# Thursday, January 27 :::{.remark} Nakayama: called a lemma, but arguably the most important statement in commutative algebra! Recall that $\jacobsonrad{A} = \intersect_{\mfm\in \mspec A} \mfm$, and being zero mod every $\mfm\in \mspec A$ means being zero mod $\jacobsonrad{A}$. ::: :::{.theorem title="Nakayama's Lemma"} Let $A \in \CRing$ with $I \subseteq \jacobsonrad{I}$ and let $M\in \mods{A}^\fg$. Then \[ M=IM \implies M=0 .\] ::: :::{.example title="?"} This reduces statements about local rings to statements about fields. Commonly used examples: - $I = \nilrad{R}$. - $A\in \Loc\Ring$ with $I = \mfm_A$ its maximal ideal. ::: :::{.corollary title="?"} If $A$ is local and $M\in \mods{A}^\fg$, \[ M/\mfm_A M = 0 \iff M = 0 .\] ::: :::{.remark} $M$ yields a sheaf (or vector bundle) on $\spec A$, so think of $m\in M$ as a function on $\spec A$ in the following way: if $m\in M$, \[ m: \mfp \mapsto m \mod \mfp \in M/\mfp M .\] ![](figures/2022-01-27_12-57-28.png) ::: :::{.proposition title="Equivalent formulation of Nakayama"} If $n\in N\in \mods{A}^\fg$ and $n\equiv 0 \mod \mfm$ for all $\mfm\in \mspec A$, then $M=0$. ::: :::{.exercise title="?"} Show that if $A \in \Loc\Ring$ and $M\in \mods{A}^\fg$ with $\ts{x_i}_{i\leq n} \subseteq M$, then \[ \gens{x_1,\cdots, x_n} = M \iff \gens{\bar{x_1}, \cdots, \bar{x_n}} = M/\mfm M, \qquad \bar{x_i} \da x_i \mod \mfm .\] ::: :::{.solution} $\implies$: If $\bar y\in M/\mfm M$, lift to $y\in M$ to write $y = \sum c_i x_i$ and thus $\bar y = \sum c_i \bar{x_i}$. $\impliedby$: Present $M$ by $A^n \mapsvia{f} M \to C =\coker f \to 0$ where $f(e_i) = x_i$ -- we want to show $C = 0$. Reduce mod $\mfm$ by applying $(\wait)\tensor_A A/\mfm$ to get \[ (A/\mfm)^n \mapsvia{\bar f} M/\mfm M \to C/\mfm C\to 0 .\] This is surjective so $C/\mfm C = 0$. By Nakayama, $C=0$. ::: :::{.example title="?"} Let the local ring $R = k\powerseries{t}$ with $\mfm_R = \gens{t}$, and let $M = R\sumpower{3}$. Consider \[ \tv{1+t^3 + t^5, t+t^2, t^3}, \tv{t^{22}, 1+t^9, t^{10} + t^{10^{10}}}, \tv{1+ t^{10^{10^{10}}}, 1+t^5 + t^9, 1+t^7 + t^{11} } ,\] which reduced $\mod t$ yields \[ \tv{1,0,0}, \tv{0,1,0}, \tv{1,1,1} .\] So the original elements generate $M$. ::: :::{.remark} Next goal: proving Nakayama. We'll need a version of Cayley-Hamilton. Recall the definition of multiplicative subsets and localization, along with its universal property. ::: :::{.example title="of multiplicative sets $S$"} Examples: - For any element $f$, $S\da \ts{1, f, f^2,\cdots}$ - For $A$ an integral domain, $S \da A\smz$ - All nonzero zero divisors. ::: :::{.exercise title="?"} Prove $S\inv A$ exists and is unique for $A\in \CRing$. Give an example where $s'a = sb$ is not sufficient. ::: :::{.remark} Remarks on localization: - ${a\over s} = {b\over s'} \iff s'' s' a - s'' s b$ for some $s''\in S$ -- this is needed because it will hold in $S\inv A$, since $s''\in (S\inv A)\units$ for any $s''\in S$ by construction. - ${a\over s}=0$ iff $a$ is annihilated by an element of $S$. - Producing the actual map for the universal property: if $f:A\to B$ sends $S$ to invertible elements, \begin{tikzcd} A && B & {f(a)f(s)\inv} \\ \\ {S\inv A} \\ {{a\over s}} \arrow["\iota", from=1-1, to=3-1] \arrow["f", from=1-1, to=1-3] \arrow[from=3-1, to=1-3] \arrow[dashed, maps to, from=4-1, to=1-4] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNSxbMCwwLCJBIl0sWzIsMCwiQiJdLFswLDIsIlNcXGludiBBIl0sWzAsMywie2FcXG92ZXIgc30iXSxbMywwLCJmKGEpZihzKVxcaW52Il0sWzAsMiwiXFxpb3RhIl0sWzAsMSwiZiJdLFsyLDFdLFszLDQsIiIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Im1hcHMgdG8ifSwiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV1d) - $A_f \da S\inv A$ for $S \da \ts{1,f,f^2,\cdots}$. For $A = \ZZ$ and $f=p$ a prime, $\ZZ_f = \ZZ\invert{p} \subseteq \QQ$ are fractions whose denominator is a power of $p$. - For $A$ an integral domain and $S=A\smz$ yields $S\inv A = \ff(A)$ the fraction field. - For $\mfp \in \spec A$, $S\da A\sm\mfp$, then $A_\mfp \da S\inv A$ is localization at a prime ideal - $\ZZ_{\gens{p}} = \ZZ\invert{\ell}_{\ell\neq p \text{ prime}}$, fractions in $\QQ$ with denominators not divisible by $p$. ::: :::{.exercise title="?"} Some exercises: - Use the universal property to show $(\ZZ/15\ZZ)_5 \cong \ZZ/3\ZZ$. - Show that for $M\in \mods{A}$, $S\inv M$ exists and is unique. - Show that $S\inv A \actson S\inv M$. - Show that $S\inv M = M\tensor_A S\inv A$ using the universal property. Use \[ M = M\tensor_A A \mapsvia{\id \tensor S\inv(\wait)} M\tensor_A S\inv A \] where $m\mapsto m\tensor 1$ For $f:M\to N$ where $s$ acts invertibly on $N$, produce a map $M\times S\inv A\to N$ where $(m, a/s)\mapsto as\inv f(m)$ where $s\inv$ is the inverse of the action $s: N\to N$. - Show that $(\wait)\tensor_A S\inv A$ is left exact and thus exact. - Injectivity: use that ${m\over s}\mapsto 0 \iff s'f(m) = 0$ for some $s'\in S$. - Show that $S\inv A \in \mods{A}^\flat$. :::