

Notes: These are notes live-tex'd from a graduate course in Contact Topology taught by Peter Lambert-Cole at the University of Georgia in Spring 2022. As such, any errors or inaccuracies are almost certainly my own.

Contact Topology

Lectures by Peter Lambert-Cole. University of Georgia, Spring 2022

1

D. Zack Garza University of Georgia dzackgarza@gmail.com Last updated: 2022-05-29

Table of Contents

Contents

Та	ble of Contents	2
1	Tuesday, January 11 1.1 Application 1 1.2 Application 2 1.3 Application 3 1.4 Contact Geometry	4 4 4 6 7
2	Contact Forms and Structures (Thursday, January 13)2.1 Examples of Contact Structures2.2 Perturbing Foliation	7 7 10
3	Tuesday, January 18	11
4	Darboux and Gromov Stability (Thursday, January 20)4.1 Proof of Darboux	18 18
5	Gray Stability (Tuesday, January 25) 5.1 Legendrian Links	22 23
6	Thursday, January 27	24
7	Tuesday, February 01 7.1 Transverse Knots	29 37
8	Thursday, February 03 8.1 Local Model 1: Elliptic 8.2 Local Model 2: Hyperbolic 8.3 More Contact Geometry	38 39 41 43
9	Tuesday, February 08	45
10	Tuesday, February 15	50
11	Thursday, February 17	50
12	Thursday, February 24	54
13	Tuesday, March 15	58
14	Tuesday, March 22 14.1 Farey Graphs	61 61
15	Tuesday, March 29	64

16 Tuesday, April 05 16.1 Symplectic Fillings	67 67
17 Thursday, April 21 17.1 Seifert Fibered Spaces	70 70
18 Tuesday, April 26	72
ToDos	
Definitions	
Theorems	
Exercises	77
igures	

1 | Tuesday, January 11

Remark 1.0.1: References:

- https://www.ma.imperial.ac.uk/~ssivek/courses/12s-math273.php
- https://web.ma.utexas.edu/users/gdavtor/notes/contact_notes.pdf
- PLC's Notes

Emphasis for the course: applications to low-dimensional topology, lots of examples, and ways to construct contact structures. The first application is critical to 4-manifold theory:

1.1 Application 1

Theorem 1.1.1(Cerf's Theorem). Every diffeomorphism $f: S^3 \to S^3$ extends to a diffeomorphism $\mathbb{B}^4 \to \mathbb{B}^4$.

Remark 1.1.2: This isn't true in all dimensions! This is essentially what makes Kirby calculus on 4-manifolds possible without needing to track certain attaching data.

Remark 1.1.3: There is a standard contact structure on S^3 : regard $\mathbb{C}^2 \cong \mathbb{R}^4$ and suppose $f : S^3 \to S^3$. There is an intrinsic property of contact structures called *tightness* which doesn't change under diffeomorphisms and is fundamental to 3-manifold topology.

Theorem 1.1.4*(Eliashberg).* There is a unique tight contact structure ξ_{std} on S^3 .

So up to isotopy, f fixes ξ_{std} .

Remark 1.1.5: A useful idea: tiling by holomorphic discs. This involves taking S^1 and foliating the bounded disc by geodesics – by the magic of elliptic PDEs, this is unobstructed and can be continued throughout the disc just using convexity near the boundary. In higher dimensions: \mathbb{B}^4 is foliated by a 2-dimensional family of holomorphic discs.

1.2 Application 2

Remark 1.2.1: Another application: monotonic simplification (?) of the unknot. Given a knot $K \hookrightarrow S^3$, a theorem of Alexander says K can be braided about the z-axis, which can be described

by a word $w \in B_n$, the braid group

$$B_n = \left\{ \sigma_1, \cdots, \sigma_{n-1} \mid [\sigma_i, \sigma_j] = 1 \mid i-j \mid \ge 2, \ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \ i = 1, \cdots, n-2 \right\}$$

This captures positive vs negative braiding on nearby strands, commuting of strands that are far apart, and the Reidemeister 3 move. Write $K = K(\beta)$ for β a braid for the braid closure.

Remark 1.2.2: Markov's theorem: if $K = K(\beta_1), K(\beta_2)$ where $\beta_1 \in B_n$ and $\beta_2 \in B_m$ with m, n not necessarily equal, then there is a sequence of Markov moves β_1 to β_2 . The moves are:

• Stabilization and destabilization:

• Conjugation in B_n :

- 1
- Braid isotopy, which preserves braid words in B_n .

Remark 1.2.3: A theorem of Birman-Menasco: if $K(\beta) = U$ is the unknot for $\beta \in B_n$, then there is a sequence of braids $\{\beta_i\}_{i < k}$ with $\beta_k = 1 \in B_1$ such that

- $\beta_i \in B_{n_i}$
- $K(\beta_i) = U$
- $n_1 \ge n_2 \ge \cdots \ge n_k = 1$
- $\beta_i \rightarrow \beta_{i+1}$ is either a Markov move or an exchange move.

Remark 1.3.1: Genus bounds. A theorem due to Thurston-Eliashberg: if ξ is either a taut foliation or a tight contact structure on a 3-manifold Y and $\Sigma \neq S^2$ is an embedded orientable surface in Y, then there is an Euler class $e(\xi) \in H^2(Y)$. Then

$$|\langle e(\xi), \Sigma \rangle| \le -g(\Sigma),$$

which after juggling signs is a lower bound on the genus of any embedded surface.

Remark 1.3.2: Taut foliations: the basic example is $F \times S^1$ for F a surface. The foliation carries a co-orientation, and the tangencies at critical points of an embedded surface will have tangent planes tangent to the foliation, so one can compare the co-orientation to the outward normal of the surface to see if they agree or disagree and obtain a sign at each critical point. Write c_{\pm} for the number of positive/negative elliptics and h_{\pm} for the hyperbolics. Then

$$\chi = (e_+ + e_-) - (h_+ + h_-),$$

1.3 Application 3

by Poincaré-Hopf. On the other hand, $\langle e(\xi), \Sigma \rangle = (e_+ - h_+) - (e_- - h_-)$, so adding this yields

 $\langle e(\xi), \Sigma \rangle + \chi = 2(e_+ - h_+) \le 0.$

Isotope the surface to cancel critical points in pairs to get rid of caps/cups so that only saddles remain.

1.4 Contact Geometry

Definition 1.4.1 (?) A contract structure on Y^{2n+1} is a hyperplane field (a codimension 1 subbundle of the tangent bundle) $\xi = \ker \alpha$ such that $\alpha \wedge (d\alpha)^{\wedge^n} > 0$ is a positive volume form.

Example 1.4.2(?): On \mathbb{R}^3 ,

 $\alpha = dz - ydx \implies d\alpha = -dy \wedge dx = dx \wedge dy,$

 \mathbf{SO}

$$\alpha \wedge d\alpha = (dz - ydx) \wedge (dx \wedge dy) = dz \wedge dx \wedge dy = dx \wedge dy \wedge dz$$

Exercise 1.4.3 (?) On \mathbb{R}^5 , set $\alpha = dz - y_1 dx_1 - y_2 dx_2$. Check that

 $\alpha \wedge (d\alpha)^2 = 2(dz \wedge dx_1 \wedge dy_1 \wedge dx_2 \wedge dy_2).$

2

Contact Forms and Structures (Thursday, January 13)

Definition 2.0.1 (Contact form) A **contact form** on Y^3 is a 1-form α with $\alpha \wedge d\alpha > 0$. A **contact structure** is a 2-plane field $\xi = \ker \alpha$ for some contact form.

Remark 2.0.2: Forms are more rigid than structures: if f > 0 and α is contact, then $f \cdot \alpha$ is also contact with $\ker(\alpha) = \ker(f\alpha)$.

\sim

2.1 Examples of Contact Structures

Example 2.1.1 (Standard contact structure): On \mathbb{R}^3 , a local model is $\alpha \coloneqq dz - y \, dx$.

Exercise 2.1.2(?) Show $\alpha \wedge d\alpha = dz \wedge dx \wedge dy$.

Write $\xi = \operatorname{span}(\partial y, y\partial z + \partial x)$, which yields planes with a corkscrew twisting. Verify this by writing $\alpha = 0 \implies \frac{\partial z}{\partial x} = y$, so the slope depends on the *y*-coordinate.

Example 2.1.3 (Rotation of the standard structure): On \mathbb{R}^3 , take $\alpha_2 \coloneqq dz + x \, dy$ and check $\alpha_2 \wedge d\alpha_2 = dz \wedge dx \wedge dy$. This is a rigid rotation by $\pi/2$ of the previous α , so doesn't change the essential geometry.

Example 2.1.4 (Radially symmetric contact structure): Again on \mathbb{R}^3 , take $\alpha_3 = dz + \frac{1}{2}r^2d\theta$. Check that $d\alpha_3 = r \, dr \wedge d\theta$ and $\alpha_3 \wedge d\alpha_3 = r \, dz \wedge dr \wedge d\theta$. Then $\xi = \operatorname{span}_{\mathbb{R}}(\partial r, \frac{1}{2}r^2\partial z + \partial \theta)$. Note that as $r \to \infty$, the slope of these planes goes to infinity, but doesn't depend on z or θ .

Example 2.1.5 (Rectangular version of radially symmetric structure): Set $\alpha_4 = dz + \frac{1}{2}(x \, dy - y \, dx)$, then this is equal to α_3 in rectangular coordinates.

Example 2.1.6 (Overtwisted): Set

$$\alpha_4 = \cos(r^2) \, dz + \sin(r^2) \, d\theta.$$

Exercise 2.1.7(?) Compute the exterior derivative and check that this yields a contact structure.

Now note that

$$\alpha = 0 \implies \frac{\partial z}{\partial \theta} = -\frac{\sin(r^2)}{\cos(r^2)} = -\tan(r^2),$$

which is periodic in r. So a fixed plane does infinitely many barrel rolls along a ray at a constant angle θ_0 .

This is far too twisty – to see the twisting, consider the graph of $(r, \tan(r^2))$ and note that it flips over completely at odd multiples of $\pi/2$. In the previous examples, the total twist for $r \in (-\infty, \infty)$ was less than π .

Definition 2.1.8 (Contactomorphisms) A **contactomorphism** is a diffeomorphism

$$\psi: (Y_1^3, \xi_1) \to (Y_2^3, \xi_2)$$

such that $\varphi_*(\xi_1) = \xi_2$ (tangent vectors push forward).

A strict contactomorphism is a diffeomorphism

 $\varphi: (Y_1^3, \ker \alpha_1) \to (Y_2^3, \ker \alpha_2).$

such that $\varphi^*(\alpha_2) = \alpha_1$ (forms pull back).

Remark 2.1.9: Strict contactomorphisms are more important for dynamics or geometric applications.

Exercise 2.1.10 (?) Prove that $\alpha_1, \dots, \alpha_4$ are all contactomorphic.

Remark 2.1.11: Recall that X has a cotangent bundle $\mathbf{T}^{\vee}X \xrightarrow{\pi} X$ of dimension 2 dim X. There is a canonical 1-form $\lambda \in \Omega^1(\mathbf{T}^{\vee}X)$, i.e. a section of $T^{\vee}(T^{\vee}X)$. Given any smooth section $\beta \in \Gamma(\mathbf{T}^{\vee}X_{/X})$ there is a unique 1-form λ on $\mathbf{T}^{\vee}X$ such that $\beta^*(\lambda) = \beta$, regarding β as a smooth map on the left and a 1-form on the right. In local coordinates (x_1, \dots, x_n) on X, write $y_i = dx_i$ on the fiber of $\mathbf{T}^{\vee}X$. Why this works: the fibers are collections of covectors, so if x_i are horizontal coordinates there is a dual vertical coordinate in the fiber:

So we can write

$$\lambda = \sum y_i \, dx_i \in \Omega^1(\mathbf{T}^{\vee} X)$$

regarding the y_i as functions on $\mathbf{T}^{\vee}X$ and dx_i as 1-forms on $\mathbf{T}^{\vee}X$.

Exercise 2.1.12(?) Find out what $\beta = \sum a_i dx_i$ is equal to as a section of $\mathbf{T}^{\vee} X$.

Remark 2.1.13: To get a contact manifold of dimension 2n + 1, consider the 1-jet space $J^1(X) := T^{\vee}X \times \mathbb{R}$. Write the coordinates as $(x, y) \in \mathbf{T}^{\vee}X$ and $z \in \mathbb{R}$ and define $\alpha = dz - \lambda$, the claim is that this is contact.

For dimension 2n - 1, choose a cometric on X and take $\mathbb{S}\mathbf{T}^{\vee}X$ the unit cotangent bundle of unit-length covectors. Then $\alpha \coloneqq -\lambda|_{\mathbb{S}\mathbf{T}^{\vee}X}$ is contact.

Exercise 2.1.14 (?) Check that $\mathbb{R}^3 = J^1(\mathbb{R})$ and $\mathbb{S}\mathbf{T}^{\vee}(\mathbb{R}^2) = \mathbb{R}^2 \times S^1$.

Remark 2.1.15: A neat theorem: the contact geometry of $\mathbb{S}\mathbf{T}^{\vee}\mathbb{R}^3$ is a perfect knot invariant. This involves assigning to knots unique Legendrian submanifolds.

2.2 Perturbing Foliation

Example 2.2.1(?): Define

$$\alpha_t = dz - ty \, dx \qquad t \in \mathbb{R}$$

to get a 1-parameter family of 1-forms. Check that $\alpha_t \wedge d\alpha_t = t(dz \wedge dx \wedge dy)$. Consider $t \in (-\varepsilon, \varepsilon)$:

- $t > 0 \implies \alpha = dz y dx$ yields a positive contact structure,
- $t > 0 \implies \alpha = dz$ is a foliation,
- $t < 0 \implies \alpha = dz + y dx$ is a negative contact structure.

Remark 2.2.2: What is a (codimension r) foliation on an *n*-manifold? A local diffeomorphism $U \cong \mathbb{R}^n \times \mathbb{R}^{n-r}$ with *leaves* pt $\times \mathbb{R}^{n-r}$. For example, $\mathbb{R}^3 \cong \mathbb{R} \times \mathbb{R}^2$ with coordinates t and (x, y). We're leaving out a lot about how many derivatives one needs here!

For a fiber bundle or vector bundle to admit an interesting foliation, one needs a flat connection.

Definition 2.2.3 (Integrability) Any $\xi := \ker \alpha$ is **integrable** iff for all vector fields $X, Y \subseteq \xi$, their Lie bracket $[X, Y] \subseteq \xi$.

Theorem 2.2.4 (*Frobenius Integrability*). For α nonvanishing on Y^3 , ker α is tangent to a foliation by surfaces iff $\alpha \wedge d\alpha = 0$. 3

Example 2.2.5(?): Consider $\alpha = dz - y dx$, so ker $\alpha = \text{span} \{\partial y, y \partial z + \partial x\}$ which bracket to $\partial z \notin \text{ker } \alpha$. This yields a non-integrable contact structure.

On the other hand, for $\alpha = dz$, ker $\alpha = \sup_{\mathbb{R}} \{\partial x, \partial y\}$ which bracket to zero. So this yields a foliation.

Remark 2.2.6: A theorem of Eliashberg and Thurston: taut foliations can be perturbed to a (tight) positive contact structure.

3 | Tuesday, January 18

Remark 3.0.1: Refs:

- Geiges, Intro to Contact
- Ozbogi-Stipsicz
- Etnyre lecture notes
- Massot
- Sivck

Definition 3.0.2 (Standard contact structure) For $S^3 \subseteq \mathbb{C}^2$, define a form on \mathbb{R}^4 as

 $\alpha \coloneqq -y_1 dx_1 + x_1 dy_1 - y_2 dx_2 + x_2 dy_2.$

Then then standard contact form on S^3 is

 $\xi_{\mathrm{std}} \coloneqq \ker \alpha|_{S^3}.$

Exercise 3.0.3 (?) Show that α defines a contact form.

Solution: Write $f = x_1^2 + y_1^2 + x_2^2 + y_2^2$, then

 $\alpha|_{S^3} \wedge d\alpha|_{S^3} > 0 \iff df \wedge d\alpha \wedge d\alpha > 0.$

Check that

•
$$d\alpha = 2(dx_1 \wedge dy_1) + 2(dx_2 + dy_2)$$

• $df = 2(x_1dx_1 + y_1dy_1) + 2(x_2dx_2 + y_2dy_2).$

Remark 3.0.4: Note that at $p = [1, 0, 0, 0] \subseteq S^3$, $\mathbf{T}_p S^3 = \operatorname{span} \{\partial y_1, \partial x_2, \partial y_2\}$. and $\alpha_p = -0dx_1 +$

 $1dy_1 - 0dx_2 + 0dy_2 = dy_1$ and $\xi_p = \ker dy_1 = \operatorname{span} \{\partial x_1, \partial y_2\}.$

Then $\xi_p \leq \mathbf{T}_p \mathbb{C}^2 = \operatorname{span} \{ \partial x_1, \partial y_1, \partial x_2, \partial y_2 \} \cong \mathbb{C}^4$ is a distinguished complex line.

Definition 3.0.5 (Almost complex structures) An **almost complex structure** on X is a bundle automorphism $J : \mathbf{T}X \circlearrowleft$ with $J^2 = -\operatorname{id}$.

Example 3.0.6(?): For $X = \mathbb{C}^2$, take

$$\begin{array}{l} \partial x_1 \mapsto \partial y_1 \\ \partial y_1 \mapsto -\partial x_1 \\ \partial x_2 \mapsto \partial y_2 \\ \partial y_2 \mapsto -\partial x_2. \end{array}$$

Exercise 3.0.7 (?) Show that $f : \mathbb{C} \to \mathbb{C}$ is holomorphic if $df \circ J = J \circ df$, which corresponds to the Cauchy-Riemann equations.

Lemma 3.0.8(?). Given $J: W \to W$, an \mathbb{R} -subspace $V \leq W$ is a \mathbb{C} -subspace iff J(V) = V. **Definition 3.0.9** (?) The field of *J*-complex tangents is the hyperplane field

 $\xi_p \coloneqq \mathbf{T}S^3 \cap J(\mathbf{T}S^3).$

Example 3.0.10(?): Consider $\mathbf{T}_p S^3$ for p = [1, 0, 0, 0], then

$$J(\operatorname{span} \{\partial y_1, \partial x_1, \partial y_2\}) = \operatorname{span} \{-\partial x_1, \partial y_2, -\partial x_2\},\$$

so $\xi_p = \operatorname{span} \partial x_1, \partial y_2$ is the intersection and coincides ξ_{std} .

Question 3.0.11

Where does α come from?

Let $\rho = \sum x_i \partial x_i + \sum y_i \partial y_i$ be the radial vector field, so $\rho = \frac{1}{2} \operatorname{grad} \left[\sum x_i^2 + \sum y_i^2 \right]$. Setting $\omega \coloneqq \bigwedge dx_i \land \bigwedge dy_i$, then $\alpha = \iota_p \omega \coloneqq \omega(p, -)$ is the interior product of ω . Then

$$\alpha = dx_1 \wedge dy_1(x_1 \partial x_1 + y_1 \partial y_1 + \cdots) + \cdots = x_1 dy_1 - y_1 dx_1 + \cdots$$

So the contact form comes from pairing the symplectic form against a radial vector field.

Remark 3.0.12: Recall $f \coloneqq \sum x_i^2 + \sum y_i^2$ satisfies $df = 2 \sum x_i dx_i + 2 \sum y_i dy_i$. Note that J acts on 1-forms by $J^*(dx)(-) = dx(J(-))$. For J = i,

•
$$\delta x : dx(J\partial x) = dx(\partial y) = 0$$
,

• $\partial y : dx(J\partial y) = dx(-\partial x) = -1.$

So $J^*(dx) = -dy$, and

$$J^*(df) = 2x_1(-dy_1) + 2y_1(dx_1) + 2x_2(-dy_2) + 2y_2(dx_2) = -2\alpha.$$

Thus $J^*(df)$ is a rotation of df by $\pi/2$.

Example 3.0.13(?): The field of complex tangencies along $Y = f^{-1}(0)$ is the kernel of $df(J(-))|_{V}$.

Remark 3.0.14: Methods of getting contact structures: for a vector field X, being contact comes from $\mathcal{L}_X \omega = \omega$. For functions $f : \mathbb{C}^2 \to \mathbb{R}$, being contact comes from $\alpha = d^{\mathbb{C}} f$ being contact. See strictly plurisubharmonic functions and Levi pseudoconvex subspaces.

Example 3.0.15(?): The standard contact structure is orthogonal to the Hopf fibration: define a map

$$\mathbb{C}^2 \setminus \{0\} \to \mathbb{CP}^1 \cong S^2$$
$$[z, w] \mapsto [z : w],$$

which restricts to a map $S^3 \to S^2$ defining the Hopf fibration. If L is a complex line through 0, then $L \cap S^3$ is a Hopf fiber that is homeomorphic to S^1 .

Take

 $\mathbb{C}^2 \to \mathbb{R}^2$ $(z_1, z_2) \mapsto (|z_1|, |z_2|).$

Consider the image of $S^2 = \{ |z_1|^2 + |z_2|^2 = 1 \}$:

The preimage is $S^1 \times S^1$. This can be realized as a tetrahedron with sides identified:

There are Hopf fibers on the ends, and undergo a $\pi/2$ twist as you move through the tetrahedron.

4 | Darboux and Gromov Stability (Thursday, January 20)

Remark 4.0.1: Almost-complex structures: weaker than an actual complex structure, but not necessarily integrable. Useful for studying pseudoholomorphic curves. A necessary and sufficient condition for integrability: the Nijenhuis tensor $N_J = 0$ iff J is integrable. In real dimension 2, all J are integrable.

Theorem 4.0.2 (Darboux).

If (Y^3, ξ) is contact then for every point p there is a chart U with coordinates x, y, z where $\xi = \ker(dz - y dx) = \ker(\alpha_{\text{std}}).$

Slogan 4.0.3

Locally, all contact *structures* (not necessarily forms) look the same. The mantra: local flexibility vs global rigidity.

 \sim

4.1 Proof of Darboux

Remark 4.1.1: Two proofs:

- Geometric, due to Giroux
- PDEs, which generalizes. This uses Moser's trick.

Proof(1).

Locally write $\xi = \ker \alpha$ with $\alpha \wedge d\alpha > 0$. Pick a contact plane ξ_p and let S be a transverse surface, so $\mathbf{T}_p S \pitchfork \xi_p$. This produces a set of curves in S which are tangent to ξ_p everywhere, called the *characteristic foliation*.

Then $\alpha|_S = dz$, which is a 1-form that is nonvanishing near p and is locally integrable. Sending $\alpha \to X$ a vector field along S yields a set of integral curves tracing out the characteristic foliation. This yields an x direction and a z direction on S by flowing $t \in (-\varepsilon, \varepsilon)$ around p along X.

Choose a vector field ∂t which is transverse to S and contained in ξ . Then $\alpha(\partial t) = 0$, so we can write

$$\alpha = f \, dx + g \, dz + h \, dt = f \, dx + g \, dz.$$

Since g(p) = 1, replace α with $\frac{1}{g}\alpha$ which is positive near p and doesn't change the contact structure ξ . So write

$$\alpha = f \, dx + dz \implies \alpha \wedge d\alpha = \alpha \wedge (f_t \, dy \wedge dx + f_z \, dz \wedge dx) = -f_t \, dx \wedge dt \wedge dz > 0,$$

meaning $f_t < 0$ and we can set y = f(x, z, t). This yields

$$\alpha = dz + f \, dx = dz - y \, dx.$$

Proof (2, Moser's Trick). By a linear change of coordinates, choose x, y along ξ to write $\alpha_p = dz$ and $\xi_p = \operatorname{span} \partial x, \partial y$:

 \mathbf{SO}

$$\mathcal{L}_{V_t}(\alpha_t) = d(\alpha_t(V_t)) + d\alpha_t(V_t, -) = 0 + d\alpha_t(V_t, -).$$

We can thus write this equation as

$$\Phi_t^*(\dot{\alpha}_t + d\alpha_t(V_t, -)) = \dot{f}_t \alpha_0 = \dot{f}_t \left(\frac{\Phi_t^*(\alpha_t)}{f_t}\right)$$

Applying $(\Phi_t^*)^{-1}$ yields

$$\dot{\alpha}_t + d\alpha_t(V_t, -) = \frac{f_t}{f_t}\alpha_t.$$

Now try to solve this for V_t . Let R_t be the **Reeb vector field** of α_t , which satisfies

• $\alpha_t(R_t) = 1$ • $d\alpha_t(R_t, -) = 0.$. S=Kera Then

$$\dot{\alpha}_t(R_t) = \frac{\dot{f}_t}{f_t} = \frac{\partial}{\partial t} \log(f_t) \coloneqq \mu_t,$$

so $\dot{\alpha}_t(R_t)$ determines f_t by first integrating and exponentiating. We now need to solve

$$d\alpha_t(V_t, -)|_{\xi_t} = \mu_t \alpha_t - \dot{\alpha}_t|_{\xi_t}.$$

Since $d\alpha_t$ is a volume form on ξ_t , it identifies vector fields in ξ_t with 1-forms on ξ_t using the happy coincidence that n = 2 so $1 \mapsto n - 1 = 1$. So V_t is uniquely determined by the solution to the above equation.

5 | Gray Stability (Tuesday, January 25)

Remark 5.0.1: A homotopy of contact structures o Y^3 is a smooth family $\{\varphi_t\}$ of contact structures. Similarly, an **isotopy** of structures such that $\{D\varphi_t(\xi_0)\}$ for an isotopy $\varphi_t : Y \to Y$ with $\varphi_0 = \text{id.}$ If Y^3 is closed then every homotopy of contact structures is an isotopy. Theorem: contact structures mod isotopy is discrete, which critically uses closedness.

Lemma 5.0.2(?). For φ_t an isotopy generated by the flow of X_t and α_t a family of 1-forms,

$$\frac{\partial}{\partial t} \varphi_t^*(\alpha_t) \Big|_{t=t_0} = \varphi_{t_0}^*(\dot{\alpha}_{t_0} + \mathcal{L}_{X_{t_0}}\alpha_{t_0}).$$

Proof (?). Write

$$\varphi_x^*(\alpha_y) = \frac{\partial}{\partial x} ? + \frac{\partial}{\partial y} ? = \varphi_{x_0}^* \mathcal{L}_{X_0} \mathcal{L}_X \alpha_{y_0} + \varphi_{x_0}^* \alpha_y,$$

and proceed similarly to the proof of Darboux's theorem.

4

Pick $\{\varphi_t\}$ a homotopy, one can choose α_t with $\xi_t = \ker \alpha_t$ for all t. Apply Moser's trick: assume there exists a φ_t with $\varphi_t^*(\alpha_t) = \lambda_t \alpha_0$ and try to find v_t generating it, where $\lambda_t : Y \to \mathbb{R}_+$. What does φ_t need to look like? Differentiate in t:

$$\varphi_{t_0}^*(\cdot\alpha_{t_0} + \mathcal{L}_{V_{t_0}}\alpha_{t_0}) = \dot{\lambda}_t \alpha_0 = \dot{\lambda}_t \left(\frac{\varphi_{t_0}^*(\alpha_t)}{\lambda_t}\right).$$

Apply $(\varphi_{t_0}^*)^{-1}$:

$$\frac{\alpha_t + \mathcal{L}_{V_t} \alpha_t = \mu_t \alpha_t}{\lambda_t} \quad \mu_t = (\varphi_{t_0}^*)^{-1} (\dot{\lambda}_t)$$

Use that V_t is always tangent to the contact structure, so $V_t \in \xi_t$, to assume $\alpha_t(V_t) = 0$. Apply Cartan:

$$\dot{\alpha}_t + d\alpha_t(V_t) + \iota_{V_t} d\alpha_t = \mu_t \alpha_t,$$

and $d\alpha_t(V_t) = 0$, so

$$\iota_{V_t} d\alpha_t = \mu_t \alpha_t - \dot{\alpha}_t.$$

Plug in the Reeb vector field R_t , then $\alpha_t(R_t) = 0$ so $\mu_t = \dot{\alpha}_t(R_t)$.

Corollary 5.0.3(?). Let Y be n $S^3 \subseteq \mathbb{C}^2$ that is transverse to the radial vector field. Then

$$\alpha = x_1 dy_1 - y_1 dx_1 + x_2 dy_2 - y_2 dx_2 \Big|_y$$

defines the standard tight contact structure.

Proof (?).

Write $Y \subseteq \mathbb{R} \times S^3$ in coordinates (f(x), x) as the graph of a function $f : S^3 \to \mathbb{R}$. Take an isotopy $Y_t = (tf(x), x) \subseteq \mathbb{R} \times S^3$ to get a family of contact forms where $\alpha_0 = \alpha_{\text{std}}$ and α_1 is some unknown form. By Gray stability, the contact structures are isotopic.

5.1 Legendrian Links

Remark 5.1.2: Every Legendrian knot has a transverse pushoff (up to transverse isotopy). Every transverse knot has a Legendrian approximation.

Example 5.1.3(?): Take \mathbb{R}^3 and $\alpha_{\text{std}} = dz - ydx$, then the *y*-axis $L_1 \coloneqq \{[0, t, 0]\}$ is Legendrian. Similarly the *x*-axis L_2 is Legendrian, checking that $\mathbf{T}L_2 = \text{span}\{[1, 0, 0]\}$. However the slight pushoff $L_3 \coloneqq \{[t, -\varepsilon, 0]\}$ is transverse since $\alpha|_{L_3} = \varepsilon dx > 0$.

Theorem 5.1.4(Neighborhood theorem, Darboux for Legendrian/transverse knots). Every Legendrian has a neighborhood contactomorphic to the zero section in $J_1S^1 = \mathbf{T}S^1 \times \mathbb{R}$. Every transverse has a neighborhood contactomorphic to the z-axis in $\mathbb{R} \times S^1$ with $\alpha := dz + r^2 d\theta$.

6 | Thursday, January 27

Remark 6.0.1: Goal: classify Legendrian knots up to (Legendrian) isotopy. Recall a knot $\gamma : S^1 \hookrightarrow Y$ satisfies $\gamma^*(\alpha) = 0$, and a Legendrian isotopy is a 1-parameter family γ_t which are Legendrian for all t.

Example 6.0.2(?): $\gamma(s) = [x(s), y(s), z(s)]$ and $\xi = \ker \alpha, \alpha = dz - y dx$. Then $\gamma^*(\alpha) = z' ds - yx^1 ds = (z' - yx') ds$, which is Legendrian iff y = z'/x'.

Example 6.0.3(?): Let $f : \mathbb{R} \to \mathbb{R}$ and take the 1-jet $\gamma(s) = [s, f'(s), f(s)]$ of the graph of f – this is like the graph of the 1st order Taylor expansion. This is Legendrian since s' = 1 implies z'/x' = f'/s' = f'.

Remark 6.0.4: There are two projections:

- + $[x, y, z] \rightarrow [x, z]$, a wave front projection, plotted with y into the board,
- $[x, y, z] \rightarrow [x, y]$, Lagrangian projection.

Example 6.0.5(?): Let $\gamma(s) = \left[s^2, \frac{3}{2}s, s^3\right]$, then the two projections are as follows:

Remark 6.0.6: The front projection uniquely determines L, since the y coordinate can be recovered as y = z'/x'. So for example, there is no ambiguity about crossing order: the more negatively sloped line in a diagram is the over-crossing:

Example 6.0.7(?): A front diagram of the unknot:

Theorem 6.0.8(?). Every knot $K \hookrightarrow \mathbb{R}^3$ can be C^0 approximation by a Legendrian knot L. Idea: zigzags in an ε tube in the knot diagram, which will be Legendrian. How to measure: $\sup_{s \in I} |\gamma_1(s) - \gamma_2(s)| \le \varepsilon$?

Remark 6.0.9: Note that $\text{Lie}(SO_3) \coloneqq \mathbf{T}_e(SO_3) = \mathfrak{su}_2$, spanned by roll, pitch, and yaw generators:

So measuring the number of rotations along each generator after traversing L in a full loop yields integer invariants.

Definition 6.0.10 (The Thurston–Bennequin number)

A framing of a knot K is a trivialization of its normal bundle, so an identification of $\nu(K) \cong S^1 \times \mathbb{D}^2$. The potential framings are in $\pi_1(SO_2) \cong \pi_1(S^1) \cong \mathbb{Z}$, since a single vector field normal (?) to the knot determines the framing by completing to an orthonormal basis. The Reeb vector field is never tangent to a Legendrian knot, so this determines a framing called the **contact framing**. The **Thurston–Bennequin number** is the different between the 0-framing and the contact framing. The 0-framing comes from a Seifert surface. This is an invariant of Legendrian knots, since Legendrian isotopy transports frames. Note that adding zigzags adds cusps, and thus decreases this number.

Remark 6.0.11: How to compute: take a pushoff and compute the linking number:

Proposition 6.0.12(?).

$$\operatorname{tb}(L) = w(L) - \frac{1}{2}C(L),$$

where w(L) is the writhe and C(L) is the number of cusps.

Example 6.0.13(?): TB for the knots from before:

- The 3 unknots:
 - -2 cusps, so -1
 - 4 cusps, so -2
 - 4 cusps, so -2
- The 2 trefoils:

$$-3 - \frac{1}{2}4 = 1$$
$$-3 - \frac{1}{2}6 = -6.$$

Remark 6.0.14: Since adding zigzags decreases tb, define TB to be the max over all Legendrian representatives of K. This distinguishes mirror knots. In fact $tb(L) \leq 2g_3(L) - 1$ (the Bennequin bound), involving the 3-genus.

Definition 6.0.15 (Rotation number)

The **rotation number** of L is the *turning number* rot(L) in the Lagrangian projection, i.e. how many times a tangent vector spins after traversing the knot.

It turns out that

 $\operatorname{rot}(L) = \frac{1}{2} \left(\sharp \operatorname{down} \, \operatorname{cusps} - \sharp \operatorname{up} \, \operatorname{cusps} \right).$

7 | Tuesday, February 01

Remark 7.0.1: Last time: front diagrams $[x, y, z] \mapsto [x, z]$, where $\alpha = dz - y dx$ forces y = ds/dx can be recovered as the slope in the projection. Note that we can also recover crossing information from the Legendrian condition, since y always points into the board, so more negative slopes go on top.

Some invariants:

• Thurston-Bennequin invariant: a contact framing with respect to the Reeb vector field

- Equal to writhe minus half the number of cusps.
- Rotation numbers: Turning number of L with respect to ξ , after fixing a trivialization of ξ . Equal to $\frac{1}{2}(D-U)$, the number of down/up cusps respectively.

Remark 7.0.2: Disallowed moves:

Allowed moves:

Remark 7.0.3: Geography problem: given a smooth knot K, which pairs $(t, r) \in \mathbb{Z}^2$ are realized as (tb(L), rot(L)) for L a Legendrian representative of K?

Botany problem: given $(t,r) \in \mathbb{Z}^2$, how many inequivalent L representing K realize $(t,r) = (\operatorname{tb}(L), \operatorname{rot}(L))$?

Example 7.0.4(?): For K the unknot:

So these numerical pairs fall into a cone:

Remark 7.0.6: Note that $\chi(S) \equiv 1 \mod 2$ for S a Seifert surface.

Theorem 7.0.7 (Bennequin-Thurston inequality). For any Seifert surface S,

 $\operatorname{tb}(L) + |\operatorname{rot}(L)| \le -\chi(S).$

Remark 7.0.8: This solves the geography problem: this cone contains all of the possible pairs.

Theorem 7.0.9 (Eliashberg-Fraser). The unknot is Legendrian simple: if $tb(L_1) = tb(L_2)$ and $rot(L_1) = rot(L_2)$, then L_1 is isotopic to L_2 .

Remark 7.0.10: This solves the botany problem: every red dot has exactly one representative.

Remark 7.0.11: Other knots are Legendrian simple, e.g. the trefoil. A theorem of Checkanov says the following 5_2 knots are not Legendrian isotopic:

Remark 7.0.12: This all depended on the standard contact form. Consider instead the overtwisted disc: take \mathbb{R}^3 with $\alpha = \cos(r) dz + \sin(r) d\theta$. Take the curve $[r, \theta, z] = \gamma(t) := [1, t, 0]$, a copy of S^1 in the *x*, *y*-plane. Then $\gamma' = [0, 1, 0]$, and at $\theta = \pi, \alpha = \cos(\pi) dz + \sin(\pi) d\theta = -dz$, but at r = 0 $\alpha = dz$, so traversing a ray from 0 to -1 in the *x*, *y*-plane forces the contact plane to flip:

One can check that the spiven my lk(L, L') = 0 where L' is a pushoff of L, and can be made totally disjoint from L in this case by moving in the z-plane.

Definition 7.0.13 (Overtwisted discs) An **overtwisted disc** in (Y^3, ξ) that is locally contactomorphic to this local model. Y is **overtwisted** if it contains an overtwisted disc, and is tight otherwise.

Theorem 7.0.14 (Bennequin). $(\mathbb{R}^3, \xi_{std})$ is a tight contact structure.
Theorem 7.0.15 (Eliashberg).

For every closed oriented Y^3 , every homotopy class of 2-plane fields on Y contains a unique (up to isotopy) overtwisted contact structure.

7.1 Transverse Knots

Definition 7.1.1 (Self-linking)

The self-linking number sl(T, S) of a transverse knot rel a Seifert surface S is lk(T, T') for T' a pushoff of T determined by a trivialization of $\xi|_S$.

Remark 7.1.2: In this case, ξ restricts to an \mathbb{R}^2 bundle over Σ , which is trivial since Σ is closed with boundary and $e(\xi) \in H^2(S) = 0$. To see this, use $H^2(S) \cong H_0(S, \partial S) = 0$ by Lefschetz duality. This yields a section of the frame bundle over S, which gives a pushoff direction along the first basis vector:

This turns out to be well-defined: it's independent of the surface S chosen and the trivialization of ξ . The difference of two trivializations gives a map $\pi_1(S) \to \mathbb{Z}$, which factors through $\pi_1(S)^{ab} = H_1(S)$. The difference in surfaces is measured by $\langle e(S), \Sigma_1 \coprod_T \Sigma_2 \rangle$, which is a glued surface.

8 | Thursday, February 03

Remark 8.0.1: Last time: self-linking of transverse knots. Today: surfaces with transverse boundary. Let Σ be a surface embedded in (Y, ξ) with $\partial \Sigma$ transverse to ξ . Let F be the characteristic foliation, the singular foliation on Σ induced by $\xi|_{\Sigma}$. Equivalently, if $\xi = \ker \alpha$, consider the 1-form $\alpha|_{\Sigma}$. Generically, $\ker \alpha|_{\mathbf{T}\Sigma}$ is 1-dimensional except at finitely many points where $\alpha_p = 0$, i.e. ξ is tangent to Σ . This line field integrates to a singular foliation. Recall that $\mathrm{sl}(L)$ is the self-linking number.

Example 8.0.2(?): Take $\alpha = dz + x dy - y dx$ and $\Sigma = S^2$, then the singular foliation is given by

Remark 8.0.3: Two possible types of singularities, the local models:

There are also two numerical invariants:

- e_{\pm} : the number of positive (resp. negative) elliptics
- h_{\pm} : the number of positive (resp. negative) hyperbolics

A theorem

$$\langle c(\Sigma), \Sigma \rangle = (e_{+} - h_{+}) - (e_{-} - h_{-}).$$

If Σ is transverse, $\operatorname{sl}(\partial \Sigma, \Sigma) = -(e_+ - h_+) + (e_- - h_-)$.

8.1 Local Model 1: Elliptic

Remark 8.1.1: σ is the *x*, *y*-plane and $\xi = \ker(dz + x \, dy - y \, dx)$ with $\alpha|_{\Sigma} = x \, dy - y \, dx$. Set $V : x \partial_x + y \partial_y$ and $L' = \langle x \partial_y - y \partial_x \rangle$, and $\alpha(i) = x^2 + y^2 = 1 > 0$.

Here sl = 1. To compute sl:

- Trivialize ξ|_Σ to get τ = ⟨e₁, e₂⟩ a fiberwise basis for ξ.
 Let *L̃* be a pushoff in the e₁ direction.
- Compute $sl = lk(L, \tilde{L})$.

 Set

•
$$e_1 = \partial_x + y \partial_z$$

- $e_2 = \partial_y x\partial_z$ $\rho = x\partial_x + y\partial_y$ $\theta = x\partial_y y\partial_x$.

Then

$$x\rho - y\theta = x(x\partial_x + y\partial_y) - y(-y\partial_x + x\partial_y) = (x^2 + y^2) dx.$$

Then

- $c_1 = x\rho y\theta + y\partial_z$ $\overline{c_1} = x\rho + y\partial_z = \cos(\rho) + \sin(\theta)\partial_z$.

Example:

- $\theta = 0 \implies e_1 = \rho$ $\theta = \pi/4 \implies e_1 = \frac{\sqrt{2}}{2}(\rho + \partial_z)$ $\theta = \pi/2 \implies e_1 = \partial_z$

So here
$$lk(U, \tilde{U}) = -1$$
:

Remark 8.2.1: Here ξ is the x, y-plane, so $\xi = \ker(dz + 2x dy + y dx)$ with $\alpha|_{\Sigma} = 2x dy + y dx$ and $V = y\partial_y + dx\partial_x \in \ker(\alpha|_{\Sigma}).$

Remark 8.2.2: The Euler class of a real vector bundle $E \xrightarrow{\pi} X$ is the obstruction to finding a nonvanishing section s of E, given by $e(E) \in H^k(X)$. It is Poincare dual to $[s^{-1}(0)] \in H_{n-k}(X, \partial X)$. For the tangent bundle, $e(\mathbf{T}X) \in H^n(X)$, and

$$\langle e(\mathbf{T}X), [X] \rangle = \chi(X)$$

Since a section of $\mathbf{T}X$ is a vector field, $e(\mathbf{T}X)$ is an obstruction to finding a nonvanishing vector field. If $\partial X \neq \emptyset$ and t is a section of $E|_{\partial X}$, there is a relative Euler class $e(E,t) \in H^k(X,\partial X) \cong H_{n-k}(X)$. Similarly,

$$\langle e(\mathbf{T}X, t), [X] \rangle = \chi(X).$$

Example 8.2.3(?): Note $\chi(\mathbb{D}) = 1$, so any vector field has a singularity?

Proposition 8.2.4(?). The total class is the sum of the relative obstructions. If $\sigma = \Sigma_1 \coprod_{2} \Sigma_2$ and τ is a nonvanishing

Remark 8.3.1: Let Σ have transverse boundary with characteristic foliation F, and let V be the vector field directing F, so $V \in \xi \cap \mathbf{T}\Sigma$. We can assume V is outward-pointing along $\partial \Sigma$.

Check that

- $\chi(\Sigma) = e(\mathbf{T}\Sigma, V) \in H^2(\Sigma, \partial \Sigma) \cong H_0(\Sigma)$
- $\operatorname{sl}(\partial \Sigma, \Sigma) = e(\xi, V) \in H^2(\Sigma, \partial \Sigma)$

Fact 8.3.2

- $e_+ + e_-$ correspond to +1 in $e(\mathbf{T}\Sigma, V)$,
- h_+, h_- correspond to -1 in $e(\mathbf{T}\Sigma, V)$.

Proof: near a zero, V determines a map $S^1 \to S^1$ and the contribution to e is the degree of this map.

• e_+ contributes -1 to $e(\xi, V)$, by the same computation of sl(U) for U the unknot.

- e_- contributes -(-1) = +1 to $e(\xi, V)$.
- h₊ contributes +1 to e(\$\xi\$, V)
 h₋ contributes -(+1) = -1 to e(\$\xi\$, V).

Proof: exercise.

Remark 8.3.3: Bennequin inequality:

 $\mathrm{sl}(T,\Sigma) \leq -\chi(\Sigma) \implies e_+ + h_+ + e_- + h_- \leq -(e_+ + e_- - h_+ - h_-) \iff e_- \leq h_-.$

Try to cancel in pairs:

The inequality follows if we can cancel every e_{-} with some h_{-} .

9 | Tuesday, February 08

Remark 9.0.1: Topics for talks:

• Thom-Pontryagin

9

- Brieskorn spheres
- Milnor fibrations
- Lens spaces

Theorem 9.0.2(?).

Every closed oriented 3-manifold Y admits a (positive) contact form.

Remark 9.0.3: Three proofs:

- Lickorish-Wallace, using that Y is Dehn surgery on a link in S^3 ,
- Birman-Hildon, using that Y is a branched cover of S^3 ,
- Alexander, using that Y admits an open book decomposition.

Remark 9.0.4: Dehn surgery for slope p/q: for $K \hookrightarrow S^3$, cut out $\nu(K) \cong S^1 \times \mathbb{D}$ and re-glue by a map $\partial(S^1 \times \mathbb{D}) \to \partial \nu(K)$ such that $[\{0\} \times \partial \mathbb{D}] = p[m] + q[\ell] \in H^1(\partial \nu(K))$. Use that $\nu(K) \cong S^1 \times \mathbb{D}$ and $\partial \nu(K) \cong S^1 \times S^1 = T^2$. Idea: wrapped p times longitudinally, q times around the meridian.

Remark 9.0.5: Recall:

- Every knot K can be C^0 approximated by a transverse knot
- Every link L can be C^0 approximated by a transverse link
- Neighborhood theorem: for every transverse knot K, there is a w(K) and a contactomorphism to a standard model: $S^1 \times \mathbb{D}$ in coordinates (φ, r, θ) with $0 \leq r \leq \delta$ and $\alpha = d\varphi + r^2 d\theta$. Re-gluing corresponds to the map $[0, \delta, \theta] \mapsto [q\theta, \delta, p\theta]$.

$$\begin{bmatrix} 0, \delta, \bar{\theta} \end{bmatrix} \mapsto \begin{bmatrix} q\bar{\theta}, \delta, p\bar{\theta} \end{bmatrix} \\ \begin{bmatrix} \bar{\pi}, \bar{r}, \bar{\theta} \end{bmatrix} \mapsto [\varphi, r, \theta].$$

If p, q are coprime there exist m, n with pm - qn = 1. So define

$$\psi: \left[\bar{\pi}, \bar{r}, \bar{\theta} \right] \mapsto [\varphi, r, \theta],$$

 \mathbf{SO}

$$\psi^*(\alpha) = d(\alpha\bar{\theta} + m\bar{\varphi}) + r^2 d(p\bar{\theta} + n\bar{\varphi}) = (q + r^2 p)d\bar{\theta} + (m + r^2 n)d\bar{\varphi}.$$

We want $\alpha = h_1(r)d\bar{\theta} + h_2(r)d\bar{\theta}$ to be contact and satisfy $(h_1, h_2) = (r^2, 1)$ near r = 0 and $(q + r^2p, m + r^2n)$ near $r = \delta$. This requires

$$d\alpha = h_1' \, dr \wedge d\overline{\varphi} + h_2' \, dr \wedge d\overline{\theta} = (h_2 h_1' - h_1 h_2') dr \wedge d\overline{\theta} \wedge d\overline{\varphi},$$

which happens iff

$$\det \begin{bmatrix} h_2 & h'_2 \\ h_1 & h'_1 \end{bmatrix} > 0$$

Think of $[h_2, h_1]$ as a path with tangent vector $[h'_2, h'_1]$. This requires moving counterclockwise.

Definition 9.0.6 (?) An **open book decomposition** of Y is a pair (B, π) where

- B is a link in Y, called the **binding**π : Y \ B → S¹ is a locally trivial fibration of relatively compact fibers **pages**

Remark 9.0.7: An open book decomposition is determined by its monodromy map $\varphi : \Sigma_0 \to \Sigma_0$, which determines a class $[\varphi] \in MCG(\Sigma_0)$. Form

$$Y \setminus \nu(B) \cong \frac{\Sigma \times I}{\varphi(x) \times \{0\} \sim x \times \{1\}},$$

which is a glued cylinder:

Definition 9.0.8 (Open book decompositions supporting a contact structure) An open book decomposition **supports** a contact structure ξ iff there exists a contact form α such that $d\alpha$ is an area form on each page and B is a transverse link in (B, ξ) .

Theorem 9.0.9 (Thurston-Winkelnkemper).

Every open book decomposition admits a contact structure.

Theorem 9.0.10 (Giroux).

Every (Y^3,ξ) with Y closed has a supporting open book decomposition.

Proposition 9.0.11(?).

If an open book decomposition supports ξ_1 and ξ_2 , then ξ_1 is isotopic to ξ_2 .

Proof (?). Two steps:

- Form a mapping cylinder of the monodromy map φ ,
- Extend over the binding, using the same idea as in Dehn surgery.

Choose an area form ω on Σ and a primitive β with $d\beta = \omega$. Let $\beta_1 := \varphi^*\beta$ and $\beta_0 = \beta$, then set

$$\beta_t = t\beta_1 + (1-t)\beta_0.$$

This yields a 1-form on $\Sigma \times I$ that extends to the mapping cylinder. Moreover $d\beta_t = td\beta_1 + td\beta_1$ $(1-t)d\beta_0$ is an area form on $\sigma \times \{t\}$ and $\alpha = dt + \varepsilon \beta_t$ is a contact form for small $\varepsilon > 0$. Then $d\alpha = \varepsilon d\beta_t + \varepsilon dt \wedge \dot{\beta}_t$ and $\alpha \wedge d\alpha = \varepsilon dt \wedge d\beta_t + \mathsf{O}(\varepsilon^2)$.

1() | Tuesday, February 15

Missed due to orthodontic appointment! Please send me notes. :)

Thursday, February 17

Remark 11.0.1: Let $\Sigma \subseteq (Y^3, \xi)$.

- Characteristic foliation: $F = \xi \cap \mathbf{T}\Sigma$, complicated but necessary
- Dividing set: a multicurve, simpler

Theorem 11.0.2(?).

If Σ is convex with a dividing set Γ and F is any foliation divided by Γ , there is a C⁰-small isotopy φ_t wt

- $\varphi_0(\Sigma) = \Sigma, \varphi_t(\Gamma) = \Gamma$ $\varphi_t(\Sigma)$ is convex for all $t \in [0, 1]$
- The characteristic foliation of $\varphi_1(\Sigma)$ is F.

Remark 11.0.3: Idea: dividing sets give ways to detect overtwisted contact structures.

Remark 11.0.4: If $\Sigma = S^2$ and $\sharp \Gamma \geq 2$, then (Y, ξ) is overtwisted. Recall that an overtwisted disc is an embedded D^2 with Legendrian boundary such that $tb(\partial D) = 0$ and $tw(\xi, \partial D)$.

Spheres can have exactly one dividing component.

Exercise 11.0.5 (?) Generalize to an arbitrary number of components $\sharp \Gamma = n$.

Remark 11.0.6: Same if $\Sigma \neq S^2$ and Γ contains a contractible curve. Contrapositively, if (Y,ξ) is tight, then either

- Σ = S² and Γ is connected, or
 Σ ≠ S² and Γ has no contractible components.

Exercise 11.0.7 (?)

Consider tight contact structures on S^3 . Choose Darboux B^3 neighborhoods at the ends, and note the interior is $S^2 \times [0, 1]$:

Remark 11.0.8: What can F look like on an S^2 in a tight (Y,ξ) ? F can be perturbed to be Morse-Smale.

- There are a finite number of elliptic/hyperbolic singularities
- There are nondegenerate periodic orbits, either attracting or repelling
- There are no saddle-saddle arcs
- The limit sets are singularities or periodic orbits

Dimension 3: strange attractors! Two types of limit sets:

- ω limit sets: x ∈ Y where there exists a sequence {t₁ < ···} with φ(t_k) → x.
 α limit sets: x ∈ Y where there exists a sequence {t₁ > ···} with φ(t_k) → x.

Remark 11.0.9: For S^2 , take S^+ with an outward pointing vector field.

There are no periodic orbits since (Y,ξ) is tight. The only limit sets are singular points. $\chi(D) = 1 = \sharp e - \sharp h$. Stable manifold of h: Stab_h are $x \in D^2$ such that there exists a flow like with $\varphi(0) = x$ and $\varphi(t) \to h$ Form a 1-complex $\bigcup_{h} \operatorname{cl}_X(\operatorname{Stab}_h)$ – this contains no cycles, thus this is a tree, and the dividing set is a neighborhood of the tree.

Proposition 11.0.10(?). If F on Σ is Morse-Smale, then it admits dividing curves.

Proof (?).Let $G = \bigcup cl(Stab_h) \cup \bigcup e_t$ along with all of the repelling periodic orbits. Then $\Gamma = \partial \nu(G)$ divides F.

Theorem 11.0.11(?).

If Σ is orientable, then there is a C^{∞} small perturbation of F such that it is Morse-Smale.

Proposition 11.0.12(?). Every oriented $\Sigma \subseteq (Y,\xi)$ can be perturbed to be convex.

Proof (?).

Near Σ , $\alpha = \beta_t + \alpha_t dt$ and β_0 define F. By Peixoto there exists $\tilde{\beta}_t$ such that $\tilde{\beta}_t$ defines a Morse-Smale F. For $\|\beta - \tilde{\beta}\|_{C^{\infty}} \ll \varepsilon$, $\tilde{\alpha} = \tilde{\beta}_t + \alpha_t dt$ is contact. Then $\alpha_s = s\tilde{\alpha} + (1-s)\alpha$ is a path of contact forms, so by Gray stability there is an isotopy φ_s such that $\varphi_s^*(\alpha_s) = \lambda_s \alpha$ and we can take $\varphi_1(\Sigma)$ to be our surface.

Proposition 11.0.13(?). If (Σ, F) admits dividing curves, then it is convex.

12 | Thursday, February 24

Remark 12.0.1: Last time: there is a unique tight contact structure on S^3 , using the existence of a contact structure on $S^3 \times I$. Next: tight contact structures on

- $T^2 \times I$
- $S^1 \times \mathbb{D}^2$
- L(p,q)• T^3

Given dividing sets of $\Gamma_0, \Gamma_1 \in T^2 \times I$, how can contact structures vary in a family. Tightness implies no contractible components in Γ , so Γ consists of 2n embedded curves of slow p/q. So the dividing set is governed by two parameters.

Remark 12.0.2: The only change to the dividing set in a generic family can be:

• Retrograde saddle-saddle, yielding by pass moves.

Proof (?). Diagrams?

Remark 12.0.4: Given Γ_0 with slope p/q and Γ_1 with slope r/s, form a Farey graph:

÷

Proposition 12.0.5 (Legendrian Darboux).

If L is a Legendrian knot in M, then a neighborhood of L is contactomorphic to a neighborhood of a zero section in $J(S^1) \cong \mathbb{R} \times \mathbf{T}^{\vee}S^1 \cong S^1 \times \mathbb{R}^2$.

Remark 12.0.6: Write this in coordinates as (z, (x, y)), so $\alpha = dz - y dx$ with $x \in \mathbb{R}/\mathbb{Z}$. Then $v(L) = \{y^2 + z^2 \le \varepsilon\}, y = r \cos \theta, z = r \sin \theta$. $T^2 = \{x, \theta\}, \alpha|_{T^2} = y d\theta - y dx = \varepsilon \cos \theta (d\theta - dx)$. Unwrap:

Note that $d\alpha > 0$ at $\pi/2$ and $d\alpha < 0$ at $3\pi/2$. Idea: given two unrelated surfaces with their own foliations, how do they interact at the boundary? Dividing sets on each can be extended into the annulus, and this reduces to a combinatorial problem of how to connected arcs:

12

Remark 13.0.1: Last time: classifying tight contact structures on T^3 . Some contact structure:

$$\xi_n = \ker(\cos(2\pi nz)\,dx - \sin(2\pi nz)\,dy).$$

pdf

Realize T^3 as a cube with faces glued, then moving in the z direction twists n times as you traverse the cube. We can reduce this to ξ_1 using $[x, y, z] \mapsto [x, y, nz]$.

Remark 13.0.2: Goal: classify tight contact structures on lens spaces $L_{p,q} = T^2 \times I / \sim$. We can discretize the contact structure on $\Sigma \times I$ into a finite number of bypass moves on the dividing sets. The basic move:

Definition 13.0.3 (Basic slice) A basic slice is a contact structure on T^2 such that

- T² × {0} is convex with 2 dividing curves of slope 0
 T² × {1} is convex with 2 dividing curves of slope -1
- ξ is tight
- ξ is minimally twisting, so if $T^2 \subseteq T^2 \times I$ is convex then $slope(r) \in [-1, 0]$.

Proposition 13.0.4(?).

There are exactly 2 basic slices. Both embed in $(T^3, \xi_1) = \ker(\cos(2\pi z) dx - \sin(2\pi z) dy) =$ $T^2 \times I / \sim$, and are given by

• $(T_2 \times [0, 1/8], \xi_1)$

• $(T_2 \times [1/2, 5/8], \xi_1)$

Proof (?).

Step 1: There are at most 2 basic slices. Reduce to $S^1 \times D^2$ by removing a convex annulus. Note that $T^2 \times I \setminus (S^1 \times I) \cong S^1 \times I^2 \cong S^1 \times D^2$.

60

Definition 13.0.5 (Relative Euler class)

Let (M, ξ) be a contact 3-manifold with $\xi|_{\partial M}$ trivial. Let s be a nonvanishing section of $\xi|_{\partial M}$, then the **relative Euler class** $e(\xi, s) \in H^2(M, \partial M; \mathbb{Z}) \cong H_1(M)$ (by Lefschetz duality) is the dual of the vanishing set of an extension of s to a section of ξ on M.

Remark 13.0.6: In this case dim $s^{-1} = \dim M - \dim \xi$.

Lemma 13.0.7(?). If $\Sigma \hookrightarrow (M, \xi)$ is a properly embedded convex surface and s is a section of $\xi|_{\partial M}$ that is tangent to $\partial \Sigma$ with the correct orientation, then

$$\langle e(\xi, s), \Sigma \rangle = \chi(\Sigma_+) - \chi(\Sigma_-).$$

where $\langle -, - \rangle : H^2(M, \partial M; \mathbb{Z}) \times H_2(M, \partial M; \mathbb{Z}) \to \mathbb{Z}.$

Remark 13.0.8: Note $H_2(T^2 \times I, \partial; \mathbb{Z}) = \langle [\alpha \times I], [\beta \times I] \rangle$ where $H_2(T^2) = \langle \alpha, \beta \rangle$.

14 | Tuesday, March 22

14.1 Farey Graphs

Remark 14.1.1: Build a graph on the hyperbolic plane in the Poincare disc model:

Here every midpoint corresponds to adding numerators and denominators respectively.

Associate slopes:

- $0/1 \rightsquigarrow 1\alpha + 0\beta$
- $1/0 \rightsquigarrow 0\alpha + 1\beta$
- $1/1 \rightsquigarrow 1\alpha + 1\beta$

Any pair of these is a \mathbb{Z} -basis for $H^1(T^2; \mathbb{Z}) \cong \mathbb{Z}^{\times^2}$. Use $\mathrm{SL}_2(\mathbb{Z}) \hookrightarrow \mathrm{PSL}_2(\mathbb{C})$ to realize any change of basis as an isometry of \mathfrak{h} . This makes the interior/exterior of any tile isometric to the full upper/lower half-disc.

Remark 14.1.2: Basic moves: bypasses

The first case corresponds to slopes $r \in (-\infty, -1)$ and the second to $r \in (-1, -1/2)$. Idea: the resulting dividing set is locally constant in perturbations of r, provided one doesn't cross the endpoints of the curve for the bypass move. This produces a continued fraction defined inductively by $r_0 = \left\lfloor -\frac{p}{q} \right\rfloor$, writing $-\frac{p}{q} = r_0 - \frac{1}{p'/q'} = -\frac{q'}{p'}$ with -p/q < -p'/q' < -1 and thus $0 < -\frac{p}{q} - r_0 < 1$, so set $r_1 = \left\lfloor -\frac{p'}{q'} \right\rfloor$. This yields

$$-\frac{1}{q} = r_0 - \frac{1}{r_1 - \frac{1}{r_2 - \dots}} = [r_0, r_1, \dots, r_m],$$

which terminates in finitely many steps since p/q is rational. Note that $r_i \leq -1 \implies \lfloor r_i \rfloor \leq -2$.

Proposition 14.1.3(?).

If $r = -p/q = [r_0, \dots, r_k]$ in a continued fraction expansion and s = a/b is the first point connected to p/q while moving counterclockwise from 0/1 on the Farey graph, then $-a/b = [r_0, \dots, r_k + 1]$.

Remark 14.1.4: This gives the minimal graph path from p/q back to 0/1 by jumping the maximal distance along the circle to a/b. Noting that $[r_1, \dots, r_{k-1}, -1] = [r_1, \dots, r_{k-1}+1]$ which is a shorter continued fraction.

Example 14.1.5(?): Let p/q = 53/17, then

- $r_0 = -4 = -68/17$
- $r_1 = -2 = -30/15$
- $r_2 = -2 = -26/13$
- $r_3 = -2 = \cdots$

So this yields $[-4, -2, \dots, 7, -2, -3]$.

Remark 14.1.6: Idea: decompose $p/q = [r_0, \dots, r_k]$ surgery into integer surgeries on a link with k components.

15 | Tuesday, March 29

Remark 15.0.1: Goal: classification of tight contact structures on lens spaces.

Lens spaces: $L_{p,q} = S^3/C_p$ where the action is $[z_1, z_2] \mapsto \left[e^{\frac{2\pi i}{p}}, e^{\frac{2\pi i q}{p}}\right]$ which has order p. Note $L_{p,q} \cong L_{p,q'}$ when $q \equiv q' \mod p$, so we can assume $-p < q \le 0$, so p/q < -1.

Some examples:

There is a genus 1 Heegaard splitting. The double branched cover of a 2-bridge link is a lens space:

All lens spaces can be generated by genus 1 Heegaard splittings?

Remark 15.0.2: -p/q Dehn surgery is equivalent to a sequence of linked unknots with numbers r_1, \dots, r_k . When can this be done in a way that preserves the contact structure? Idea: Legendrian surgery, which removes a Legendrian knot and reglues.

Remark 15.0.3: Let *L* be Legendrian and $\nu(L)$ is a standard neighborhood (so standard contact structure). Then $\partial\nu(L) \cong T^2$ is convex with 2 dividing curves, where "slope" is the contact framing. For $[\theta, x, y] \in S^1 \times \mathbb{R}^2$, set $\alpha = dx + y d\theta$. Then $[\theta, 0, 0]$ is Legendrian. When can we extend ξ uniquely across surgery $S^1 \times \mathbb{D}^2$? Need to attach handles along integer framing (choice of integer in $\pi_1 \text{SO}_2(\mathbb{R}) \cong \mathbb{Z}$ corresponding to trivializing the normal bundle $\nu(K)$ in an embedding). Need good surgery slopes: $\{n\}_{n\in\mathbb{Z}} \cap \left\{\frac{1}{k}\right\}_{k\in\mathbb{Z}} = \{\pm 1\}$, relative to the tb-framing. So tb – 1 is the best framing.:

Stabilize up to $r_K + 1$ on each Legendrian knot. Fact: yields a Stein fillable thing, implies tight contact structure.

Remark 15.0.4: There are $-r_0 - 1$ ways to perform $-r_0 - 2$ stabilizations. E.g. for $-r_0 - 2 = 3$, break into positive and negative stabilizations:

- (3,0)
- (2,1)
- (1,2)
- (0,3)

So there are $\prod_{1 \le i \le k} (-r_k - 1)$ tight contact structures on $-p/q = [r_0, \cdots, r_k]$.

16 | Tuesday, April 05

16.1 Symplectic Fillings

Example 16.1.1 (Properties of the standard contact structure on S^3): Consider $(S^3, \xi_{std}) \subseteq \mathbb{C}^2$; some things that are true:

- There is a symplectic form $\omega = dx_1 \wedge dy_1 + dx_2 \wedge dy_2$ where $d\omega = 0$ and $\omega \wedge \omega = 2d$ Vol > 0. Write $\varphi = \sum x_i^2 + \sum y_i^2$, then $S^3 = \varphi^{-1}(1)$.
- Letting $\rho = \sum x_i \partial x_i + \sum y_i \partial y_i = \frac{1}{2} \operatorname{grad} \varphi$ in the standard metric yields a contact form $\alpha = \omega(\rho, -).$
- Since $\left.\omega\right|_{\xi_{\rm std}} > 0$, this yields an area form on contact planes.
- There is also a complex structure $J : \mathbf{T}_p \mathbb{C}^2 \to \mathbf{T}_p \mathbb{C}^2$ where $J(\partial x_i) = \partial y_i$ and $J(\partial y_i) = -\partial x_i$ with a compatibility $g(x, y) = \omega(x, Jy)$.

Definition 16.1.2 (Fillings)

A complex symplectic manifold (X^4, ω, J) is a filling of (Y^3, ξ) if $Y = \partial X$,

- Stein filling: (X^4, J) is a Stein manifold, and $\xi = \mathbf{T}Y \cap J(\mathbf{T}Y)$.
- Strong filling: if there is an outward pointing (Liouville) vector field ρ with $\mathcal{L}_{\rho}\omega = \omega$ with $\xi \ker(\omega(\rho, -))$ (which is always contact). Note $\mathcal{L}_{\rho}\omega = d(\iota_{\rho}\omega) + \iota_{\rho}(d\omega)$ where the 2nd term vanishes for a symplectic form.
- Weak filling: $\omega|_{\xi} > 0$.

Note that we aren't defining what "Stein" means here.

Theorem 16.1.3(?).

There are strict implications

- Stein \implies
- Strong \implies
- Weak \implies
- Tight.

Note that the last implication is the harder part of the theorem.

Problem 16.1.1 (?) Given (Y,ξ) , classify all fillings.

Example 16.1.4(?): Consider (T^3, ξ_n) – if n = 1, this is Stein fillable, and for $n \ge 2$ these are

weakly fillable but not strongly fillable. In this case, all of the filling manifolds are $T^2 \times \mathbb{B}^2$.

Example 16.1.5(?): For lens spaces $L_{p,q}$ all tight contact structures are Stein fillable with the same smooth filling. Take the linear plumbing X of copies of S^2 corresponding to $-p/q = [r_1, r_2, \cdots, r_k]$ as a continued fraction expansion. They're distinguished by Chern classes $c_1(T_X, J)$.

Example 16.1.6(?): Brieskorn spheres are examples of fillings, related to Milnor fibers. For $p, q, r \ge 2$, define

 $\Sigma(p,q,r) \coloneqq \{F_{p,q,r}(x,y,z) = x^p + y^q + z^r = \varepsilon\} \cap S^5 \subseteq \mathbb{C}^3 = \operatorname{span}_{\mathcal{C}} \{x,y,z\}.$

In this case, we have:

Note that $\varepsilon = 0$ yields a singular variety, while $\varepsilon > 0$ small yields a smooth manifold.

Exercise 16.1.7 (?) Show $\Sigma_{p,q,r}$ is the *r*-fold cyclic branched cover of S^3 over the torus knot $T_{p,q}$.

Remark 16.1.8: Let $J : \mathbf{T}X \to \mathbf{T}X$ with $J^2 = -id$, so the eigenvalues are $\pm i$. So consider complexifying to $\mathbf{T}_{\mathbb{C}}X \coloneqq \mathbf{T}X \otimes_{\mathbb{R}} \mathbb{C}$, so e.g. $\partial x_k \mapsto (a_k + ib_k)\partial x_k$. This splits into positive

(holomorphic) and negative (antiholomorphic) eigenspaces $\mathbf{T}_{\mathbb{C}}^{1,0}X \oplus \mathbf{T}_{\mathbb{C}}^{0,1}X$. Take a change of basis $[x_1, y_1, x_2, y_2] \mapsto [z_1, \bar{z}_1, z_2, \bar{z}_2]$ which yields $\partial z = \frac{1}{2} (\partial x - i\partial y)$ and $\bar{\partial} z = \frac{1}{2} (\partial x + i\partial y)$.

Exercise 16.1.9 (?) Let $f(z) = |z|^2$ and check

•
$$\partial \overline{\partial} f = \partial (zd\overline{z}) = dz \wedge d\overline{z} = -2i(dx \wedge dy)$$

• $d = \partial + \overline{\partial}$

Practicing this type of change of variables is important!

Definition 16.1.10 (Levi forms and plurisubharmonicity) Let $\varphi : X \to \mathbb{R}$ for X a complex manifold, then the **Levi form** of φ is

$$\mathcal{L}\varphi = \partial \overline{\partial}\varphi = \sum_{i,j} \frac{\partial^2}{\partial z_j \overline{\partial} \overline{z}_k} dz_j \wedge d\overline{z}_k,$$

generalizing the Hessian. The function φ is **plurisubharmonic** if $\mathcal{L}\varphi$ is positive semidefinite at every point.

Example 16.1.11(?): Consider $\varphi : \mathbb{C} \to \mathbb{R}$, then

$$\begin{aligned} \mathcal{L}\varphi &= \partial \partial \varphi \\ &= 2\left(\frac{1}{2}\left(\varphi_x + i\varphi_y\right)\right) \\ &= \frac{1}{2}\left(\frac{1}{2}\left(\varphi_{xx} - \varphi_{xy}\right) + \frac{1}{2}\left(\varphi_{yx} - i\varphi_{yy}\right)\right) \\ &= \frac{1}{4}\left(\varphi_{xx} + \varphi_{yy}\right) \\ &= \frac{1}{4}\Delta\varphi, \end{aligned}$$

so plurisubharmonic implies positive Laplacian. Note that in 1 dimension, $\Delta f = 0 \implies f'' = 0$, so (x, f(x)) is a straight line. In higher dimensions, f'' > 0 forces convexity, so secant lines are under the straight lines, hence the "sub" in subharmonic.

Proposition 16.1.12(?).

If $\varphi : X \to \mathbb{R}$ is plurisubharmonic and 0 is a regular value, then $(\varphi^{-1}(0), \xi)$ (where ξ is its complex tangencies) forms a contact structure and the sub-level set $\varphi^{-1}(-\infty, 0]$ is a Stein filling.

Example 16.1.13 (A basic example of a plurisubharmonic function): The radical function $\varphi : \mathbb{C}^3 \to \mathbb{R}$ where $\varphi(z_1, z_2, z_3) = \sum |z_i|^2$ is plurisubharmonic, as is its restriction to any submanifold of \mathbb{C}^3 , including any filling of $\Sigma_{p,q,r}$. Hard theorem: any Stein manifold and any Stein filling essentially comes from this construction.

17 | Thursday, April 21

Note: student talks in previous weeks!

Remark 17.0.1: Possible topics for the remainder of the class:

- Open book decompositions
- Every (Y^3,ξ) is homotopic to a contact structure.
- Seifert fibered spaces

17.1 Seifert Fibered Spaces

Remark 17.1.1: Brieskorn spheres $\Sigma(p, r, q) := \{x^p + y^q + z^r = 0\} \cap S^5_{\varepsilon} \subseteq \mathbb{C}^3$ are 3-manifolds foliated by S^1 . Note that $S_1 \to X \to S^2$ for $X = S^3$ or L(p,q) are actual fibrations. Idea: a foliation by F's is a decomposition $X = \coprod F \to B$ which is a fibration with ramification in some fibers.

Definition 17.1.2 (Seifert fibered spaces) A Seifert fibered space associated to $(\Sigma, (p_1/q_1, \cdots, p_n/q_n))$ with $p_i/q_i \in \mathbb{Q}$ and Σ and orbifold surface is a 3-manifold Y and knots L_1, \dots, L_n with neighborhoods νL_i such that

- $Y \setminus \bigcup_i \nu(L_i) = (\Sigma \setminus \{ pt_1, \cdots, pt_n \}) \times S^1$ $\nu L_i = S^1 \times \mathbb{D}^2$ is glued in by p_i/q_i Dehn surgery.

Example 17.1.3(?): L(p,q) is -p/q surgery on S^1 , or by a slam-dunk move:

17.1 Seifert Fibered Spaces

Exercise 17.1.4 (?)

Show that for $\Sigma(p, q, r)$, removing the axes in \mathbb{C}^3 yields a trivial fibration by copies of S^1 over $S^2 \setminus \mathrm{pt}_1, \mathrm{pt}_2, \mathrm{pt}_3$ and check the surgery slopes.

Exercise 17.1.5 (?)

Prove that $\Sigma(p,q,r)$ comes from the plumbing diagram for the Milnor fibration using Kirby calculus.

18 | Tuesday, April 26

Remark 18.0.1: Recall that $PHS^3 = \Sigma(2,3,5)$ has a Stein-fillable (and hence tight) contact structure.

Theorem 18.0.2(?).

The negative $-\Sigma(2,3,5)$ admits no tight contact structures.

Remark 18.0.3: Let $S = S^3 \setminus {\text{pt}_1, \text{pt}_2, \text{pt}_3}$ be a pair of pants and consider $X = S \times S^1$. Note $\partial X = T^2 \cup T^2 \cup T^2$:

Note $-\Sigma(2,3,5) = \Sigma(2,-3,-5)$, since PHS³ is -1 surgery on the trefoil. Glue in 3 solid torii by

$$A_1 = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 3 & 1 \\ -1 & 0 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 5 & 1 \\ -1 & 0 \end{bmatrix}.$$

acting on $[m, \lambda]$ in $S^1 \times \mathbb{D}^2$:

Exercise 18.0.4 (?) Show via Kirby calculus:

Lemma 18.0.5(?). There exist Legendrian representatives F_2, F_3 with twisting numbers $m_2, m_3 = -1$.

Proof (?).

Idea: by stabilization, we can assume $m_2, m_3 < 0$, and the claim is that we can destabilize them back up to -1 simultaneously using bypass moves. Reduce to studying dividing sets on $T^2 \times I$ or $S^1 \times \mathbb{D}^2$. Check that the dividing set has slope -1/2, which implies that there is an overtwisted disc. Reduce to $2 \cdot 3 \cdot 5 = 30$ cases, check that an overtwisted disc can be found in each case.

ToDos

List of Todos

Definitions

18

1.4.1	Definition – ?	7
2.0.1	Definition – Contact form	7
2.1.8	Definition – Contactomorphisms	8
2.2.3	Definition – Integrability	10
3.0.2	Definition – Standard contact structure	11
3.0.5	Definition – Almost complex structures	12
3.0.9	Definition – ?	13
5.1.1	Definition – Legendrian and transverse knots	23
6.0.10	Definition – The Thurston–Bennequin number	27
6.0.15	Definition – Rotation number	29
7.0.13	Definition – Overtwisted discs	36
7.1.1	Definition – Self-linking	37
9.0.6	Definition – ?	47
9.0.8	Definition – Open book decompositions supporting a contact structure	49
13.0.3	Definition – Basic slice	59
13.0.5	Definition – Relative Euler class	61
16.1.2	Definition – Fillings	67
16.1.10	Definition – Levi forms and plurisubharmonicity	69
17.1.2	Definition – Seifert fibered spaces	70

Theorems

1.1.1	Theorem – Cerf's Theorem	4
1.1.4	Theorem – Eliashberg	4
2.2.4	Theorem – Frobenius Integrability	10
4.0.2	Theorem – Darboux	18
5.1.4	Theorem – Neighborhood theorem, Darboux for Legendrian/transverse knots	24
6.0.8	Theorem – ?	26
6.0.12	Proposition – ?	27
7.0.5	Proposition – ?	34
7.0.7	Theorem – Bennequin-Thurston inequality	34
7.0.9	Theorem – Eliashberg-Fraser	35
7.0.14	Theorem – Bennequin	36
7.0.15	Theorem – Eliashberg	37
8.2.4	Proposition – ?	42
9.0.2	Theorem – ?	46
9.0.9	Theorem – Thurston-Winkelnkemper	49
9.0.10	Theorem – Giroux	49
9.0.11	Proposition – ?	49
11.0.2	Theorem – ?	50
11.0.10	Proposition – ?	53
11.0.11	Theorem – ?	54
11.0.12	Proposition – ?	54
11.0.13	Proposition – ?	54
12.0.3	Proposition	55
12.0.5	Proposition – Legendrian Darboux	56
13.0.4	Proposition – ?	59
14.1.3	Proposition – ?	63
16.1.3	Theorem – ?	67
16.1.12	Proposition – ?	69
18.0.2	Theorem – ?	72

Exercises

18

1.4.3	Exercise – ?		 				•	•	•				•		 	•	•				•		7
2.1.2	Exercise – ?		 				•	•				•	•		 								8
2.1.7	Exercise $-?$		 												 								8
2.1.10	Exercise $-?$		 												 								9
2.1.12	Exercise – ?		 												 								10
2.1.14	Exercise – ?		 												 								10
3.0.3	Exercise – ?		 												 								11
3.0.7	Exercise – ?		 												 								12
11.0.5	Exercise – ?		 												 								51
11.0.7	Exercise – ?		 												 								51
16.1.7	Exercise – ?		 												 								68
16.1.9	Exercise – ?		 												 								69
17.1.4	Exercise – ?		 												 								72
17.1.5	Exercise – ?		 												 								72
18.0.4	Exercise – ?		 												 								73

Figures

List of Figures