec A = {pt} for a local Artin ring.
o Artin rings A have finite length in A-Mod.
e Quotients of Artin rings by their Jacobson radicals are products of fields.

e SpecA = H {pt;} is a disjoint union of points, and is Hausdorff.

7

— The only Noetherian rings with Hausdorff spectra are Artin.
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Theorem 16.0.3(?).
Artin rings are Noetherian.

Proof (?).
Use that

e Any module has a maximal proper submodule.

o Choose a; C A simple, so A/a; is Artinian, to produce an increasing chain 0 C a; C ag---
where a;/a;41 is simple for all 4.

e Enumerate maximal ideals m; and produce a chain m; O ms D --- and take colon ideals.

e Reduce to this case by showing every chain refines.

Steps:

e Make a descending filtration with semisimple associated graded, whose filtration is finite.
e Use Jordan-Holder, every such sequence has the same length.
e Refine an arbitrary filtration to one in which the quotients are simple.

|
Corollary 16.0.4(?).
fmSpec A < oo for A € ArtCRing.
Proof (?).
Hints:
o If not, take a decreasing chain of m; O mymy - - -, stabilize, use that the m; are finitely-

generated and apply Nakayama.
o If I is defined as the product at the minimal stabilized step, I C J(A).
o Without loss of generality, assume J(A) = 0, so I = 0 since mSpec A/J(A) = mSpec A.
o A/my---my, = HA/mi is a product of fields
e Corollary: n > N, my will have empty support.

17 ‘ Tuesday, March 15

— 17.1 Artin Rings ~

Remark 17.1.1: Last time: A/J(A) is a product of Artin local rings.
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Exercise 17.1.2 (7)
Show that if A is Artin local, then m’; = 0 for some n.

Hint: use that {mk}kzo stabilizes, so m" /m" Tt =
m”/mm" =0 so m" =0 since A is Noetherian.

Exercise 17.1.3 (?)
Show that if A is an Artin local ring that is finitely generated over an algebraically closed field

k. Then A is a quotient of k[zy,--- ,@n]/ (@1, ,2)" for some n and N.
Solution:
Hint: use that m is finitely generated, construct a surjection k[z1,---,x,] — A, and show

In = (1, - ,@,)" is in the kernel. Also use the corollary of the Nullstellensatz (EEKS) that
finite extensions of k which are fields are necessarily k itself. Apply the snake lemma:

0

o
3
—
'
~
3
12
?TA
o

Link to Diagram

This shows surjectivity, and (zq,- - ,xn>N being in the kernel follows from the previous
proposition.
e 17.2 DVRs ™~

Exercise 17.2.1 (?)
Recall that a Noetherian local domain A is a DVR if m # 0 is principal. Show that dimj m/m? =
1 for k = A/m.

Hint: use Nakayama to bound the dimension by 1.

Example 17.2.2(%): Examples of DVRs:

o K[[t]
. Zﬁ
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A non-example: k[[z,y]].

* Lo = ZHW

Exercise 17.2.3 (?)

Show that if A is a DVR with uniformizer 7 and a € A\ {0}, then there is a unique n € Z>¢

such that a = 7"a,, with a, a unit.
Hint: for  existence, set N =
max{N ’ a € <7rN>} which  exists  because
ﬁN<7TN> =0. Usethat wl =1 = I =0 by
Nakayama, to write a = ©"ag, and if ag is not a
unit then ag € () contradicting mazimality.

Corollary 17.2.4(7?).
If Ais a DVR, Id(A4) = {(0),(7")},,>( and Spec A = {(7), (0)}. This follows from writing

I ={ay, - ,an) = (7" by, - ,7"Nby) = (7™), m = min{nj}jSN.

Exercise 17.2.5 (?)
Show that DVRs A biject with fields K equipped with a valuation v : K — ZU{oc} satisfying:

o v(a+b) > min(v(a),v(d)),
o v(ab) =v(a)+ v(b),

o v(a) =00 <= a=0,

e v(K*)#17Z

Hint: for A € DVR, set K = ff(A) and v(a/b) =
v(a) — v(b) where v(m"ag) = n. Given (K,v), set
A = {:136 K ‘ v(zx) 20} with m = {v(z) > 0},

showing m¢ C A* and m is generated by any x
with v(x) =17

17.3 Classifying finitely-generated modules
over a DVR

Remark 17.3.1: Recall that M € A-Mod is torsionfree iff Anny (M) = {a €A ‘ am = O} contains

only zero divisors iff M =% M is injective for all nonzero a € A.

Exercise 17.3.2 (?)
Show that if A € CRing " and M € A-Mod®® then 0 — Miors — M — M’ — 0 is a SES
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where M’ is torsionfree, and moreover there exists some a € A such that aMios = 0.
Hint: for the latter statement, use that Mo is
finitely-generated and take a product of annihi-
lators of genmerators. For the former, take a €
Anny(m) for some m € M', lift to m € M and
show am € Mios for some a.

Exercise 17.3.3 (7)

Show that if A is a PID, then M € A-Mod is flat iff M is torsionfree.
Hint: use A =% A and apply (=) ®4 M. For the
reverse, show Tor' (M, A/T) = 0 for any ideal in
A and compute using the projective resolution 0 —
A X% A — A/{a) — 0. Note that Hy(M =%
M) = ker(M =% M) = 0 since M is torsionfree.

Exercise 17.3.4 (7)

Show that for A a DVR and M € A-Mod'8, then M torsionfree implies M is free.
Hint: torsionfree —> flat = free for finitely-
generated Noetherian local rings.

Exercise 17.3.5 (?)
Show that if M € A-Mod'® for A a DVR then M = M & A™ for some n.
Hint: use that the SES involving Mio.s — M splits.

Exercise 17.3.6 (7)
Show that any finitely-generated torsion module over A is isomorphic to @ A/m"™ A. Use this

to classify all finitely-generated modules over k[[t]].

18 ‘ Tuesday, March 22

18.1 Classification of finitely-generated
modules over a Dedekind domain

Definition 18.1.1 (Dedekind domain)
A ring A is a Dedekind domain iff

e A € NoethDomain, krulldim A = 1,
o The local rings A, are DVRs for all p € mSpec A.
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Theorem 18.1.2 (Structure theorem for Dedekind domains).
If M € A-Mod, A € DedekindDomain, then

M A-ﬁod e = (@(A/pi)ni) €@ (EB ci)

where £; € A-Mod'°cfreerank=1 (a1q are in particular torsionfree) and the A/p; are torsion.

Exercise 18.1.3 (7)
Show that if p € Spec A then M), = A" where m = rank M.

Hint: use that M, & ff(A,) = {f(A)" = f£(A4)"

Show that for A a Dedekind domain and M € A-Mod', TFAE:

e M € A-Mod’

o M € A-Mod(proj)
« Mec A_Modlocfree
e M is torsionfree

Conclude that the following SES splits:
0— Mtors —- M — Mtorsfree — 0.

Hint: the first three already hold for Noetherian
domains. To show flat = torsionfree, that 0 —
A% A— A/ {a) — 0 fora € Tors(M) and tensor
with M. For the converse, show M, is flat for all p

and that A, is a DVR — if g/@ =0 = &sam =
s s

0 for some S, then m is torsion.

‘ Exercise 18.1.4 (7)

Remark 18.1.5: Note that torsionfree = flat fails for most rings!

Hint: use that supp M is finite to produce a map
M — @Mpi and show it is locally an isomor-

phism since (Mp), = M, when q # p. Also use
that M, = @D A, /p' = &;A/p".
J

Exercise 18.1.6 (?)
Show that if M € A-Mod'® is torsion over a Dedekind domain A then M = @(A Jpi )™

Exercise 18.1.7 (?)
Show that for M € A-Mod' torsionfree over A a Dedekind domain, there is a (not necessarily
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unique) decomposition M = @ L; with £; locally free of rank 1.
(2
Induct on rank, where it’s ETS there exists an L
where M/L; is torsionfree since 0 — L — M —
M/L; — 0 splits (tensor to fraction field). To
find such an L, take any m # 0 and take L to be
the preimage of (M/ (m))tors under M — M/ (m);
then M /L will be torsionfree and is rank 1 since
L@ H(A) = (m) @ff(A).

18.2 Classification of locally free rank 1
modules over a Dedekind domain

Exercise 18.2.1 (?)

Show that if I < A is nonzero for A a Dedekind domain, then I is locally free of rank 1.
Hint: show that I, < A, is nonzero, so I, = (")
for ™ a uniformizer of A,.

Definition 18.2.2 (Invertible modules)
A module M € A-Mod is invertible iff M is locally free of rank 1. Equivalently, defining
M"Y = A-Mod(M, A) there is an evaluation isomorphism M ®4 M"Y = A. Define

Pic(A) = (A-Mod, ®4)/ = .
Note that for A = Ok, K € Field q,
Pic(A) = CI(K).
Definition 18.2.3 ((Weil) Divisors)

For A a Dedekind domain, a divisor is a formal linear combination

D= Z nph € Freez mod(Spec A).
p#0E€Spec A

such that n, = 0 for almost all p. These form a group Div(A). A divisor D is effective iff
n, > 0 for all p, yielding a submonoid Div*t(A) of effective divisors.

Remark 18.2.4: More generally, this will be a sum over height 1 primes.

I Exercise 18.2.5 (7)
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Show that there is a natural bijection
Divt(A) = 1d(A) \ {0}
Z Npp = Hp"P.

Hint: if krulldimA = 1, use that Id(A) =
{1, < Ay}, cp where I, = Ay, for almost all p, and
each I, = <7rgp>.

Exercise 18.2.6 (?)

Show that if £ is invertible then £V is invertible.
Hint: show L s locally free of rank 1, using
L," = A-Mod(L, A), = Ay-Mod(L,, A,) by post-
composing with localization.  Then check L ®
A-Mod(L, A) — A where (n, f) — f(n) is an iso-
morphism by checking locally where everything is
free.

Proposition 18.2.7(Picard group SES).
Write D € Div(A) as D = DT — D™ where D* € Div'(A) are effective. There is a SES

0 —— s kerf —— Div(A)

Pic(A) 0

oo 1) (1)

p

Link to Diagram

Remark 18.2.8: This is generally far from injective, and will instead biject with fractional ideals:

Definition 18.2.9 (Fractional ideals)
For A € Dedekind, a fractional ideal is a nonzero A-submodule £ < A where £ € A-Mod'®.

Example 18.2.10(%):
o I < AorId ff(A) any ideal
1
e« —I < ff(A).
R

Exercise 18.2.11 (?)
Show that any fractional ideal is invertible.
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I Tuesday, March 29

Hint: use that any such I is torsionfree since it’s
a subset of ff(A), and L ®4 ff(A) = ff(A) implies
rank 1.

19 ‘ Tuesday, March 29

Remark 19.0.1: Last time: proving the following theorem. s

Theorem 19.0.2(%).
If A € NoethlocDomain with krulldim A = 1, then A € DVR <= A is integrally closed.

Proof (?).

Last time: DVR = integrally closed.

< : It suffices to show that the maximal ideal is principal. Let a € m\ {0}, then A/ (a) is
Artinian (which is true here for any quotient) and thus m¥ = 0 in A/ (a) for some k (chosen
minimally), so m* € (a). By minimality, pick b € m"*~!\ (a) — the claim is that a/b generates

b
m. First, (— | m < A since b € m* C (a). It’s ETS () m is not contained in m — given
a a
b b
this, (> m = A by maximality and this implies m = — A.
a a

a
Why this last claim is true: the map x — gl’ : m — m is annihilated by some polynomial with

coefficients in A by Cayley-Hamilton, and by integral closedness this implies a/b € A. Then
a/b € m, a contradiction since a/b is a unit and m is proper. #

Theorem 19.0.3(?).
If A € NoethDomain (not necessarily local) krulldim A = 1, then A € DedekindDomain < A
is integrally closed.

Remark 19.0.4: A Dedekind means all local rings are DVRs, so it’s ETS A is integrally closed iff
A [p~1] is integrally closed (since we can apply the last theorem to A [p~!]). e

Lemma 19.0.5(Integral closure commautes with localization).
Let A C B be an inclusion of rings and let cllf;lt A be the integral closure of Ain B. If SC A
is a multiplicative subset, then

clf* (A [s71]) = (cIB* A) [s71].
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Proof (of lemma).
D: Take b € Ajyy and s € S, we then WTS b/s satisfies a monic polynomial over A [s—1]. If

b\ ™ bn—l
f(b) = b" +a1b"! + ... =0, note that s f(b) = 0 and is of the form <> +sai— A+
s s
is a polynomial with coefficients in A [s-1].
b\ ™ b n—1
C: Let b/s in the LHS, so () + & () + --- = 0. Multiply through by s" (H si)n to
s s1\s

=1
get (H sl-)n b +a1sb" L (H si>n + - -+ by absorbing some factors into the coefficient s’, so

b H s; satisfies a monic polynomial.
|

Proof (of theorem,).
By the lemma, A integrally closed = A[p~!] is integrally closed because (A [p~'])int =
(Aint) [p7] = A[p]. Suppose that A [p~!] is integrally closed. There is a map A — Ajy; which
we want to show is an isomorphism. Check locally: A[p='] = (Aint) [p7!] = (A[p7])int =
A[pfl].

|

Theorem 19.0.6 (Why Dedekind domains arise in nature: Dedekind is closed under
certain integral closures).

Let A € Dedekind with K = ff(A) and let K'/K be a finite separable extension. Then
I A € Dedekind is Dedekind.

Note that in characteristic zero, finite extensions
are automatically separable.

Example 19.0.7(?):
« For K/Q a finite separable extension, then cl'®* Z is Dedekind.

« For L/k[t] finite separable, cI'™ k[t] is Dedekind.

Lemma 19.0.8(%).
Let A" := cl¥ A, then A’ € A-Mod®.

Proof (of theorem, using the lemma).

o By the Hilbert basis theorem, A" is Noetherian

e A’ is a domain since A’ C K’

« A’ is integrally closed: STS satisfying a monic polynomial over A’ implies satisfying a
monic polynomial over A. To check if b € K’ is integral, one needs that A’[b] € A’-Mod
is finite, which implies A’[b] € A-Mod is finite. This is true because A[b] < A’[b] is a
submodule and A is Noetherian, so b is integral over A.

e krulldim A" = 1: STS Spec A’ C mSpec A’. Let p be prime in A and let p := pNA € Id(A).
There is a finitely-generated extension A/p < A’/p, and it’s ETS A/p € Field by EEKS
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(finitely-generated ring extensions of fields are fields). ETS p € mSpec A — consider
Spec A’ & Spec A, we WTS 7 1({0)) = {(0)}. Fact: 7 ({0)) = Spec A’ [ax~1] =
Spec(A’ ® K) = Spec(K'). This uses the fact that A’ ®4 K = K’, which can be checked
locally on DVRs.

Proof (of lemma,).

Assume ch K = 0. We know that K’/K is finite, so pick a basis {e;}. We can scale the e; by
elements of A so that they are in A’ — use that K/ = A’ ®4 R, so e; = Z a;/s; and one can
scale by the s;.

There is nondegenerate pairing (z, y) = Trgs g (zy) where Tr(2) is the trace of the K-linear

map K’ 5 K’. Why this is nondegenerate: use the separability assumption. Given z €
K'\ {0}, produce a y such that (z, y) # 0 by setting y = 2~ ' (noting that this won’t work in
characteristic p).
Use this to define a dual basis {f;} such that (e;, f;) = d;j. We can then express z =

Z (x, fi)e;, and it’s ETS that if x € A’ then (x, f;) € A. For x € A’, we have Tr(z) € A,
1<i<n
e.g. because it is a sum of Galois conjugates (after passing to a Galois extension), or that
Tr(z) = Z r; the roots of a characteristic polynomial with coefficients in A. This exhausts
the possible factors of the characteristic polynomial.

[ |

2() | Thursday, March 31

Remark 20.0.1: Last time: A € Dedekind and M € A-Mod'® implies A = @A/Ii @ @ L;.
L;€Pic(A) ~

Exercise 20.0.2 (7)
Show that this implies the classification of finitely-generated modules over a PID: M =

@ A/p} o A™.

Solution:
Sketch:

o PIDs are Dedekind, so ETS Pic(A) = {A}.

o Use the SES K* M Div A — PicA — 0, ETS the given map is surjective.
e Reduce: ETS that for g € p € Spec A with p nonzero, there exists an x € K* such that

vp(z) =1 and vy (x) = 0 for all p’ # p.

— If p = (), this works: v,(z) = 1 since this is the maximal k such that z € p*, but
r € p? = p=p? contradicting Nakayama. ¢
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— If vy (z) > 0, then z € p’, p C p’ contradicting maximality of p. ¢

Remark 20.0.3: What about rings of dimension d > 2?7 E.g. dimk[z1,--- ,x,] = n, regarded as
functions on A?k, noting that we haven’t quite defined dimension yet.

Conjecture 20.0.4 (Serre-Swan, proved by Quillen).
Finitely-generated locally free modules over k[z1,--- ,x,] are free.

20.1 Toward dimension: filtered/graded
rings

Remark 20.1.1: It is easy to slightly modify this statement to make such a classification impossible!

Question 20.1.2
How many homogeneous polynomials of degree d in n variables are there? Counting the dimension

d
as a k-vector space is yields (n * ~d".

Remark 20.1.3:
Recall:

o An increasing filtration {M;} of M € A-Mod satisfies M; C M; 1 and U;M; = M and there
exists some 1o with M;, = 0 for all i, < 4.

e A module morphism M Y respects filtrations iff f(M;) C N;.
e For N < M there is an induced filtrations N; := M; N N.
e For M s Q@ a surjective morphism, there is an induced filtration Q; = f(M;).
e A graded abelian group is a group M = @ M; with M; = 0 for i < 0. Typical example:
1EZ
klzy, - ,xn] = @ klz1,- -+ ,2n]q is graded by homogeneous degree d parts.
d

« Passing between filtrations and gradings: given a grading &;M;, set Fil'M = @ M;. Given a
k<i
filtration, take the associated graded @ M;/M;_;.

o Taking the filtration is innocuous and zioesn’t change the module, but taking the associated
graded does. Example: M = Z, take the filtration (0) C (2) C Z whose associated graded is
(2) @Z/QZ = Z & Cs, which now has torsion.

e A morphism of filtered modules induces a well-defined map on the associated graded modules.
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Exercise 20.1.4 (7)

Show that if f : M — N is a morphism of filtered modules, then gr f is injective/surjective
— f is injective/surjective respectively. Show that the converse is not necessarily true unless
f is injective/surjective and the filtrations are induced.

Solution:

For injectivity, if gr f is injective choose 7 minimally so that M; intersects ker f, and contradict
i > —oo. By minimality, z ¢ M; 1 so T # 0 € gr (M) = M;/M;_1, but gr (f)(z) = 0.

For surjectivity, ETS f : M; — N; is surjective for all ¢. Induct on ¢, using that M; = N; =0
for i < 0. Given z € N;, take T € N;/N;_; and lift to y € M; such that gr (f)(y) = Z; take
z — f(y) € Ni-1.

Remark 20.1.5: Definitions:

o A graded ring is a ring A = @ A; with A;A; — A;1;, a filtered ring has a filtration {4;}
i
with AZAJ — Ai+j-
« A graded module M over a graded ring A satisfies A;M; C M;y;
« A filtered module over a filtered ring satisfies A;M; C M; ;.

Exercise 20.1.6 (7)
Show that if A is filtered then gr A is naturally graded.

Solution:
Show

A; . Aj . Ai+j '
A1 Ajr A

Exercise 20.1.7
Show that if M is a filtered module over A a filtered ring, if gr (M) € gr (A)-Mod™® then
M € A-Mod'®.

Solution:
Pick homogeneous generators {Z;} for gr M and show there is a surjection

fA" =M

e, — Ij.

Reduce to showing gr f is surjective.

Exercise 20.1.8 (?)
Show that if A is a filtered ring and gr A is Noetherian then A is Noetherian.
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Solution:
Use that I € Id(A) is a submodule with an induced filtration and grI C gr A is finitely-
generated to show that I C A is finitely-generated.

Definition 20.1.9 (Good filtrations)
If A € CRing is filtered and M € A-Mod is filtered, then FilM is a good filtration if
gr (M) € gr (A)-Mod®.

Example 20.1.10(?): Letting M € A-Mod for A = k[xy,--- ,z,], if {FiliM} is a good filtration

then P(i) := dimy Fil'M will be a polynomial for i 3> 0 and one can define dim M = deg P. To be
justified:

e A good filtration exists,
e P is asymptotically polynomial,
e P is independent of good filtration chosen.

d
In the free rank 1 case: dimk[z1, - ,z,]q = < —;n) ~d", sodimk[zy, -, xpl<qg = Z d¥ ~ dm.
k<n

21 ‘ Tuesday, April 05

- 21.1 Hilbert dimension ~

Remark 21.1.1: Preliminary definitions of dimension:

« For M e A-Mod®, find a good filtration {Fil; M} where dimy M; is eventually a polynomial p
in 7, so define dim M = degp.

o For A, a finitely-generated domain, define dim A := trdeg;, A as the transcendence degree.

o Krull dimension: dim A = n iff the longest chain of prime ideals pg € p1 € -+ € p, (note
that n is the number of inclusions!)

When they’re all defined, they all agree.

Definition 21.1.2 (Good filtrations)
Let A be a filtered ring and M € A-Mod®. A filtration Fil, M is a good filtration iff

o The pair (M, Fil,M) is a filtered module, i.e. A;M; C M,
« The more contentful condition: gr (M) € gr (A)-Mod"®.
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Exercise 21.1.3 (7)
Show that every such M admits a good filtration.

Solution:

Use that A™ £+ M and A™ has a good filtration, and take its image. Show that M; := f(A})
is good using that gr (A)" — gr (M), which generally won’t stay surjective but will in this case
because M receives the induced filtration.

Theorem 21.1.4 (Artin-Rees lemma (extremely important for any arguments in-
volving filtrations!!)).

Suppose gr A is Noetherian and let (M, M;) be an A-module with a good filtration and let
N < M. Then the induced filtration N; := N N M; is a good filtration.

Proof (?).

Since N — M and we’re taking an induced filtration, gr (V) < gr (M) remains injective.

Since gr (M) is finitely-generated over gr (A) which is Noetherian, gr (V) is finitely-generated.
|

Theorem 21.1.5(%).
Let A be a filtered ring, M € A-Mod®®, and let F,,G. be two good filtrations on M. Then
there exists a k such that

F,_«M C G;M C Fiy M.

Remark 21.1.6: There is a notion of a topology on M induced by a filtration, and this theorem
says all good filtrations induce the same topology. We’ll need the following to prove this theorem:

Lemma 21.1.7(?).
Let (M, F') be a module with a good filtration. Then there exists some n and iy such that

i >4 = Fiyn C Aiyig .

Proof (of theorem, assuming lemma,).
Choose n as in the lemma, choose m such that F,, C Gy 4m, then

-FiJrn g Ai+ian g Ai+ioGn+m g Gi+n+m-

Now run the same argument on G.

Proof (of lemma).
Since gr (M) is finitely-generated over gr (A), take a finite set of homogeneous generators
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m;. Choose n,ig such that n — iy < degm; < n, the claim is that these work. Induct on ¢:
suppose Fiy, C A;yiFy and we WTS this still holds when ¢ — i + 1. Letting m € Fi1n41,
if m € Fiy, we're done. Otherwise m # 0 € gr;,, . M, so m = Zéimi and picking lifts,
m — Z cimy; € Fiyn.

|

Theorem 21.1.8(%).
Let A == k[zy,---, 2], (M, M;) € A-Mod® have a good filtration, and let ®(i) = dimy M;.
Then

o There exists a polynomial p with degp < n such that ®(i) = p(i) for i > 0.
e The degree and leading coefficient of p are independent of the choice of good filtration

We then define
dimy M = degp.
Exercise 21.1.9 (Method of finite differences)

Let ® : Z — Z such that ®(i + 1) — ®(i) is eventually polynomial of degree d’ < n — 1. Show
that ® is eventually polynomial of some bounded degree d < m.

Solution:

Write ®(i) = C + Z (i) —P(1—1)=C+ Zq(z) for some polynomial ¢ with degq < n — 1.
i>1 i>1

So it’s ETS Z n® polynomial in i for a > 0.

0<n<e

Proof (of theorem, part 1).
Proceed by induction on the number of variables. Since dimy(M;) = Z dimg (gr ;M) where

i
gr,M = M;/M, 1, it’s ETS dim M; — dim M;_; = dimgr;M. An awesome maneuver: take a
regrading to get a LES

0—>K::kerf—>ngi>Eng—>C::cokerf—>O.

Note that K,C € k[z1,- - ,zn—_1] has fewer variables, and by alternating additivity in exact
sequences,

dimgr,K — dimgr,M +dimgr,, ;M — dimgr,C = 0.
Thus
dimgr,, M — dimgr,M = dimgr;C — dimgr K,

and since the RHS involves good filtrations, these are eventually polynomial, thus so is the
LHS.
|
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Proof (of theorem, part 2).
Let F,G be good filtrations with F;,_; C G; C F; 1 with ®(i) = dim F;, &¢(i) = dim G;.
Then

Bp(i — k) < Da(i) < Dali + k),

and if 4, g have different degrees or the same degrees but different leading terms, it would
violate this inequality for large .
|

— 21.2 Properties of dimension ~

Exercise 21.2.1 (?)
Let M € A-Mod®.

e Show that if N < M then dim N < dim M.
e Show that if M — N then dim N < dim M.

Solution:

e Restrict the good filtration on M, this is good by Artin-Rees.
o Take an induced good filtration. Use that quotients of finitely-generated are finitely-
generated and gr (A)" — gr (M) — gr (N).

Exercise 21.2.2 (?)
Show that if 0 — M; — My — M3 — 0 is a SES in A-Mod for A = k[z1,--- ,z,], then

dim My = max(dim M, dim M3).

Solution:

Choose good filtrations F;, M;, G; on M1, My, M3 respectively, so dim M; = dim F; + dim G;.
The RHS involves polynomials in ¢ with non-negative leading terms, and their sum has the
max of the 2 degrees and again has a nonnegative leading term.

Exercise 21.2.3 (7)
Show that if A = k[xy, - ,x,] then dimgq A = n and dimy A" = n.
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22 ‘ Thursday, April 07

22.1 Hilbert dimension of finitely generated
algebras over a field

Remark 22.1.1: Prove:

e f: M — M implies dim coker f < dim M.
o If A=FE[xy, - ,z,) and f € A\ {0} then dim A/f < dim A.
e If Acklxy, - ,xn-Mod® and f € A is a nonzero divisor, then dim A/F < dim A.

Definition 22.1.2 (Dimension)
If Ae Alg/kfg, choosing a surjection k[z1,--- ,z,] — A, define dim A := dimy,, ... 5,] 4.

Exercise 22.1.3 (?)
Show this is well-defined. It follows from the following:

Theorem 22.1.4(7?).
Let M € k[x1, -+ ,%n,y1,- - - ,Xn]-Mod with M € k[xy, - -+ ,xa]-Mod™. Then

dimk[ml’l..,mn] M = dimk[lﬂh.“ YLy yn] -

Solution:
Why the theorem implies the exercise:

klx1, - Tns Y1y s Ym) 9 4 Elyr, -, Ym]

Fxi—=mi,yi—g L (i)

|
1
|
|
|
|
|
|
~

o~
o
5
IS
3

o

Link to Diagram
This can be filled in to a commutative diagram, so

dimk[xl7,,, 751771] A = dimk[ml’, A = dimk[yh,,, 7ym] A

HTnsYl, 7ym}
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Proof (of theorem).

It’s ETS this when m = 1, so suppose M € k[xy, -+ ,Xn][y]-Mod with M € k|xg, - - ,xn]—Modfg.
Take the surjection k[xy,---,x,]" = M where e; — m; for generators m;, and let M; be
the induced filtration. Similarly take k[z1,- - ,zn,y]” - M with e; — m; and let M, be the
induced filtration. Since M; C M;, dimpy(z, ... z,) M < dimpz, ... 2.5 M-

The claim is that one can choose k such that yMy C M, and M; C M;,. Why:

M; = {m eM ‘ m is in the image of (f1,--- , fr) of degree at most z} So write f; =
> fim(z1, - an)y", then M; C span(M; +yM;_1 +y*Mi_o + -+ ).

V{thy this finishes the proof: dimyy, .. 5, M = dimyy, ... 2,19 M, SO

o ®(i) = dim M;
d(i) < ®(i) < D(ik),

which forces deg ® = deg ®.

Definition 22.1.5 (Dimensions of modules)
If A e Alg/kfg and M € A-Mod®, choose klxi, - ,xn] — A to write dimgq M =
dimk[m’.._ 0] M.

Remark 22.1.6: Upshot: we have a notion of dimension for M € Alg;/k,fg when k € Field which
doesn’t depend on choices. S

Exercise 22.1.7
Show the following properties:

o dimklzy, - ,z,] =n.

o If A,B € Alg,"® and A — B with B € A-Mod", then dim4 B = dim B (this just involves
adding variables to k[z1, -, x,)).

o If M € A-Mod® then dimy M < dim A. Hint: A" — M.
o If A,B € Alg;,™® and A — B with B € A-Mod", then dim B < dim A.

o If A,B € Alg;,® with A — B then dim A < dim B. Hint: consider

|

Link to Diagram

klzy, - on]

ki, - znllyr, - ym] ———
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Take the induced filtrations A;, B; induced by degree on k[x1,- -, x,], then t(4;) C B;.

e f T QA € Alg/kfg then dim A/I < dim A (geometrically this is passing to a closed
subspace).

o If A€ Alg," is a domain with I < A then dim A/I < dim A. Hint: it’s ETS dim A/ f <
dim A, sousetheSESO—)ALA%A/f—)O.

o If Ais a domain and f € A\ {0} then dimA/f = dim A — 1.

Example 22.1.8(?): Using these properties:

A = k[z,y| satisfies dim A = 2, while B = k[z,y]/y = k[z] satisfies dim B = 1.
o For A =k[z,y]/xy and B = A/y = k[z], both are dimension 1. Geometrically, A is the union

of the z and y axes, and B sets y = 0 which results in the = axis.
e If f: A— Byields B € A-Mod® the induced map f* : Spec B — Spec A has finite fibers.

— If additional f is an injection, the dimensions are equal.

Injection means dense image, and dense image + fi-
nite fibers preserves dimension.

22.2 Other notions of dimension:
transcendence degree

Remark 22.2.1: Setup: let

e k C K be an inclusion of fields (with no finiteness conditions)

e «a € K is integral over k iff f(a) = 0 for some monic f € k[z].
e K is algebraic over k iff every a € K is integral over k.

e K is transcendental over k if it is not algebraic.

Example 22.2.2(%): Some examples:

« Q(v/5) is algebraic over Q.
o Q(t) is transcendental over Q.

Definition 22.2.3 (Algebraically independent elements)

A subset {z,} C K is algebraically independent over £ iff there does not exist a nonzero
polynomial p € k[t1,--- ,t,] with p(--+ ,24,---) = 0. Such a subset is maximal if it is not
strictly contained in another such subset.
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Definition 22.2.4 (Transcendence degree)
If K/k admits a maximal finite algebraically independent subset S, define trdeg; K = 4S.

Claim: This is well-defined. To be justified next time!

Definition 22.2.5 (7)
If A is a finitely generated domain over k, then dim A = trdegy, ff(A).

23 ‘ Thursday, April 14

Remark 23.0.1: Recall that if A € Alg;, the algebraic differentials are constructed as

04, = Free {dA | a € A}/ (d(ab) = ad(b) + d(a)b)

Note that Hom (24 ,,, M) = Der (A, M), where derivations are importantly not A-linear! This is
A-Mod " */F k-Mod

meant to emulate a cotangent bundle.

There is a SES

01> AR, A A—0.

Example 23.0.2(?): For A = k[z], check that z,y — 2 and I = (z — y), and moreover ;) =
I/1? = <x—y>/<x2+xy+y2>.

Slogan 23.0.3
The cotangent bundle is the conormal bundles of the diagonal:
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Spec A Ay =bpec A®y A

Exercise 23.0.4 (7)
Show that 4, = I/I7.

Solution:

Hints: a map Q4,, ER I/I? is equivalent to a derivation A — I/I%. Show that if ¢ (a) ==
a®1—1®a € I, then m(y(a)) = 0 and v is a derivation, i.e. 1(ab) — arp(b) — 1 (b)a € I°.
Check

ab®1—-1®ab—a(b®1-100)—-ba®1-1®a)=ab®1-1Rab—abR®1+a®@b—baR1+bRa
=—-1®ab+a®b—ab®1+b®Ra
= (a®1-1®a)(bel-1®0b) c I

For an inverse, take
g: 1)1 = Qa,
Z a; ®b; — Z bid(ai)
where Z a;b; = 0 and check

. g(I)*=0
o fog=id,go f=id

Exercise 23.0.5 (?)
Show that (lox —xzo01) = dl 4+ 1dx where x — y = —dx.

Thursday, April 14 64



Thursday, April 14

Exercise 23.0.6 (General algebra)
Show that M — N — L — 0 € A-Mod is exact iff 0 — [L, S]a — [N, S]a — [M, S]4 is exact
for all S € A-Mod.

Solution:
Hint: <= is the nontrivial direction. Toward a contradiction take S := coker(A — L).

|
|

Exercise 23.0.7 (?7)
Show that if A, B € Alg), and 0 1 — A Jy B~ 0 is exact then there is an exact sequence

I/I2 —)QA//k —)QB//k — 0 € B-Mod
r— do

da ———  d(f(a))

Idea: Spec B < Spec A is like an embedded submanifold, and /I 2 is the conormal bundle.

Spec A

Spec B

Solution:
Identify
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0 ?—— [Qp,,,S]lp —— [Q4,, ®4 B,S|p = [Qa,,514 — [I[/I*,S]p
0 ————— Dker[B,S] Dker[A,S] [I/I%,S]p
Link to Diagram
Check:

o Y€ Dl;ar(B, S) with 9 o f surjective implies ¢y = 0 when f is surjective.
e Y€ Dker(A, S) with pyI = 0 implies ¢ € im(D}gr(B7 S) — Dker(A7 S))

Definition 23.0.8 (7)
For f € CRing(A, B), /4 is the unique object in B-Mod such that

[Qp/a, M] = DXT(Ba M).
Explicitly,

Qp/a = Free {b € B} / {d(bibz) = bid(bs) + d(b1)bz, da ] a€ Ab€B).

Exercise 23.0.9 (7)
Show that for A, B € Alg ), there is a SES

Q4, ®4B—Qp, - Qa—0  €B-Mod.

Remark 23.0.10: If A € Alg/kfg and k = k and m € mSpec 4, then 0 - m — A — k — 0 (by
EEKS) and there is a SES

Oﬁm/mQHQA/k(X)AkHQk/k:O%O.

Definition 23.0.11 (Tangent/cotangent spaces)
Define TVA := m/m? and TA = (m/m?)V = [m/m?, k],

Exercise 23.0.12 (?)
Let A = k[z] and m = (z), then for f € m define 7 € TVA, so 7(f) € k, by 7 = 883; Then
f—= f(0).

Similarly for A = k[z1, -+ ,z,]) and m = (z1,- -+, x,), check Ty = Span<8 e ,i >
C 8x1 8xn
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Theorem 23.0.13(7).
For k =k and A € Alg/kfg a domain,

e For any m € mSpec A,

dimy, Q4 ® A/m = dimy, m/m? > dim A.

e There exists a nonempty open U C Spec A such that for some m € U this is an equality,
SO

dimy, m/m? = dimg4) f(A) ®4 Q4 -

Remark 23.0.14: What goes into a proof:

e Find k[z1, - ,2,] — A with n = dim A making A € k[x,- - - ,xn)-Mod®.
o Check Qy/k[z,,- is torsion.

'7mn]

Definition 23.0.15 (Smooth points)
A point m € mSpec A is smooth if

rank TV A = dim A.

Example 23.0.16 (?): A non-example: krulldim A = 0 for A = k[z]/x?, since A is Artin. Check
klz)/z*dz : ,

— 2 _ ~ 2 _

Qu,, = Adz/ (d(z)* = 0) = 5o which is kdx if chk # 2 and k[z]/a® dx if chk = 2.

Example 23.0.17(?): For A = k[z,y]/ <y2 - 1:3> with ch k& = 0, check

Ader® Ady  Adr® Ady
d(y? —x3)  dydy — 32%dx’

Qu,, =

Given m € mSpec A,

L mé(z,y)

dim 4/, QA ®a A/m =
iy /i Qaye @4 Afm {2 m € (z,y).

Note that this records the nodal singularity:
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A7,

Example 23.0.18(?): Over k = F,(t) and A =T, (t%) = k[z]/ («P — t), check dim A = 0 and

Adx Adx
Q = = = .
A= — 1)~ dGr) A

So the algebraic differentials detect when a field fails to be separable.

24 | Tuesday, April 19
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Remark 24.1.1: Recall that lim M; € A-Mod is the universal A-module living above all of the M;,
i€l
such that for any other N above the M; there is a morphism N — lim M;. This can be realized as
i

lim M; = {(mi)iel e [[ M
i€l

@(mz) = Mi+1 VZ}

Note that the inverse limit has a mapping tn prop-
erty, as does H Limits can be constructed out of
equalizers and products:

lim F = = (H FX)— ] F(Y)) :

XeC fYEC(X,Y)

Exercise 24.1.2 (?)
Show that this satisfies the correct universal property.

Exercise 24.1.3 (?)
Show the following:

tm kff]/ (") = k[[1]

lim(--- = Z/p°Z — Z/pZ — 0) & Z
lim Z/n\Z = Z = [ Z;.
n
p

Exercise 24.1.4 (?)
Show that the functor lim(—) is left-exact and colim(—) is exact, i.e. if 0 — (M;) — (N;) —

7
(L;) — 0 is a SES of inverse systems, then 0 — lim M; — lim N; — lim L;.

Solution:
Hint: for injectivity, use the product definition to realize f : lim M; — lim N; as f = H fi:

)

Remark 24.1.5: Show that 7>9Rlim(—) = 0, so there is always a 6-term exact sequence.
i

1
I Theorem 24.1.6 (Mittag-Leffler, sufficient conditions for lim vanishing).
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1
I If M; — M, is surjective, then lim = 0 and liLnNi —» le

Exercise 24.1.7 (?)
Prove this!
Hints:

e Given (n;) € lim N;, we want to produce (l;) with (g;(n;)) = £;.

o Lift 4y to ng and induct on i:

e Choose an approximate lift 71; of #;.

o Use commutativity of the diagrams of inverse systems to correct this choice, using the
surjectivity assumption.

Definition 24.1.8 (Completion)

Recall that given a sequence of submodules M; of a module M, so M > M; > My > ---, one

can form an inverse system --- — M/Mjy — M/M; — 0. The completion of M is lim M /M;.
i

Remark 24.1.9: Topological interpretation: define a subset U C M iff for each m € U there is
some M; such that m + M; C U; equivalently {M;} forms a basis of neighborhoods of zero.

Exercise 24.1.10 (?) .
Show that lim M/M; is Hausdorff iff N; M; = {0} (i.e. M is separated).

Solution:

Hints:

= : If m # 0 € NM;, show every open containing zero contains m.
<= : Pick my # mg and find M; with (m1 + M;) N (mg + M;) = 0.

Remark 24.1.11: Call a sequence (m;) Cauchy iff m, —m,, € M; for all n,n’ > N;. Note that
one can define a metric this way and take the Cauchy completion, defined as M, which is canonically
isomorphic to M.

Exercise 24.1.12 (7)
Produce the isomorphism from Cauchy sequences modulo equivalence to M.

Solution:
For M — M /M;, take N; > 0 and project (i.e. send the sequence to its limit). For lim M/M; —
M, send (m;) — (1;) by choosing arbitrary lifts.

Exercise 24.1.13 (?)
Show that if 0 — M7 — My — M3z — 0 and My admits a filtration, then there is a SES of the
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I completions at induced filtrations 0 — J\/Zl — MQ — J/\Zg — 0.

Solution:
Start with the SES

M, My M3

0
T M NFiLM, | FibM,  f(FiliMy)

— 0,

and letting ¢ vary yields a SES of inverse systems. By Mittag-Leffler, the limits are exact.

Exercise 24.1.14 (?)

Show that completion is idempotent, so M = M.

Definition 24.1.15 (adic filtration) ‘
For A € CRing, M € A-Mod, a € Id(A), there is an a-adic filtration Fil;M := o'M, and the
corresponding completion M is the a-adic completion.

Example 24.1.16(?): Some examples:

o K[t], (t)
e Z,(p)
o Eklz,y], (z,y)

Slogan 24.1.17
Completions are inverse limits of Artin rings and are local, and thus mediate between the two.

Exercise 24.1.18 (?)
Show that if A € CRing, m € mSpec A, then A completed with respect to m is a local ring.

25 ‘ Thursday, April 21

— 25.1 Artin Rees ~

Exercise 25.1.1 (7)
Show that if A € CRing and m € mSpec A then A~ is local.
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Solution:

Show that x € A~ \ ker(A~ = A/m) is invertible. If m(z) = 1 then 1 — 2 € ker7 and
1

Yy = m = Z(l — x)k is an inverse.

k

Remark 25.1.2: Note that a-adic completion is not generally exact, but is exact in most cases of
interest, e.g. for M € A-Mod'®. There is a derived functor used in e.g. Bhatt-Scholze. s

Theorem 25.1.3 (Artin-Rees).
For M € A-Mod'® for A € NoethCRing with M’ < M and o € Id(A), the a-adic topology on
M’ coincides with the topology on M’ induced by the a-adic topology on M.

Corollary 25.1.4(?).
Taking the a-adic completion for finitely-generated modules on Noetherian rings is exact.

Proof (?).
This coincides with the induced topology, and we showed that taking the induced completions
is exact.

Definition 25.1.5 (7)
For M € A-Mod and FilM a descending filtration,

e FilM is compatible with « if aFil; M C Fil; 1 M.
— Equivalently, gr,M € gr A-Mod.

e FilM is a-good if for ¢ > 0 this is an equality.
— Equivalently, gr,M € gr A-Mod.

Observation 25.1.6
Recall that for Hilbert dimension, we took a good filtration and used the eventual degree. If
FilM, Fil' M are two a-good filtrations,

Fil,_,M C Fil;M C Fil,_, M.

As a corollary, any two a-good filtrations induce the same topology, since this yields a containment
of basis elements.

Theorem 25.1.7 (Artin-Rees reprised). ‘
If M, M’ A, « as in the original statement above, M’ N oM is a-good.
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Remark 25.1.8: Why this implies the previous version: the induced filtration is a-good and
induces the same topology as the a-adic filtration.

Definition 25.1.9 (Rees algebra/blowup algebra)
For o € Id(A), define the Rees algebra

ReesA = AP afl] @ 2] ®--- .

Exercise 25.1.10 (?)
Show that if A is Noetherian then ReesA is Noetherian.

Solution:
Show that if {a;} generate «, there is a surjection A[x1,---,z,] - (ReesA)[1] where x; — a;
and apply the Hilbert basis theorem.

Definition 25.1.11 (Rees modules)
Let (M,Fil) be an a-compatible filtered A-module. Define

ReesM = M & (Fil; M)[1] & (FiloaM)[2] & - - - € ReesA-Mod.

Proposition 25.1.12(%).
Let A € NoethCRing, then TFAE:

e M € A-Mod'® with an a-good filtration,
o ReesM € ReesA-Mod'.

Proof (?).
2 = 1: restrict generators to degree zero, then use that finitely generated implies that
generators are in bounded degree to get a-goodness.
1 = 1: find ip such that aM; = M;;, for i > ip, so ReesM is generated by 7<;,Rees)M.
Each M; is finitely generated since it’s a submodule of a finitely-generated module over a
Noetherian ring.

|

Proof (of Artin-Rees reprised).
Let ReesM’ be the induced filtration, then ReesM is a-good and finitely-generated over A*
and we want to show ReesM’ C ReesM. Conclude using that ReesA is Noetherian.

|

— 25.2 Injections into completions ~
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Corollary 25.2.1(?).
If A € LocNoethCRing with m € mSpec A and M € A-Mod'®,
M — M;ﬁ.

Note that this is not true for arbitrary modules!

Proof (?).
Let N be the kernel, use:

N/mN

Link to Diagram
|

So N/mn =0 = N = 0 by Nakayama.

Example 25.2.2(of when injectivity fails): Let A = k[t] and M = k[t]/ (t — 1) with m = (¢)
-

Then M/t'M = 0 for all 4, so M~ = 0.
Exercise 25.2.3 (7)
Show that for A € NoethCRing, M € A-Mod®®, « € Id(A),

A@AM;M.

Solution:
Hint: (a;)ic; ® m — (a;m);cr. Now carry out a diagram chase and use the 5 lemma (or snake

lemma) on the following diagram:

74
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0 M’ A M 0
d
(-)®aA
3
M @4 A A M@ A" 0
0 M A M 0

Link to Diagram

Exercise 25.2.4 (7) R
Show that if A € NoethCRing and « € Id(A4) then A € A-Mod’.

Solution:

Hlnt take 0 — My — My — Mg — 0, tensor and use the proposition, then it STS 0 — M1 —
M, — M3 — 0 is exact. It suffices to check flatness for M; € A-Mod® by a previous HW
exercise.

" 25.3 Motivations ~

Theorem 25.3.1(Cohen structure theorem).
If k = k € Field and A € NoethAlg /k 18 regular which is local and complete with respect to its
maximal ideal, then A = k[[z1, -+, zy]].

Example 25.3.2(%): A non-regular example: take a complete local ring like k[[z,y]]/ (xy) and
localize to zoom in on 0 € A?k.

An important example in algebraic curves: if A, for A Dedekind and m € mSpec A, the completion
is A= k[[]).

Slogan 25.3.3
Here regular means smooth, so T,," = dim A.

Remark 25.3.4: A general pattern for studying rings:

e Start with a ring A.
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e Localize to achieve smoothness.
o Complete to reduce to questions about power series.

Remark 25.3.5: What would show up in a 2nd course on commutative algebra: singularity theory.
See Grothendieck duality, Cohen—Macaulay rings.

26 ‘ Thursday, April 28

— 26.1 Dimension theory ~

Remark 26.1.1: Given an arbitrary grid, can you tile it with 2 x 1 dominoes? What dominoes
corresponding to Young’s diagrams for partitions A\ = (2,1)?

A principled way of approaching such problems: consider labeling the grid with monomials:

y2 l’yQ x2y2
y Ty 2’y
1 x 22

Link to Diagram

Now labeling the 2 x 1 tile with 1,z and the 1 x 2 tiles with 1,y. Note that there is a polynomial
flz,y) = 14+ x4y + a2+ azy+y? + - associated to the grid; if there admits a tiling then
f e {l+z,1+y) C k[z,y]. One can then check that f € klz,y]/{(1+x,1+y) = k satisfies
f(=1,—1) =2, so f # 0. Note that f = 0 is a necessary but not sufficient condition.

Remark 26.1.2: Last few topics: toward the Cohen structure theorem. Setup: A € NoethLocRing
and let m € mSpec A, e.g.

° A:k[l)l,"’;xn]]a
o A= (klx1, - ,zn)/1)p
. A:Z;;H$177‘Tn”/‘[
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We don’t have a good dimension theory for these, since they aren’t finitely generated algebras.

Some approaches:

e Hilbert dimension,
e Krull dimension,
e Generator dimension.

Definition 26.1.3 (Hilbert dimension)
Setup:

o Let M € A-Mod® and choose an m-good filtration Fil;M on M, so mM; C M;,; for

i > 0. Equivalently, ReesM is finitely-generated over ReesA.
o Let ®(i) = len(M/Fil; M), which is eventually polynomial.
e Define dimy M = deg .

This defines a dimension for any finitely generated module.

Remark 26.1.4: There is a naturally good filtration: Fil;M := m‘M, then

O(i) = len(M/Fil,M) = > dimymgr;M
0<j<i—1

where gr ;M = m/ M /mI T M

Lemma 26.1.5(7).

e Given a SES A — B — C, hilbdim B = max(hilbdim A, hilbdim C).

e For @ : M — M, hilbdim M /mep < hilbdim M — 1

Example 26.1.6(?): Check hilbdim k[[z1,- - ,zy]] = n using m = (x1,---

len k[[21, - ,xp)]/m' = Z " + J by counting monomials.
0<j<i—1

Exercise 26.1.7 (7)
Show hilbdim Z{[z1, - ,zn]] =n + 1 using m = (p, z1,- -+ , Tp).

Exercise 26.1.8 (?)
Find krulldim k[[z1, - - - , zy]] by finding a maximal chain of prime ideals.

Definition 26.1.9 (Generator dimension)

Define gendim A to be the minimal d such that there exist x1,--- ,2g € m =

, Tp); then &(7)

<$17 T a:l:d>-

26.1 Dimension theory
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Theorem 26.1.10(%).
IfAe Alg/kfg then dimA = max Adim Ap,.

méemSpec

Exercise 26.1.11 (Dimension # minimal number of generators)
Show that for A = k[[x1,x2]]/ <l‘%> that (z1,z9) is a minimal set of generators for the maximal
ideal but gendim A = 1 since m = /x;.

Exercise 26.1.12 (7)
Show if A € LocNoethCRing with m € mSpec A, then

dim A < dim g/, m/m?.

Solution:

Hint for using generator dimension: pick a basis {Z;},.;, of m/m?. Lift to {z;} and take

m = (z1,--- ,zy) and conclude by Nakayama. -

Hint for using Hilbert dimension: show hilbdim A = hilbdim @m’/m*™!, since the LHS is

deg(i — len A/m;) and the RHS is deg(i — Z dimy, m’ /m?™!). Then show there is an

0<j<i—1

inequality hilbdim @ m / mt < dimy, m / m? by showing there is an important multiplication
1

map Symm/ m? — @;m’ / m'*1. Conclude using that the LHS is isomorphic to a power series

rings k[[Z1,- - ,Zy]] which is dimension n.

Remark 26.1.13: &m’ /mi+1 is the tangent cone and Sym m/m2 are functions on the tangent
space, and the tangent cone is a subvariety of the tangent space.

Remark 26.1.14: Let M = k[[z,y]]/ (z,y), m = (z,y), and m/m? = (Z,7). Then Spec Sym m,/m?
is a curve (?) and @;m’/m = k[[z,y]]/ (xy).

Exercise 26.1.15 (?)

For kl[z,y])/ (v* - 2%), m/m? = (z,5), m*/m® = (32,27, so ik[[z,y]]/ (y*). This yields a
thickened line along y = 0:
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Slogan 26.1.16
The dimension of a variety is at most the dimension of its tangent spaces.

— 26.2 Smoothness and regularity ~

Remark 26.2.1: Idea: regularity is “almost smooth”.

Definition 26.2.2 (Regularity)

A ring (A, m) € NoethLocCRing is regular iff the natural multiplication map Sym m/m? —»
@;m’/m**t is an isomorphism. For arbitrary A € NoethCRing (not necessarily local), A is
reqular iff A, is regular for all m € mSpec A.

Example 26.2.3(7):

o klzy,---,xy,] is regular.
o k[[x1,- - ,xy]] is regular.

Exercise 26.2.4 (7)

1
Any field is regular local, but regularity is not preserved under extensions. Take F), (ﬁ) D Fy(t)
and show

A:=F, (ﬁ) ®r, (1) Fo (t%) ~F, (t%) ]/ (sP),
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which is not reduced. Use that Fp(t%) =T, (t)[z]/ (zP —t), so

A= Fp(t)[.%',y]/ (xp - tv yp - t)
= Fy(t7)[y]/ {v* — (t7)7)
= Fp(t7)l/ (y—t7) -

Definition 26.2.5 (Smoothness)
If Ae Alg/kfg and k = c1?® k. then A is smooth iff A ®j, k is regular.

Exercise 26.2.6 (7)
Show that a ring A € NoethLocCRing is regular iff dim A = dim 4y, m/m?.

Solution:

Hint: use that regularity implies equality implies that the map 7 : Symm/m? — @&m’ / mt s
an isomorphism. Assume this is not an equality, let f € ker 7, then dim A = dim @m’/m*™! <
dim Sym m/m?/f < dim Sym m/m? = dim m/m?, a contradiction.

Exercise 26.2.7 (?)
Show that regular local rings are domains.

Solution: o
Pick nonzero zero divisors, a, b with ab = 0. Then @, b € m’/m**! with ab = 0, a contradiction.

27 ‘ Problem Set 1

AM Ch. 1, 1, 8, 10, 13, 15, 16, and 19.

28 | Problem Set 2

Problem 28.0.1 (AM 2.1)
Show that

mZ+nZ =1 = Cy, Rz Cp =0,
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and more generally

Cm ®7 Cp =2 Cy, d = ged(m,n).

Solution:
To fix notation, set C,, = <x ‘ xm> = {1 =20z, 2%, ,xm_l}, written multiplicatively.
The nth power map z — x" induces a SES

052 2%7 50,50 €Z-Mod.

Apply the right-exact functor (—) ®z Cy, and use that Z ®z (—) ~ id to obtain

o O N 0 s coker((=)) & Gy @ Con — 0,
so it suffices to show surjectivity, that every element in C,, has an nth root —i.e that if y € C),
then y = 2" for some z € C,,. This immediately reduces to finding nth roots of the generator
x, since if y = 2" € Oy, writing y = 2" for some k, we have
k
y:xk:zn — z:xﬁ:(xﬁ)kj
and thus z can be expressed as a power of an nth root of z. That such a root can always

be found follows from Bezout’s identity: since m,n are coprime, there are solutions (a,b) to
1 =am+ bn, so

T = 1,1 _ xam—i—bn _ $am$bn — (:L,b)n’

using that (—)™ annihilates every element in C,,, making z° an nth root of z.
More generally, using the same resolution and tensoring with any A € Z-Mod yields

---%A%A—H}Oker((—)")%%—)&
n

the submodule of n-divisible elements, and take A = C,, to get

A Cm Z Z
nA ~ nC,, az = G

T mZ+nZ  dZ

Remark 28.0.1: Note that similarly applying %I'(\)An}j (Cp, —) yields
ml\" [}

%&%(Cmom) = ker((—)") = Ca.

Problem 28.0.2 (AM 2.2)
Let A € CRing,a € Id(A), M € A-Mod. Show that (A/a) ®4 M = M /aM € A-Mod.

Tensor the exact sequence 0 - a — A — A/a — 0
with M.
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Solution:
Applying the hint yields the following:

0 a L A Ala —— 0
(5)®@aM
A M " L AQAMEM —— 5 AJa@oa M ——— 0

Link to Diagram
Thus it suffices to show im ¢, = aM. This is clear since a < A is an inclusion, and the natural
map A ®4 M = M is given by (a,m) — am.

Remark 28.0.2: Note that there is a map

frax M —aM

(a,m) — am,

which is clearly surjective and bilinear, lifting to map out of the tensor product by the universal
property. However, it is not always an isomorphism, and it being an isomorphism for all ideals is
equivalent to M being flat as an A-module. In other words,

a®a M=aM Vaeld(d) < M e A-Mod’.

An easy counterexample:

[]/<>
= {e) € Ta(A)
OM a

:L

Then a®4 — a2 is not injective. Note that a®> = 0 in 4, so it STS a®i # 0. The claim is that

®2 ®?2 ®2
a“Aa = q-A/e = g%k,

which is the tensor product of two 1-dimensional k-vector spaces, and is thus 1-dimensional over k.

s N

Problem 28.0.3 (AM 2.9)
Let

0—>A—>B—>C—>O€A—Mod

with A,C € A-Mod'®, and show B € A-Mod® (i.e. B is finitely generated as an A-module).
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Solution:
Let C, A be generators for C' and A respectively, and consider

B:={di(a) |acAfu{cedy'(0)|cec],

where the ¢ are arbitrarily chosen lifts of the generators ¢ € C. Then B is a finite set, and the
claim is that it generates B as an A-module.

Problem 28.0.4 (AM 2.11)
Let A be a ring # 0.

e Show that A™ =2 A" = m = n.
o If p: A™ — A" is surjective, then m > n.
o If p: A™ — A" is injective, is it always the case that m < n?

Hint: Let m be a maximal ideal of A and let
p: A™ — A" be an isomorphism. Then 1 ® ¢ :
(A/m) @ A™ — (A/m) ® A" is an isomorphism
between vector spaces of dimensions m and n over
the field k = A/m. Hence m = n. (Cf. Chapter 3,
Ezercise 15.)

Problem 28.0.5 (AM 2.14)

A partially ordered set I is said to be a directed set if for each pair 4, j in I there exists k €
such that i < k and j < k.

Let A be a ring, let I be a directed set and let (M;),.; be a family of A-modules indexed by
-I. For each pair 7,j in I such that ¢ < j, let u;; : M; — M, be an A-homomorphism, and
suppose that the following axioms are satisfied:

(1) g is the identity mapping of M;, for all i € I;
(2) pir = pjk © pay whenever ¢ < j < k.

Then the modules M; and homomorphisms y; s are said to form a direct system M = (M, 1)
over the directed set 1.

We shall construct an A-module M called the direct limit of the direct system M. Let C' be
the direct sum of the Mj, and identify each module M; with its canonical image in C. Let
D be the submodule of C' generated by all elements of the form x; — p145 (x;) where ¢ < j and
x; € M;. Let M =C/D, let pn: C — M be the projection and let p; be the restriction of u to
M;.

The module M, or more correctly the pair consisting of M and the family of homomorphisms
i My — M, is called the direct limit of the direct system M, and is written colim M;. From

(2

the construction it is clear that p; = p;j o p;y whenever ¢ < j.
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Problem 28.0.6 (AM 2.16)

Show that the direct limit is characterized (up to isomorphism) by the following property. Let
N be an A-module and for each i € I let «; : My — N be an A— module homomorphism such
that oy = aj o g whenever ¢ < j. Then there exists a unique homomorphism o : M — N
such that oy = a oy, for all i € I.

Problem 28.0.7 (AM 2.20)
Keeping the same notation as in Exercise 14 , let N be any A-module. Then (M; ® N, p1;; ® 1)
is a direct system; let P = colim (M; ® N) be its direct limit.

(2
For each ¢ € I we have a homomorphism
wi®1l: M@ N —-M®N,

hence by Exercise 16 a homomorphism v : P — M ® N. Show that 1 is an isomorphism, so
that

colim (M; ® N) = (colim MZ> ® N.

Hint: For each i € I, let
githXN%Mt(@N

be the canonical bilinear mapping. Passing to the
limit we obtain a mapping g : M x N — P. Show
that g is A-bilinear and hence define a homomor-
phism ¢ : M@ N — P. Verify that ot and Yoy
are identity mappings.

29 ‘ Problem Set 3

Problem 29.0.1 (AM 3.1)
Let S be a multiplicatively closed subset of a ring A, and let M be a finitely generated
A-module. Prove that S~'M = 0 if and only if there exists s € S such that sM = 0.

Problem 29.0.2 (AM 3.4)
Let f: A — B be a homomorphism of rings and let S be a multiplicatively closed subset of A.
Let T = f(S). Show that S™'B and T~!B are isomorphic as S~ A-modules.

Problem 29.0.3 (AM 3.12)
Let A be an integral domain and M an A-module. An element x € M is a torsion element of
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M if Ann (z) # 0, that is if = is killed by some non-zero element of A. Show that the torsion
elements of M form a submodule of M. This submodule is called the torsion submodule of M
and is denoted by T'(M). If T(M) = 0, the module M is said to be torsion-free. Show that

i) If M is any A-module, then M/T (M) is torsion-free.
ii) If f: M — N is a module homomorphism, then f(7(M)) C T(N).

iii) If0 - M’ — M — M" is an exact sequence, then the sequence 0 — T (M') — T'(M) —
T (M") is exact.

iv) If M is any A-module, then T'(M) is the kernel of the mapping = — 1 ® x of M into
K ®; M, where K is the field of fractions of A.

For iv), show that K may be regarded as the direct
limit of its submodules AE(€ € K); using Chapter
1, Ezxercise 15 and Ezercise 20, show that if 1®x =
0in K@M thenl®xz =0 in AE® M for some
€ #0. Deduce that €'z = 0.

,

Problem 29.0.4 (Ex. 1)
Show that Q is a flat Z-module which is not free

Problem 29.0.5 (Ex. 2)

Prove that if B,C are A algebras, the tensor product algebra B ®4 C has the following
universal property: an algebra homomorphism B ® 4 C' — S is the same as a pair of algebra
homomorphisms B — S§,C — S.

30 ‘ Problem Set 4

Problem 30.0.1 (?)
Let f: M — N be a map of modules over a local ring A, with N finitely generated. Show
that if the induced map M/mM — N/mN is surjective, the same is true for f. Does a similar
statement hold for injectivity?

Problem 30.0.2 (?)

Let M be a finitely-generated module over a ring A, and let p be a prime ideal of A. Suppose
M, = 0. Show that there exists a finite set x1,---,z, of elements of A\p such that the
localization of M at the multiplicative set generated by the x; is zero.
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Problem 30.0.3 (7)

Let M be a finitely-generated module over a Noetherian ring A (that means any submodule
of a finitely-generated module is finitely generated), and let p be a prime ideal of A. Suppose
M, is free. Show that there exists a finite set z1,--- ,xz, of elements of A\p such that the
localization of M at the multiplicative set generated by the z; is free.

Problem 30.0.4 (7)
Give an example of a module M over a ring A such that M, is free for each prime ideal p of
A, but M itself is not free. Such modules are called locally free.

Problem 30.0.5 (?)
Give an example of a flat module which is not projective.

Problem 30.0.6 (?)
Write a careful proof of the Cayley-Hamilton theorem over an arbitrary field.

31 ‘ Problem Set 5

HW 5 (due Feb 17): AM Chapter 2, exercises 24, 25, 26

1. Let M be an A-module and let Fy : --- — Fy — F; — F;y be a flat resolution of M, i.e. a
chain complex with each F; flat, and such that H; (F,) = 0 for i > 0 and Hy (F,) = M. Show
that for any A-module N, H; (Fy ®4 N) = Tor{ (M, N).

2. Let M be a finitely-generated flat module over a Noetherian local ring A. Show that M is
free.

3. Carefully check that Ext is well-defined, i.e. independent of the choice of injective resolution
in the definition.

4. Compute Ext}(Z/pZ,Z) for each prime p.

32 ‘ Problem Set 6

HW 6 (due Feb 24): AM Chapter 5, exercises 1, 2, 10, 12, 14, and Chapter 6, exercises 2 and 5
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33| Problem Set 7

HW 7 (due Thursday, March 17, after Spring Break):

o

© N

10.
. M is projective
12.
13.
14.

. Let M be an A-module, and f € A. Construct an isomorphism between M; and - M4

MA o

. Construct a module M over a ring A such that for each prime ideal p of A, M, is finitely

generated, but M is not finitely-generated.

. Let M be a finitely-generated module over a Noetherian ring. Show that M = 0 if and only

if the support of M is empty.

. Suppose Spec(A) =V} U Vs, where Vi, V5 are clopen disjoint subsets. Show that there exists

a direct sum decomposition A = A; @ As such that the natural quotient maps A — A; induce
isomorphisms Spec (4;) — V; for i =1, 2.

Show that exactness of a long exact sequence is a local property.

Let A be a Noetherian local domain with residue field k and fraction field K, and M a
finitely-generated A-module. Show that the following are equivalent:

M is free

dimkM(X)A k= dimKM®A K.

Let A be a Noetherian ring and M finitely-generated. Show that the following are equivalent:
M is locally free

M is flat.
Show that any Artinian ring is Noetherian
Show that if A is a Noetherian ring such that Spec(A) is Hausdorff, then A is Artinian.

34 ‘ Problem Set 8

HW 8 (due March 31)

. Give an example (with proof) of a rank one locally free module over a Dedekind domain that

is not free.

. Give an example (with proof) of a Noetherian domain of Krull dimension one which is not a

Dedekind domain.

. Let M be a finitely generated module over a Dedekind domain A. Show that M has a

projective resolution of length two. Conclude that Tor #(M, —) and Exty (M, —) equal zero
for ¢ > 1.

. Let M, N be a finitely generated modules over a Dedekind domain A. Show that Tori' (M, N)

is a torsion A-module. Can you identify its support?

. Give an example of a Dedekind domain with uncountable Picard group.
. Let k be a field. Show that the Picard group of k[t] is trivial, i.e. any rank one locally free

sheaf over k[t] is free.
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7. Give an example of a domain with a maximal non-zero ideal m such that m? = m.
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