# Tuesday, March 22 ## Classification of finitely-generated modules over a Dedekind domain :::{.definition title="Dedekind domain"} A ring $A$ is a **Dedekind domain** iff - $A\in\Noeth\Domain, \krulldim A = 1$, - The local rings $A_p$ are DVRs for all $p\in \mspec A$. ::: :::{.theorem title="Structure theorem for Dedekind domains"} If $M\in \amod, A\in \Dedekind\Domain$, then \[ M\isoas{\amod} T \oplus F \da \qty{ \bigoplus (A/\mfp_i)^{n_i} } \oplus \qty{ \bigoplus \mcl_i } \] where $\mcl_i \in \amod^{\locfree, \rank=1}$ (and are in particular torsionfree) and the $A/\mfp_i$ are torsion. ::: :::{.exercise title="?"} Show that if $p\in \spec A$ then $M_p \cong A_p^m$ where $m = \rank M$. > Hint: use that $M_p \oplus \ff(A_p) = \ff(A)^n = \ff(A)^n$ ::: :::{.exercise title="?"} Show that for $A$ a Dedekind domain and $M\in \amod^\fg$, TFAE: - $M\in \amod^\flat$ - $M\in \amod(\proj)$ - $M\in \amod^{\locfree}$ - $M$ is torsionfree Conclude that the following SES splits: \[ 0\to M_\tors \to M \to M_{\tors\free} \to 0 .\] > Hint: the first three already hold for Noetherian domains. > To show flat $\implies$ torsionfree, that $0\to A \mapsvia{\cdot a} A \to A/\gens{a} \to 0$ for $a\in \Tors(M)$ and tensor with $M$. > For the converse, show $M_p$ is flat for all $p$ and that $A_p$ is a DVR -- if ${a\over s'}{m\over s} = 0 \implies \tilde s' s am = 0$ for some $\tilde s$, then $m$ is torsion. ::: :::{.remark} Note that torsionfree $\implies$ flat fails for most rings! ::: :::{.exercise title="?"} Show that if $M\in \amod^\fg$ is torsion over a Dedekind domain $A$ then $M \cong \bigoplus _{i} (A/p_i^{n_i})^{m_i}$. > Hint: use that $\supp M$ is finite to produce a map $M\to \bigoplus _i M_{p_i}$ and show it is locally an isomorphism since $(M_{p})_q = M_q$ when $q\neq p$. > Also use that $M_p = \bigoplus _j A_p/p^{i_j} \cong \oplus_j A/p^{i_j}$. ::: :::{.exercise title="?"} Show that for $M\in \amod^\fg$ torsionfree over $A$ a Dedekind domain, there is a (not necessarily unique) decomposition $M \cong \bigoplus _i \mcl_i$ with $\mcl_i$ locally free of rank 1. > Induct on rank, where it's ETS there exists an $\mcl$ where $M/\mcl_i$ is torsionfree since $0\to \mcl \to M\to M/\mcl_i\to 0$ splits (tensor to fraction field). > To find such an $\mcl$, take any $m\neq 0$ and take $\mcl$ to be the preimage of $(M/\gens{m})_\tors$ under $M \to M/\gens{m}$; then $\mcm/\mcl$ will be torsionfree and is rank 1 since $\mcl \tensor \ff(A) \cong \gens{m}\tensor \ff(A)$. ::: ## Classification of locally free rank 1 modules over a Dedekind domain :::{.exercise title="?"} Show that if $I\normal A$ is nonzero for $A$ a Dedekind domain, then $I$ is locally free of rank 1. > Hint: show that $I_p\leq A_p$ is nonzero, so $I_p = \gens{\pi^n}$ for $\pi$ a uniformizer of $A_p$. ::: :::{.definition title="Invertible modules"} A module $M\in \amod$ is **invertible** iff $M$ is locally free of rank 1. Equivalently, defining $M\dual \da \amod(M, A)$ there is an evaluation isomorphism $M\tensor_A M\dual \iso A$. Define \[ \Pic(A) \da (\amod, \tensor_A)/\cong .\] Note that for $A = \OO_K, K\in \NF$, \[ \Pic(A) \cong \Cl(K) .\] ::: :::{.definition title="(Weil) Divisors"} For $A$ a Dedekind domain, a **divisor** is a formal linear combination \[ D = \sum_{\mfp\neq 0 \in \spec A} n_p \mfp \in \Free_{\zmod}(\spec A) .\]such that $n_p = 0$ for almost all $p$. These form a group $\Div(A)$. A divisor $D$ is **effective** iff $n_p\geq 0$ for all $p$, yielding a submonoid $\Div^+(A)$ of effective divisors. ::: :::{.remark} More generally, this will be a sum over height 1 primes. ::: :::{.exercise title="?"} Show that there is a natural bijection \[ \Div^+(A) &\mapstofrom \Id(A)\smz \\ \sum n_p p &\mapstofrom \prod p^{n_p} .\] > Hint: if $\krulldim A = 1$, use that $\Id(A)\cong \ts{I_p \normal A_p}_{p\in P}$ where $I_p = A_p$ for almost all $p$, and each $I_p \cong \gens{\pi_p^{n_p}}$. ::: :::{.exercise title="?"} Show that if $\mcl$ is invertible then $\mcl\dual$ is invertible. > Hint: show $\mcl\dual$ is locally free of rank 1, using $\mcl_p\dual \iso \amod(\mcl, A)_p \iso \mods{A_p}(\mcl_p, A_p)$ by post-composing with localization. > Then check $\mcl\tensor \amod(\mcl, A)\to A$ where $(n, f) \mapsto f(n)$ is an isomorphism by checking locally where everything is free. ::: :::{.proposition title="Picard group SES"} Write $D\in \Div(A)$ as $D = D^+ - D^-$ where $D^{\pm} \in \Div^+(A)$ are effective. There is a SES \begin{tikzcd} 0 && {\ker f} && {\Div(A)} && {\Pic(A)} && 0 \\ &&&& {D^+ - D^-} && {\qty{\prod_{p} p^{n_p^+} } \tensor \qty{ \prod_p p^{n_p^-}}\dual} \arrow["f", two heads, from=1-5, to=1-7] \arrow[maps to, from=2-5, to=2-7] \arrow[from=1-7, to=1-9] \arrow[from=1-3, to=1-5] \arrow[from=1-1, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNyxbNCwwLCJcXERpdihBKSJdLFs2LDAsIlxcUGljKEEpIl0sWzQsMSwiRF4rIC0gRF4tIl0sWzYsMSwiXFxxdHl7XFxwcm9kX3twfSBwXntuX3BeK30gfSBcXHRlbnNvciBcXHF0eXsgXFxwcm9kX3AgcF57bl9wXi19fVxcZHVhbCJdLFs4LDAsIjAiXSxbMiwwLCJcXGtlciBmIl0sWzAsMCwiMCJdLFswLDEsImYiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbMiwzLCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJtYXBzIHRvIn19fV0sWzEsNF0sWzUsMF0sWzYsNV1d) ::: :::{.remark} This is generally far from injective, and will instead biject with *fractional ideals*: ::: :::{.definition title="Fractional ideals"} For $A \in \Dedekind$, a **fractional ideal** is a nonzero $A\dash$submodule $\mcl\leq A$ where $\mcl\in \amod^\fg$. ::: :::{.example title="?"} \envlist - $I\normal A$ or $I\normal \ff(A)$ any ideal - ${1\over a}I\normal \ff(A)$. ::: :::{.exercise title="?"} Show that any fractional ideal is invertible. > Hint: use that any such $I$ is torsionfree since it's a subset of $\ff(A)$, and $\mcl \tensor_A \ff(A) \cong \ff(A)$ implies rank 1. :::