# Thursday, January 06 > Topics: Localization and completion, Nakayama's lemma, Dedekind domains, Hilbert's basis theorem, Hilbert's Nullstellensatz, Krull dimension, depth and Cohen-Macaulay rings, regular local rings. :::{.remark} References: - Atiyah-MacDonald, *Commutative Algebra*. Be sure to check the erratum! - Chambert-Loir, [Mostly Commutative Algebra](https://webusers.imj-prg.fr/~antoine.chambert-loir/enseignement/2014-15/ga/commalg.pdf) - Miles Reid, *Undergraduate Algebraic Geometry* - Altman-Kleiman, [A Term of Commutative Algebra](https://www.mi.fu-berlin.de/en/math/groups/arithmetic_geometry/teaching/exercises/Altman_-Kleiman---A-term-of-commutative-algebra-_2017_.pdf) ::: :::{.example title="?"} Some examples of module morphisms: - $\Hom_\Ring(\ZZ, S) = \ts{\pt}$, since $1\to 1$ is necessary. - $\Hom_\Ring(\ZZ[x], S) \cong S$. Why? Since $1\to 1$ is forced, $x\mapsto s$ can be sent to any $s\in S$. - $\Hom_\Ring\qty{ { \ZZ[x, y]\over \gens{y^2-x^3-1} }, S} = \ts{(a, b)\in S\cartpower{2} \st a^2-b^3=1}$. - $\Hom_\Ring(R/I, S) = \ts{f\in \Hom_\Ring(R, S) \st f(I) = 0}$ ::: :::{.exercise title="?"} Show that $\Id(R/I)\mapstofrom \ts{J\in \Id(R) \st J \contains I}$ using \[ \Pi: R &\to R/I \\ x &\mapsto [x] \\ \pi\inv(J) &\mapsfrom J .\] Show that $\pi\inv(J)$ is in fact an ideal, construct a proposed inverse $\Pi\inv$, and show $\Pi\circ \Pi\inv = \Pi\inv \circ \Pi = \id$. ::: :::{.exercise title="?"} Show that $R$ is a field iff $R$ is a simple ring iff any ring morphism $R\to S$ is injective. For $3\implies 1$, directly shows that every nonzero element is a unit. ::: :::{.exercise title="?"} Chapter 1 of A&M: - 1,8,10,13,15,16,19. :::