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1 Tuesday, January 11

1 Tuesday, January 11

Remark 1.0.1: References:

• https://www.ma.imperial.ac.uk/~ssivek/courses/12s-math273.php
• https://web.ma.utexas.edu/users/gdavtor/notes/contact_notes.pdf
• PLC’s Notes

Emphasis for the course: applications to low-dimensional topology, lots of examples, and ways to
construct contact structures. The first application is critical to 4-manifold theory:

E 1.1 Application 1 e

Theorem 1.1.1(Cerf’s Theorem).
Every diffeomorphism f : S3 → S3 extends to a diffeomorphism B4 → B4.

Remark 1.1.2: This isn’t true in all dimensions! This is essentially what makes Kirby calculus on
4-manifolds possible without needing to track certain attaching data.

Remark 1.1.3: There is a standard contact structure on S3: regard C2 ∼= R4 and suppose f :
S3 → S3. There is an intrinsic property of contact structures called tightness which doesn’t change
under diffeomorphisms and is fundamental to 3-manifold topology.

Theorem 1.1.4(Eliashberg).
There is a unique tight contact structure ξstd on S3.

So up to isotopy, f fixes ξstd.

Remark 1.1.5: A useful idea: tiling by holomorphic discs. This involves taking S1 and foliating
the bounded disc by geodesics – by the magic of elliptic PDEs, this is unobstructed and can be
continued throughout the disc just using convexity near the boundary. In higher dimensions: B4 is
foliated by a 2-dimensional family of holomorphic discs.

E 1.2 Application 2 e

Remark 1.2.1: Another application: monotonic simplification (?) of the unknot. Given a knot
K ↪→ S3, a theorem of Alexander says K can be braided about the z-axis, which can be described
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1 Tuesday, January 11

by a word w ∈ Bn, the braid group

Bn =
{
σ1, · · · , σn−1

∣∣∣ [σi, σj ] = 1 |i− j| ≥ 2, σiσi+1σi = σi+1σiσi+1 i = 1, · · · , n− 2
}
.

This captures positive vs negative braiding on nearby strands, commuting of strands that are far
apart, and the Reidemeister 3 move. Write K = K(β) for β a braid for the braid closure.

Remark 1.2.2: Markov’s theorem: if K = K(β1),K(β2) where β1 ∈ Bn and β2 ∈ Bm with m,n
not necessarily equal, then there is a sequence of Markov moves β1 to β2. The moves are:

• Stabilization and destabilization:

• Conjugation in Bn:

1.2 Application 2 5



1 Tuesday, January 11

• Braid isotopy, which preserves braid words in Bn.

Remark 1.2.3: A theorem of Birman-Menasco: if K(β) = U is the unknot for β ∈ Bn, then there
is a sequence of braids {βi}i≤k with βk = 1 ∈ B1 such that

• βi ∈ Bni

• K(βi) = U
• n1 ≥ n2 ≥ · · · ≥ nk = 1
• βi → βi+1 is either a Markov move or an exchange move.

E 1.3 Application 3 e

Remark 1.3.1: Genus bounds. A theorem due to Thurston-Eliashberg: if ξ is either a taut foliation
or a tight contact structure on a 3-manifold Y and Σ ̸= S2 is an embedded orientable surface in Y ,
then there is an Euler class e(ξ) ∈ H2(Y ). Then

|⟨e(ξ), Σ⟩| ≤ −g(Σ),

which after juggling signs is a lower bound on the genus of any embedded surface.

Remark 1.3.2: Taut foliations: the basic example is F × S1 for F a surface. The foliation carries
a co-orientation, and the tangencies at critical points of an embedded surface will have tangent
planes tangent to the foliation, so one can compare the co-orientation to the outward normal of the
surface to see if they agree or disagree and obtain a sign at each critical point. Write c± for the
number of positive/negative elliptics and h± for the hyperbolics. Then

χ = (e+ + e−) − (h+ + h−),

1.3 Application 3 6



2 Contact Forms and Structures (Thursday, January 13)

by Poincaré-Hopf. On the other hand, ⟨e(ξ), Σ⟩ = (e+ − h+) − (e− − h−), so adding this yields

⟨e(ξ), Σ⟩ + χ = 2(e+ − h+) ≤ 0.

Isotope the surface to cancel critical points in pairs to get rid of caps/cups so that only saddles
remain.

E 1.4 Contact Geometry e

Definition 1.4.1 (?)
A contract structure on Y 2n+1 is a hyperplane field (a codimension 1 subbundle of the tangent
bundle) ξ = kerα such that α ∧ (dα)∧n

> 0 is a positive volume form.

Example 1.4.2(?): On R3,

α = dz − ydx =⇒ dα = −dy ∧ dx = dx ∧ dy,

so

α ∧ dα = (dz − ydx) ∧ (dx ∧ dy) = dz ∧ dx ∧ dy = dx ∧ dy ∧ dz.

Exercise 1.4.3 (?)
On R5, set α = dz − y1dx1 − y2dx2. Check that

α ∧ (dα)2 = 2(dz ∧ dx1 ∧ dy1 ∧ dx2 ∧ dy2).

2 Contact Forms and Structures (Thursday,
January 13)

Definition 2.0.1 (Contact form)
A contact form on Y 3 is a 1-form α with α∧ dα > 0. A contact structure is a 2-plane field
ξ = kerα for some contact form.

Remark 2.0.2: Forms are more rigid than structures: if f > 0 and α is contact, then f · α is also
contact with ker(α) = ker(fα).

E 2.1 Examples of Contact Structures e

Example 2.1.1(Standard contact structure): On R3, a local model is α := dz − y dx.

1.4 Contact Geometry 7



2 Contact Forms and Structures (Thursday, January 13)

Exercise 2.1.2(?)
Show α ∧ dα = dz ∧ dx ∧ dy.

Write ξ = span
R

(∂y, y∂z+ ∂x), which yields planes with a corkscrew twisting. Verify this by writing

α = 0 =⇒ ∂z

∂x
= y, so the slope depends on the y-coordinate.

Example 2.1.3(Rotation of the standard structure): On R3, take α2 := dz + x dy and check
α2 ∧ dα2 = dz ∧ dx ∧ dy. This is a rigid rotation by π/2 of the previous α, so doesn’t change the
essential geometry.

Example 2.1.4(Radially symmetric contact structure): Again on R3, take α3 = dz + 1
2r

2dθ.

Check that dα3 = r dr ∧ dθ and α3 ∧ dα3 = r dz ∧ dr ∧ dθ. Then ξ = span
R

(∂r, 1
2r

2∂z + ∂θ). Note

that as r → ∞, the slope of these planes goes to infinity, but doesn’t depend on z or θ.

Example 2.1.5(Rectangular version of radially symmetric structure): Set α4 = dz +
1
2(x dy − y dx), then this is equal to α3 in rectangular coordinates.

Example 2.1.6(Overtwisted): Set

α4 = cos(r2) dz + sin(r2) dθ.

Exercise 2.1.7(?)
Compute the exterior derivative and check that this yields a contact structure.

Now note that

α = 0 =⇒ ∂z

∂θ
= − sin(r2)

cos(r2) = − tan(r2),

which is periodic in r. So a fixed plane does infinitely many barrel rolls along a ray at a constant
angle θ0.

This is far too twisty – to see the twisting, consider the graph of (r, tan(r2)) and note that it flips
over completely at odd multiples of π/2. In the previous examples, the total twist for r ∈ (−∞,∞)
was less than π.

Definition 2.1.8 (Contactomorphisms)
A contactomorphism is a diffeomorphism

ψ : (Y 3
1 , ξ1) → (Y 3

2 , ξ2)

such that φ∗(ξ1) = ξ2 (tangent vectors push forward).

2.1 Examples of Contact Structures 8



2 Contact Forms and Structures (Thursday, January 13)

A strict contactomorphism is a diffeomorphism

φ : (Y 3
1 , kerα1) → (Y 3

2 , kerα2).

such that φ∗(α2) = α1 (forms pull back).

Remark 2.1.9: Strict contactomorphisms are more important for dynamics or geometric applica-
tions.

Exercise 2.1.10 (?)
Prove that α1, · · · , α4 are all contactomorphic.

Remark 2.1.11: Recall that X has a cotangent bundle T∨X
π−→ X of dimension 2 dimX. There is a

canonical 1-form λ ∈ Ω1(T∨X), i.e. a section of T∨(T∨X). Given any smooth section β ∈ Γ(T∨X/X)
there is a unique 1-form λ on T∨X such that β∗(λ) = β, regarding β as a smooth map on the left
and a 1-form on the right. In local coordinates (x1, · · · , xn) on X, write yi = dxi on the fiber of
T∨X. Why this works: the fibers are collections of covectors, so if xi are horizontal coordinates
there is a dual vertical coordinate in the fiber:

So we can write

λ =
∑

yi dxi ∈ Ω1(T∨X),

regarding the yi as functions on T∨X and dxi as 1-forms on T∨X.

2.1 Examples of Contact Structures 9



2 Contact Forms and Structures (Thursday, January 13)

Exercise 2.1.12(?)
Find out what β =

∑
ai dxi is equal to as a section of T∨X.

Remark 2.1.13: To get a contact manifold of dimension 2n+ 1, consider the 1-jet space J1(X) :=
T∨X × R. Write the coordinates as (x, y) ∈ T∨X and z ∈ R and define α = dz − λ, the claim is
that this is contact.

For dimension 2n − 1, choose a cometric on X and take ST∨X the unit cotangent bundle of
unit-length covectors. Then α := −λ|ST∨X is contact.

Exercise 2.1.14 (?)
Check that R3 = J1(R) and ST∨(R2) = R2 × S1.

Remark 2.1.15: A neat theorem: the contact geometry of ST∨R3 is a perfect knot invariant. This
involves assigning to knots unique Legendrian submanifolds.

E 2.2 Perturbing Foliation e

Example 2.2.1(?): Define

αt = dz − ty dx t ∈ R

to get a 1-parameter family of 1-forms. Check that αt ∧dαt = t( dz∧ dx∧ dy). Consider t ∈ (−ε, ε):

• t > 0 =⇒ α = dz − y dx yields a positive contact structure,
• t > 0 =⇒ α = dz is a foliation,
• t < 0 =⇒ α = dz + y dx is a negative contact structure.

Remark 2.2.2: What is a (codimension r) foliation on an n-manifold? A local diffeomorphism
U ∼= Rn × Rn−r with leaves pt × Rn−r. For example, R3 ∼= R × R2 with coordinates t and (x, y).
We’re leaving out a lot about how many derivatives one needs here!

For a fiber bundle or vector bundle to admit an inter-
esting foliation, one needs a flat connection.

Definition 2.2.3 (Integrability)
Any ξ := kerα is integrable iff for all vector fields X,Y ⊆ ξ, their Lie bracket [X,Y ] ⊆ ξ.

Theorem 2.2.4(Frobenius Integrability).
For α nonvanishing on Y 3, kerα is tangent to a foliation by surfaces iff α ∧ dα = 0.

2.2 Perturbing Foliation 10



3 Tuesday, January 18

Example 2.2.5(?): Consider α = dz − y dx, so kerα = span
R

{∂y, y∂z + ∂x} which bracket to

∂z ̸∈ kerα. This yields a non-integrable contact structure.

On the other hand, for α = dz, kerα = span
R

{∂x, ∂y} which bracket to zero. So this yields a
foliation.

Remark 2.2.6: A theorem of Eliashberg and Thurston: taut foliations can be perturbed to a
(tight) positive contact structure.

3 Tuesday, January 18

Remark 3.0.1: Refs:

• Geiges, Intro to Contact
• Ozbogi-Stipsicz
• Etnyre lecture notes
• Massot
• Sivck

Definition 3.0.2 (Standard contact structure)
For S3 ⊆ C2, define a form on R4 as

α := −y1dx1 + x1dy1 − y2dx2 + x2dy2.

Then then standard contact form on S3 is

ξstd := ker α|S3 .

Exercise 3.0.3 (?)
Show that α defines a contact form.

Solution:
Write f = x2

1 + y2
1 + x2

2 + y2
2, then

α|S3 ∧ dα|S3 > 0 ⇐⇒ df ∧ dα ∧ dα > 0.

Check that

• dα = 2(dx1 ∧ dy1) + 2(dx2 + dy2)
• df = 2(x1dx1 + y1dy1) + 2(x2dx2 + y2dy2).

Remark 3.0.4: Note that at p = [1, 0, 0, 0] ⊆ S3, TpS
3 = span {∂y1, ∂x2, ∂y2}. and αp = −0dx1 +

Tuesday, January 18 11



3 Tuesday, January 18

1dy1 − 0dx2 + 0dy2 = dy1 and ξp = ker dy1 = span {∂x1, ∂y2}.

Then ξp ≤ TpC2 = span {∂x1, ∂y1, ∂x2, ∂y2} ∼= C4 is a distinguished complex line.

Definition 3.0.5 (Almost complex structures)
An almost complex structure on X is a bundle automorphism J : TX⟲ with J2 = − id.

Example 3.0.6(?): For X = C2, take

∂x1 7→ ∂y1

∂y1 7→ −∂x1

∂x2 7→ ∂y2

∂y2 7→ −∂x2.

Exercise 3.0.7 (?)
Show that f : C → C is holomorphic if df◦J = J◦df , which corresponds to the Cauchy-Riemann
equations.

Lemma 3.0.8(?).
Given J : W → W , an R-subspace V ≤ W is a C-subspace iff J(V ) = V .

Tuesday, January 18 12



3 Tuesday, January 18

Definition 3.0.9 (?)
The field of J-complex tangents is the hyperplane field

ξp := TS3 ∩ J(TS3).

Example 3.0.10(?): Consider TpS
3 for p = [1, 0, 0, 0], then

J(span {∂y1, ∂x1, ∂y2}) = span {−∂x1, ∂y2,−∂x2} ,

so ξp = span ∂x1, ∂y2 is the intersection and coincides ξstd.

Question 3.0.11
Where does α come from?

Let ρ =
∑

xi∂xi +
∑

yi∂yi be the radial vector field, so ρ = 1
2 grad

[∑
x2

i +
∑

y2
i

]
. Setting

ω :=
∧
dxi ∧

∧
dyi, then α = ιpω := ω(p,−) is the interior product of ω. Then

α = dx1 ∧ dy1(x1∂x1 + y1∂y1 + · · · ) + · · · = x1dy1 − y1dx1 + · · · .

So the contact form comes from pairing the symplectic form against a radial vector field.

Remark 3.0.12: Recall f :=
∑

x2
i +

∑
y2

i satisfies df = 2
∑

xidxi + 2
∑

yidyi. Note that J acts
on 1-forms by J∗(dx)(−) = dx(J(−)). For J = i,

• δx : dx(J∂x) = dx(∂y) = 0,
• ∂y : dx(J∂y) = dx(−∂x) = −1.

So J∗(dx) = −dy, and

J∗(df) = 2x1(−dy1) + 2y1(dx1) + 2x2(−dy2) + 2y2(dx2) = −2α.

Thus J∗(df) is a rotation of df by π/2.

Example 3.0.13(?): The field of complex tangencies along Y = f−1(0) is the kernel of df(J(−))|Y .

Remark 3.0.14: Methods of getting contact structures: for a vector field X, being contact comes
from LXω = ω. For functions f : C2 → R, being contact comes from α = dCf being contact. See
strictly plurisubharmonic functions and Levi pseudoconvex subspaces.

Example 3.0.15(?): The standard contact structure is orthogonal to the Hopf fibration: define a
map

C2 \ {0} → CP1 ∼= S2

[z, w] 7→ [z : w],

Tuesday, January 18 13



3 Tuesday, January 18

which restricts to a map S3 → S2 defining the Hopf fibration. If L is a complex line through 0,
then L ∩ S3 is a Hopf fiber that is homeomorphic to S1.

Tuesday, January 18 14



3 Tuesday, January 18

Take

C2 → R2

(z1, z2) 7→ (|z1|, |z2|).

Consider the image of S2 =
{

|z1|2 + |z2|2 = 1
}

:

Tuesday, January 18 15



3 Tuesday, January 18

The preimage is S1 × S1. This can be realized as a tetrahedron with sides identified:

Tuesday, January 18 16



4 Tuesday, January 18

There are Hopf fibers on the ends, and undergo a π/2 twist as you move through the tetrahedron.

Tuesday, January 18 17



4 Darboux and Gromov Stability (Thursday, January 20)

4 Darboux and Gromov Stability (Thursday,
January 20)

Remark 4.0.1: Almost-complex structures: weaker than an actual complex structure, but not
necessarily integrable. Useful for studying pseudoholomorphic curves. A necessary and sufficient
condition for integrability: the Nijenhuis tensor NJ = 0 iff J is integrable. In real dimension 2, all
J are integrable.

Theorem 4.0.2(Darboux).
If (Y 3, ξ) is contact then for every point p there is a chart U with coordinates x, y, z where
ξ = ker( dz − y dx) = ker(αstd).

Slogan 4.0.3
Locally, all contact structures (not necessarily forms) look the same. The mantra: local flexibility
vs global rigidity.

E 4.1 Proof of Darboux e

Remark 4.1.1: Two proofs:

• Geometric, due to Giroux
• PDEs, which generalizes. This uses Moser’s trick.

Proof (1).
Locally write ξ = kerα with α ∧ dα > 0. Pick a contact plane ξp and let S be a transverse
surface, so TpS ⋔ ξp. This produces a set of curves in S which are tangent to ξp everywhere,
called the characteristic foliation.

Darboux and Gromov Stability (Thursday, January 20) 18



4 Darboux and Gromov Stability (Thursday, January 20)

Then α|S = dz, which is a 1-form that is nonvanishing near p and is locally integrable. Sending
α → X a vector field along S yields a set of integral curves tracing out the characteristic
foliation. This yields an x direction and a z direction on S by flowing t ∈ (−ε, ε) around p
along X.
Choose a vector field ∂t which is transverse to S and contained in ξ. Then α(∂t) = 0, so we
can write

α = f dx+ g dz + h dt = f dx+ g dz.

Since g(p) = 1, replace α with 1
g
α which is positive near p and doesn’t change the contact

structure ξ. So write

α = f dx+ dz =⇒ α ∧ dα = α ∧ (ft dy ∧ dx+ fz dz ∧ dx) = −ft dx ∧ dt ∧ dz > 0,

meaning ft < 0 and we can set y = f(x, z, t). This yields

α = dz + f dx = dz − y dx.

■

Proof (2, Moser’s Trick).
By a linear change of coordinates, choose x, y along ξ to write αp = dz and ξp = span ∂x, ∂y:

4.1 Proof of Darboux 19



4 Darboux and Gromov Stability (Thursday, January 20)

Write (α0)p for the original form and α1 = dz− y dx the standard form, then the claim is that
α0 ≃ α1 through a path of contact forms.

Lemma 4.1.2(?).
In a neighborhood of p, there is a family αt for t ∈ [0, 1].
To obtain this, interpolate:

dαt = tdα1 + (1 − t)dα0 =⇒ αt ∧ dαt = t2α1 ∧ dα1 + t(1 − t)(α0 ∧ dα1 + α1 ∧ dα0) + (1 − t)2α0 ∧ dα0.

The first and last terms are positive since the αi are contact. For the middle term,
α0 = α1 near p, so by continuity this is positive in some neighborhood of p.

Remark 4.1.3: Note that α̇t := ∂

∂t
αt, so

∂

∂t
(tα1 + (1 − t)α0) = α1 − α0.

We’ll assume that there is a time-dependent vector field Vt ∈ ξt with flow Φt such that
(Φt)∗(ξt) = ξ0. We’ll also require ξt = kerαt, so this is a contactomorphism for each t. The
goal is to show (Φ1)∗(ξ0) = ξ1, or equivalently Φ∗

tαt = ftα0 with ft > 0. Take ∂

∂t
of both sides

here to get

Φ∗
t (α̇t + LVtαt) = ḟtα0.

See Prop 6.4 in Cannas da Silva.

Remark 4.1.4: Cartan’s magic formula :

LV (α) = d(ιV α) + ιV (dα),

so

LVt(αt) = d(αt(Vt)) + dαt(Vt,−) = 0 + dαt(Vt,−).

4.1 Proof of Darboux 20



4 Darboux and Gromov Stability (Thursday, January 20)

We can thus write this equation as

Φ∗
t (α̇t + dαt(Vt,−)) = ḟtα0 = ḟt

(Φ∗
t (αt)
ft

)
.

Applying (Φ∗
t )−1 yields

α̇t + dαt(Vt,−) = ḟt

ft
αt.

Now try to solve this for Vt. Let Rt be the Reeb vector field of αt, which satisfies

• αt(Rt) = 1
• dαt(Rt,−) = 0.

Then

α̇t(Rt) = ḟt

ft
= ∂

∂t
log(ft) := µt,

so α̇t(Rt) determines ft by first integrating and exponentiating.
We now need to solve

dαt(Vt,−)|ξt
= µtαt − α̇t|ξt

.

Since dαt is a volume form on ξt, it identifies vector fields in ξt with 1-forms on ξt using the
happy coincidence that n = 2 so 1 7→ n− 1 = 1. So Vt is uniquely determined by the solution
to the above equation.

■

4.1 Proof of Darboux 21



5 Gray Stability (Tuesday, January 25)

5 Gray Stability (Tuesday, January 25)

Remark 5.0.1: A homotopy of contact structures o Y 3 is a smooth family {φt} of contact structures.
Similarly, an isotopy of structures such that {Dφt(ξ0)} for an isotopy φt : Y → Y with φ0 = id. If
Y 3 is closed then every homotopy of contact structures is an isotopy. Theorem: contact structures
mod isotopy is discrete, which critically uses closedness.

Lemma 5.0.2(?).
For φt an isotopy generated by the flow of Xt and αt a family of 1-forms,

∂

∂t
φ∗

t (αt)
∣∣∣
t=t0

= φ∗
t0(α̇t0 + LXt0

αt0).

Proof (?).
Write

φ∗
x(αy) = ∂

∂x
? + ∂

∂y
? = φ∗

x0LX0LXαy0 + φ∗
x0αy,

and proceed similarly to the proof of Darboux’s theorem.
Pick {φt} a homotopy, one can choose αt with ξt = kerαt for all t. Apply Moser’s trick: assume
there exists a φt with φ∗

t (αt) = λtα0 and try to find vt generating it, where λt : Y → R+.
What does φt need to look like? Differentiate in t:

φ∗
t0(·αt0 + LVt0

αt0) = λ̇tα0 = λ̇t

(
φ∗

t0(αt)
λt

)
.

Apply (φ∗
t0)−1:

·αt + LVtαt = µtαt µt = (φ∗
t0)−1(λ̇t

λt).

Use that Vt is always tangent to the contact structure, so Vt ∈ ξt, to assume αt(Vt) = 0. Apply
Cartan:

α̇t + dαt(Vt) + ιVtdαt = µtαt,

and dαt(Vt) = 0, so

ιVtdαt = µtαt − α̇t.

Plug in the Reeb vector field Rt, then αt(Rt) = 0 so µt = α̇t(Rt).
■
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5 Gray Stability (Tuesday, January 25)

Corollary 5.0.3(?).
Let Y be n S3 ⊆ C2 that is transverse to the radial vector field. Then

α = x1dy1 − y1dx1 + x2dy2 − y2dx2
∣∣∣
y

defines the standard tight contact structure.

Proof (?).
Write Y ⊆ R × S3 in coordinates (f(x), x) as the graph of a function f : S3 → R. Take an
isotopy Yt = (tf(x), x) ⊆ R × S3 to get a family of contact forms where α0 = αstd and α1 is
some unknown form. By Gray stability, the contact structures are isotopic.

■

E 5.1 Legendrian Links e

Definition 5.1.1 (Legendrian and transverse knots)
Let Y be a contact 3-manifold and L ↪→ Y a link. Then L is a Legendrian knot iff it is
everywhere tangent to ξ, so α(L) = 0:

This is a closed condition.
L is transverse if it is everywhere transverse to ξ, so α(L) > 0:

5.1 Legendrian Links 23



6 Thursday, January 27

This is an open condition.

Remark 5.1.2: Every Legendrian knot has a transverse pushoff (up to transverse isotopy). Every
transverse knot has a Legendrian approximation.

Example 5.1.3(?): Take R3 and αstd = dz − ydx, then the y-axis L1 := {[0, t, 0]} is Legendrian.
Similarly the x-axis L2 is Legendrian, checking that TL2 = span {[1, 0, 0]}. However the slight
pushoff L3 := {[t,−ε, 0]} is transverse since α|L3

= εdx > 0.

Theorem 5.1.4(Neighborhood theorem, Darboux for Legendrian/transverse knots).
Every Legendrian has a neighborhood contactomorphic to the zero section in J1S

1 = TS1 ×R.
Every transverse has a neighborhood contactomorphic to the z-axis in R × S1 with α :=
dz + r2 dθ.

6 Thursday, January 27

Remark 6.0.1: Goal: classify Legendrian knots up to (Legendrian) isotopy. Recall a knot γ : S1 ↪→
Y satisfies γ∗(α) = 0, and a Legendrian isotopy is a 1-parameter family γt which are Legendrian
for all t.

Example 6.0.2(?): γ(s) = [x(s), y(s), z(s)] and ξ = kerα, α = dz − y dx. Then γ∗(α) = z′ ds −
yx1 ds = (z′ − yx′) ds, which is Legendrian iff y = z′/x′.

Example 6.0.3(?): Let f : R → R and take the 1-jet γ(s) =
[
s, f ′(s), f(s)

]
of the graph of f –

this is like the graph of the 1st order Taylor expansion. This is Legendrian since s′ = 1 implies
z′/x′ = f ′/s′ = f ′.

Thursday, January 27 24



6 Thursday, January 27

Remark 6.0.4: There are two projections:

• [x, y, z] → [x, z], a wave front projection, plotted with y into the board,
• [x, y, z] → [x, y], Lagrangian projection.

Example 6.0.5(?): Let γ(s) =
[
s2,

3
2s, s

3
]
, then the two projections are as follows:

Remark 6.0.6: The front projection uniquely determines L, since the y coordinate can be recovered
as y = z′/x′. So for example, there is no ambiguity about crossing order: the more negatively
sloped line in a diagram is the over-crossing:

Example 6.0.7(?): A front diagram of the unknot:

Thursday, January 27 25
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Theorem 6.0.8(?).
Every knot K ↪→ R3 can be C0 approximation by a Legendrian knot L.
Idea: zigzags in an ε tube in the knot diagram, which will be Legendrian. How to measure:
sup
s∈I

|γ1(s) − γ2(s)| ≤ ε?

Remark 6.0.9: Note that Lie(SO3) := Te(SO3) = su2, spanned by roll, pitch, and yaw generators:

Thursday, January 27 26



6 Thursday, January 27

So measuring the number of rotations along each generator after traversing L in a full loop yields
integer invariants.

Definition 6.0.10 (The Thurston–Bennequin number)
A framing of a knot K is a trivialization of its normal bundle, so an identification of ν(K) ∼=
S1 × D2. The potential framings are in π1(SO2) ∼= π1(S1) ∼= Z, since a single vector field
normal (?) to the knot determines the framing by completing to an orthonormal basis. The
Reeb vector field is never tangent to a Legendrian knot, so this determines a framing called
the contact framing. The Thurston–Bennequin number is the different between the
0-framing and the contact framing. The 0-framing comes from a Seifert surface. This is an
invariant of Legendrian knots, since Legendrian isotopy transports frames. Note that adding
zigzags adds cusps, and thus decreases this number.

Remark 6.0.11: How to compute: take a pushoff and compute the linking number:

Proposition 6.0.12(?).

tb(L) = w(L) − 1
2C(L),

where w(L) is the writhe and C(L) is the number of cusps.

Thursday, January 27 27



6 Thursday, January 27

Proof (?).
The linking number is 1

2(c+(L) − c−(L)), half of the signed number of crossings.
Here all 4 crossing have the same sign:

■

Example 6.0.13(?): TB for the knots from before:

• The 3 unknots:

– 2 cusps, so −1
– 4 cusps, so −2
– 4 cusps, so −2

• The 2 trefoils:

– 3 − 1
24 = 1

– 3 − 1
26 = −6.

Remark 6.0.14: Since adding zigzags decreases tb, define TB to be the max over all Legendrian
representatives of K. This distinguishes mirror knots. In fact tb(L) ≤ 2g3(L) − 1 (the Bennequin
bound), involving the 3-genus.
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7 Tuesday, February 01

Definition 6.0.15 (Rotation number)
The rotation number of L is the turning number rot(L) in the Lagrangian projection, i.e. how
many times a tangent vector spins after traversing the knot.

Example 6.0.16(?):

It turns out that

rot(L) = 1
2 (♯down cusps − ♯up cusps) .

7 Tuesday, February 01

Remark 7.0.1: Last time: front diagrams [x, y, z] 7→ [x, z], where α = dz− y dx forces y = ds/ dx
can be recovered as the slope in the projection. Note that we can also recover crossing information
from the Legendrian condition, since y always points into the board, so more negative slopes go on
top.

Some invariants:

• Thurston-Bennequin invariant: a contact framing with respect to the Reeb vector field

Tuesday, February 01 29



7 Tuesday, February 01

• Equal to writhe minus half the number of cusps.

• Rotation numbers: Turning number of L with respect to ξ, after fixing a trivialization of ξ.
Equal to 1

2(D − U), the number of down/up cusps respectively.

Remark 7.0.2: Disallowed moves:

Tuesday, February 01 30



7 Tuesday, February 01

Allowed moves:
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7 Tuesday, February 01

Remark 7.0.3: Geography problem: given a smooth knot K, which pairs (t, r) ∈ Z2 are realized
as (tb(L), rot(L)) for L a Legendrian representative of K?

Botany problem: given (t, r) ∈ Z2, how many inequivalent L representing K realize (t, r) =
(tb(L), rot(L))?

Example 7.0.4(?): For K the unknot:
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7 Tuesday, February 01

So these numerical pairs fall into a cone:
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7 Tuesday, February 01

Proposition 7.0.5(?).
For L ⊆ R3 a Legendrian knot,

tb(L) + rot(L) ≡ 1 mod 2.

Remark 7.0.6: Note that χ(S) ≡ 1 mod 2 for S a Seifert surface.

Theorem 7.0.7(Bennequin-Thurston inequality).
For any Seifert surface S,

tb(L) + |rot(L)| ≤ −χ(S).

Remark 7.0.8: This solves the geography problem: this cone contains all of the possible pairs.
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7 Tuesday, February 01

Theorem 7.0.9(Eliashberg-Fraser).
The unknot is Legendrian simple: if tb(L1) = tb(L2) and rot(L1) = rot(L2), then L1 is
isotopic to L2.

Remark 7.0.10: This solves the botany problem: every red dot has exactly one representative.

Remark 7.0.11: Other knots are Legendrian simple, e.g. the trefoil. A theorem of Checkanov says
the following 52 knots are not Legendrian isotopic:

Remark 7.0.12: This all depended on the standard contact form. Consider instead the overtwisted
disc: take R3 with α = cos(r) dz + sin(r) dθ. Take the curve [r, θ, z] = γ(t) := [1, t, 0], a copy of S1

in the x, y-plane. Then γ′ = [0, 1, 0], and at θ = π, α = cos(π) dz + sin(π) dθ = − dz, but at r = 0
α = dz, so traversing a ray from 0 to −1 in the x, y-plane forces the contact plane to flip:
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7 Tuesday, February 01

One can check that tb is given my lk(L,L′) = 0 where L′ is a pushoff of L, and can be made totally
disjoint from L in this case by moving in the z-plane.

Definition 7.0.13 (Overtwisted discs)
An overtwisted disc in (Y 3, ξ) that is locally contactomorphic to this local model. Y is
overtwisted if it contains an overtwisted disc, and is tight otherwise.

Theorem 7.0.14(Bennequin).
(R3, ξstd) is a tight contact structure.
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8 Tuesday, February 01

Theorem 7.0.15(Eliashberg).
For every closed oriented Y 3, every homotopy class of 2-plane fields on Y contains a unique
(up to isotopy) overtwisted contact structure.

E 7.1 Transverse Knots e

Definition 7.1.1 (Self-linking)
The self-linking number sl(T, S) of a transverse knot rel a Seifert surface S is lk(T, T ′) for
T ′ a pushoff of T determined by a trivialization of ξ|S .

Remark 7.1.2: In this case, ξ restricts to an R2 bundle over Σ, which is trivial since Σ is closed
with boundary and e(ξ) ∈ H2(S) = 0. To see this, use H2(S) ∼= H0(S, ∂S) = 0 by Lefschetz duality.
This yields a section of the frame bundle over S, which gives a pushoff direction along the first basis
vector:

This turns out to be well-defined: it’s independent of the surface S chosen and the trivialization of ξ.
The difference of two trivializations gives a map π1(S) → Z, which factors through π1(S)ab = H1(S).
The difference in surfaces is measured by ⟨e(S), Σ1

∐
T Σ2⟩, which is a glued surface.
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8 Thursday, February 03

8 Thursday, February 03

Remark 8.0.1: Last time: self-linking of transverse knots. Today: surfaces with transverse
boundary. Let Σ be a surface embedded in (Y, ξ) with ∂Σ transverse to ξ. Let F be the characteristic
foliation, the singular foliation on Σ induced by ξ|Σ. Equivalently, if ξ = kerα, consider the 1-form
α|Σ. Generically, kerα|TΣ is 1-dimensional except at finitely many points where αp = 0, i.e. ξ is
tangent to Σ. This line field integrates to a singular foliation. Recall that sl(L) is the self-linking
number.

Example 8.0.2(?): Take α = dz + x dy − y dx and Σ = S2, then the singular foliation is given by
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8 Thursday, February 03

Remark 8.0.3: Two possible types of singularities, the local models:

There are also two numerical invariants:

• e±: the number of positive (resp. negative) elliptics
• h±: the number of positive (resp. negative) hyperbolics

A theorem

⟨c(Σ), Σ⟩ = (e+ − h+) − (e− − h−).

If Σ is transverse, sl(∂Σ,Σ) = −(e+ − h+) + (e− − h−).

E 8.1 Local Model 1: Elliptic e

Remark 8.1.1: σ is the x, y-plane and ξ = ker( dz + x dy − y dx) with α|Σ = x dy − y dx. Set
V : x∂x + y∂y and L′ = ⟨x∂y − y∂x⟩, and α(i) = x2 + y2 = 1 > 0.

8.1 Local Model 1: Elliptic 39



8 Thursday, February 03

Here sl = 1. To compute sl:

• Trivialize ξ|Σ to get τ = ⟨e1, e2⟩ a fiberwise basis for ξ.
• Let L̃ be a pushoff in the e1 direction.
• Compute sl = lk(L, L̃).

Set

• e1 = ∂x + y∂z

• e2 = ∂y − x∂z

• ρ = x∂x + y∂y

• θ = x∂y − y∂x.

Then

xρ− yθ = x(x∂x + y∂y) − y(−y∂x + x∂y) = (x2 + y2) dx.

8.1 Local Model 1: Elliptic 40
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Then

• c1 = xρ− yθ + y∂z

• c1 = xρ+ y∂z = cos(ρ) + sin(θ)∂z.

Example:

• θ = 0 =⇒ e1 = ρ

• θ = π/4 =⇒ e1 =
√

2
2 (ρ+ ∂z)

• θ = π/2 =⇒ e1 = ∂z

So here lk(U, Ũ) = −1:

E 8.2 Local Model 2: Hyperbolic e

Remark 8.2.1: Here ξ is the x, y-plane, so ξ = ker( dz + 2x dy + y dx) with α|Σ = 2x dy + y dx
and V = y∂y + dx∂x ∈ ker(α|Σ).

8.2 Local Model 2: Hyperbolic 41



8 Thursday, February 03

Remark 8.2.2: The Euler class of a real vector bundle E π−→ X is the obstruction to finding a
nonvanishing section s of E, given by e(E) ∈ Hk(X). It is Poincare dual to [s−1(0)] ∈ Hn−k(X, ∂X).
For the tangent bundle, e(TX) ∈ Hn(X), and

⟨e(TX), [X]⟩ = χ(X).

Since a section of TX is a vector field, e(TX) is an obstruction to finding a nonvanishing vector field.
If ∂X ̸= ∅ and t is a section of E|∂X , there is a relative Euler class e(E, t) ∈ Hk(X, ∂X) ∼= Hn−k(X).
Similarly,

⟨e(TX, t), [X]⟩ = χ(X).

Example 8.2.3(?): Note χ(D) = 1, so any vector field has a singularity?

Proposition 8.2.4(?).
The total class is the sum of the relative obstructions. If σ = Σ1

∐
∂

Σ2 and τ is a nonvanishing
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section of Σ|∂Σ1
= Σ|∂Σ2

, then

c(E) = e(E|Σ1
, τ) + c(E|Σ2

, τ).

E 8.3 More Contact Geometry e

Remark 8.3.1: Let Σ have transverse boundary with characteristic foliation F , and let V be the
vector field directing F , so V ∈ ξ ∩ TΣ. We can assume V is outward-pointing along ∂Σ.

Check that

• χ(Σ) = e(TΣ, V ) ∈ H2(Σ, ∂Σ) ∼= H0(Σ)

• sl(∂Σ,Σ) = e(ξ, V ) ∈ H2(Σ, ∂Σ)

Fact 8.3.2

• e+ + e− correspond to +1 in e(TΣ, V ),
• h+, h− correspond to −1 in e(TΣ, V ).

Proof: near a zero, V determines a map S1 → S1 and the contribution to e is the degree of this
map.

• e+ contributes −1 to e(ξ, V ), by the same computation of sl(U) for U the unknot.
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• e− contributes −(−1) = +1 to e(ξ, V ).
• h+ contributes +1 to e(ξ, V )
• h− contributes −(+1) = −1 to e(ξ, V ).

Proof: exercise.

Remark 8.3.3: Bennequin inequality:

sl(T,Σ) ≤ −χ(Σ) =⇒ e+ + h+ + e− + h− ≤ −(e+ + e− − h+ − h−) ⇐⇒ e− ≤ h−.

Try to cancel in pairs:
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The inequality follows if we can cancel every e− with some h−.

9 Tuesday, February 08

Remark 9.0.1: Topics for talks:

• Thom-Pontryagin
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• Brieskorn spheres
• Milnor fibrations
• Lens spaces

Theorem 9.0.2(?).
Every closed oriented 3-manifold Y admits a (positive) contact form.

Remark 9.0.3: Three proofs:

• Lickorish-Wallace, using that Y is Dehn surgery on a link in S3,
• Birman-Hildon, using that Y is a branched cover of S3,
• Alexander, using that Y admits an open book decomposition.

Remark 9.0.4: Dehn surgery for slope p/q: for K ↪→ S3, cut out ν(K) ∼= S1 × D and re-glue by a
map ∂(S1 ×D) → ∂ν(K) such that [{0} ×∂D] = p[m] + q[ℓ] ∈ H1(∂ν(K)). Use that ν(K) ∼= S1 ×D
and ∂ν(K) ∼= S1 × S1 = T 2. Idea: wrapped p times longitudinally, q times around the meridian.

Remark 9.0.5: Recall:

• Every knot K can be C0 approximated by a transverse knot
• Every link L can be C0 approximated by a transverse link
• Neighborhood theorem: for every transverse knot K, there is a w(K) and a contactomorphism

to a standard model: S1 × D in coordinates (φ, r, θ) with 0 ≤ r ≤ δ and α = dφ + r2 dθ.
Re-gluing corresponds to the map [0, δ, θ] 7→ [qθ, δ, pθ].

[
0, δ, θ

]
7→
[
qθ, δ, pθ

]
[
π, r, θ

]
7→ [φ, r, θ].

If p, q are coprime there exist m,n with pm− qn = 1. So define

ψ :
[
π, r, θ

]
7→ [φ, r, θ],

so

ψ∗(α) = d(αθ +mφ) + r2d(pθ + nφ) = (q + r2p)dθ + (m+ r2n)dφ.

We want α = h1(r)dθ + h2(r)dθ to be contact and satisfy (h1, h2) = (r2, 1) near r = 0 and
(q + r2p,m+ r2n) near r = δ. This requires

dα = h′
1 dr ∧ dφ+ h′

2 dr ∧ dθ = (h2h
′
1 − h1h

′
2)dr ∧ dθ ∧ dφ,

which happens iff

det
[
h2 h′

2
h1 h′

1

]
> 0.
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Think of [h2, h1] as a path with tangent vector
[
h′

2, h
′
1
]
. This requires moving counterclockwise.

Definition 9.0.6 (?)
An open book decomposition of Y is a pair (B, π) where

• B is a link in Y , called the binding
• π : Y \B → S1 is a locally trivial fibration of relatively compact fibers pages
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Remark 9.0.7: An open book decomposition is determined by its monodromy map φ : Σ0 → Σ0,
which determines a class [φ] ∈ MCG(Σ0). Form

Y \ ν(B) ∼=
Σ × I

φ(x) × {0} ∼ x× {1}
,

which is a glued cylinder:
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Definition 9.0.8 (Open book decompositions supporting a contact structure)
An open book decomposition supports a contact structure ξ iff there exists a contact form α
such that dα is an area form on each page and B is a transverse link in (B, ξ).

Theorem 9.0.9(Thurston-Winkelnkemper).
Every open book decomposition admits a contact structure.

Theorem 9.0.10(Giroux).
Every (Y 3, ξ) with Y closed has a supporting open book decomposition.

Proposition 9.0.11(?).
If an open book decomposition supports ξ1 and ξ2, then ξ1 is isotopic to ξ2.
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Proof (?).
Two steps:

• Form a mapping cylinder of the monodromy map φ,
• Extend over the binding, using the same idea as in Dehn surgery.

Choose an area form ω on Σ and a primitive β with dβ = ω. Let β1 := φ∗β and β0 = β, then
set

βt = tβ1 + (1 − t)β0.

This yields a 1-form on Σ × I that extends to the mapping cylinder. Moreover dβt = tdβ1 +
(1 − t)dβ0 is an area form on σ× {t} and α = dt+ εβt is a contact form for small ε > 0. Then
dα = εdβt + ε dt ∧ β̇t and α ∧ dα = εdt ∧ dβt + O(ε2).

■

10 Tuesday, February 15

Missed due to orthodontic appointment! Please send me notes. :)

11 Thursday, February 17

Remark 11.0.1: Let Σ ⊆ (Y 3, ξ).

• Characteristic foliation: F = ξ ∩ TΣ, complicated but necessary
• Dividing set: a multicurve, simpler

Theorem 11.0.2(?).
If Σ is convex with a dividing set Γ and F is any foliation divided by Γ, there is a C0-small
isotopy φt wt

• φ0(Σ) = Σ, φt(Γ) = Γ
• φt(Σ) is convex for all t ∈ [0, 1]
• The characteristic foliation of φ1(Σ) is F .

Remark 11.0.3: Idea: dividing sets give ways to detect overtwisted contact structures.

Remark 11.0.4: If Σ = S2 and ♯Γ ≥ 2, then (Y, ξ) is overtwisted. Recall that an overtwisted disc
is an embedded D2 with Legendrian boundary such that tb(∂D) = 0 and tw(ξ, ∂D).
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Spheres can have exactly one dividing component.

Exercise 11.0.5 (?)
Generalize to an arbitrary number of components ♯Γ = n.

Remark 11.0.6: Same if Σ ̸= S2 and Γ contains a contractible curve. Contrapositively, if (Y, ξ) is
tight, then either

• Σ = S2 and Γ is connected, or
• Σ ̸= S2 and Γ has no contractible components.

Exercise 11.0.7 (?)
Consider tight contact structures on S3. Choose Darboux B3 neighborhoods at the ends, and
note the interior is S2 × [0, 1]:
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The S3×{t0} slices can be perturbed to be complex. So there is only one tight contact structure
on S3.

Remark 11.0.8: What can F look like on an S2 in a tight (Y, ξ)? F can be perturbed to be
Morse-Smale.

• There are a finite number of elliptic/hyperbolic singularities
• There are nondegenerate periodic orbits, either attracting or repelling
• There are no saddle-saddle arcs
• The limit sets are singularities or periodic orbits

Dimension 3: strange attractors! Two types of limit sets:

• ω limit sets: x ∈ Y where there exists a sequence {t1 < · · ·} with φ(tk) → x.
• α limit sets: x ∈ Y where there exists a sequence {t1 > · · ·} with φ(tk) → x.

Remark 11.0.9: For S2, take S+ with an outward pointing vector field.
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There are no periodic orbits since (Y, ξ) is tight. The only limit sets are singular points. χ(D) =
1 = ♯e− ♯h. Stable manifold of h: Stabh are x ∈ D2 such that there exists a flow like with φ(0) = x
and φ(t) → h Form a 1-complex

⋃
h

clX(Stabh) – this contains no cycles, thus this is a tree, and the

dividing set is a neighborhood of the tree.

Proposition 11.0.10(?).
If F on Σ is Morse-Smale, then it admits dividing curves.
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Proof (?).
Let G =

⋃
h

cl(Stabh) ∪
⋃
e

et along with all of the repelling periodic orbits. Then Γ = ∂ν(G)

divides F .
■

Theorem 11.0.11(?).
If Σ is orientable, then there is a C∞ small perturbation of F such that it is Morse-Smale.

Proposition 11.0.12(?).
Every oriented Σ ⊆ (Y, ξ) can be perturbed to be convex.

Proof (?).
Near Σ, α = βt + αt dt and β0 define F . By Peixoto there exists β̃t such thatβ̃t defines a
Morse-Smale F . For

∥∥∥β − β̃
∥∥∥

C∞
≪ ε, α̃ = β̃t + αt dt is contact. Then αs = sα̃+ (1 − s)α is a

path of contact forms, so by Gray stability there is an isotopy φs such that φ∗
s(αs) = λsα and

we can take φ1(Σ) to be our surface.
■

Proposition 11.0.13(?).
If (Σ, F̃ ) admits dividing curves, then it is convex.

12 Thursday, February 24

Remark 12.0.1: Last time: there is a unique tight contact structure on S3, using the existence of
a contact structure on S3 × I. Next: tight contact structures on

• T 2 × I
• S1 × D2

• L(p, q)
• T 3

Given dividing sets of Γ0,Γ1 ∈ T 2 × I, how can contact structures vary in a family. Tightness
implies no contractible components in Γ, so Γ consists of 2n embedded curves of slow p/q. So the
dividing set is governed by two parameters.

Remark 12.0.2: The only change to the dividing set in a generic family can be:

• Retrograde saddle-saddle, yielding by pass moves.
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Proposition 12.0.3.
Given any contact structure on Σ × I with dividing sets Γ0,Γ1, ξ is determined by a finite
number of bypass moves.

Proof (?).
Diagrams?
...

■

Remark 12.0.4: Given Γ0 with slope p/q and Γ1 with slope r/s, form a Farey graph:
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...

Proposition 12.0.5(Legendrian Darboux).
If L is a Legendrian knot in M , then a neighborhood of L is contactomorphic to a neighborhood
of a zero section in J(S1) ∼= R × T∨S1 ∼= S1 × R2..

Remark 12.0.6: Write this in coordinates as (z, (x, y)), so α = dz − y dx with x ∈ R/Z. Then
v(L) =

{
y2 + z2 ≤ ε

}
, y = r cos θ, z = r sin θ. T 2 = {x, θ} , α|T 2 = y dθ − y dx = ε cos θ( dθ − dx).

Unwrap:
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Note that dα > 0 at π/2 and dα < 0 at 3π/2. Idea: given two unrelated surfaces with their own
foliations, how do they interact at the boundary? Dividing sets on each can be extended into the
annulus, and this reduces to a combinatorial problem of how to connected arcs:
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See https: // arxiv. org/ pdf/ math/ 9910127.
pdf

Remark 13.0.1: Last time: classifying tight contact structures on T 3. Some contact structure:

ξn = ker(cos(2πnz) dx− sin(2πnz) dy).

Realize T 3 as a cube with faces glued, then moving in the z direction twists n times as you traverse
the cube. We can reduce this to ξ1 using [x, y, z] 7→ [x, y, nz].
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Remark 13.0.2: Goal: classify tight contact structures on lens spaces Lp,q = T 2 × I/ ∼. We can
discretize the contact structure on Σ × I into a finite number of bypass moves on the dividing sets.
The basic move:

Definition 13.0.3 (Basic slice)
A basic slice is a contact structure on T 2 such that

• T 2 × {0} is convex with 2 dividing curves of slope 0
• T 2 × {1} is convex with 2 dividing curves of slope -1
• ξ is tight
• ξ is minimally twisting, so if T 2 ⊆ T 2 × I is convex then slope(r) ∈ [−1, 0].

Proposition 13.0.4(?).
There are exactly 2 basic slices. Both embed in (T 3, ξ1) = ker(cos(2πz) dx − sin(2πz) dy) =
T 2 × I/ ∼, and are given by

• (T2 × [0, 1/8], ξ1)
• (T2 × [1/2, 5/8], ξ1)

Proof (?).
Step 1: There are at most 2 basic slices. Reduce to S1 × D2 by removing a convex annulus.
Note that T 2 × I \ (S1 × I) ∼= S1 × I2 ∼= S1 ×D2.
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Since the boundary is convex, we can make the foliations on both of the ruling curves of slope
∞.

?
Take an annulus A with some condition on ∂A, perturb to be convex? Something contradicts
the “minimally twisting” assumption, involving these pics:

Smooth corners?
?

■
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Definition 13.0.5 (Relative Euler class)
Let (M, ξ) be a contact 3-manifold with ξ|∂M trivial. Let s be a nonvanishing section of ξ|∂M ,
then the relative Euler class e(ξ, s) ∈ H2(M,∂M ;Z) ∼= H1(M) (by Lefschetz duality) is the
dual of the vanishing set of an extension of s to a section of ξ on M .

Remark 13.0.6: In this case dim s−1 = dimM − dim ξ.

Lemma 13.0.7(?).
If Σ ↪→ (M, ξ) is a properly embedded convex surface and s is a section of ξ|∂M that is tangent
to ∂Σ with the correct orientation, then

⟨e(ξ, s), Σ⟩ = χ(Σ+) − χ(Σ−).

where ⟨−, −⟩ : H2(M,∂M ;Z) ×H2(M,∂M ;Z) → Z.

Remark 13.0.8: Note H2(T 2 × I, ∂;Z) = ⟨[α× I], [β × I]⟩ where H2(T 2) = ⟨α, β⟩.

14 Tuesday, March 22

E 14.1 Farey Graphs e

Remark 14.1.1: Build a graph on the hyperbolic plane in the Poincare disc model:
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Here every midpoint corresponds to adding numerators and denominators respectively.

Associate slopes:

• 0/1⇝ 1α+ 0β
• 1/0⇝ 0α+ 1β
• 1/1⇝ 1α+ 1β

Any pair of these is a Z-basis for H1(T 2;Z) ∼= Z×2 . Use SL2(Z) ↪→ PSL2(C) to realize any change
of basis as an isometry of h. This makes the interior/exterior of any tile isometric to the full
upper/lower half-disc.

Remark 14.1.2: Basic moves: bypasses
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The first case corresponds to slopes r ∈ (−∞,−1) and the second to r ∈ (−1,−1/2). Idea: the
resulting dividing set is locally constant in perturbations of r, provided one doesn’t cross the
endpoints of the curve for the bypass move. This produces a continued fraction defined inductively

by r0 =
⌊
−p

q

⌋
, writing −p

q
= r0 − 1

p′/q′ = −q′

p′ with −p/q < −p′/q′ < −1 and thus 0 < −p

q
−r0 < 1,

so set r1 =
⌊
−p′

q′

⌋
. This yields

−p

q
= r0 − 1

r1 − 1
r2−···

= [r0, r1, · · · , rm],

which terminates in finitely many steps since p/q is rational. Note that ri ≤ −1 =⇒ ⌊ri⌋ ≤ −2.

Proposition 14.1.3(?).
If r = −p/q = [r0, · · · , rk] in a continued fraction expansion and s = a/b is the first point
connected to p/q while moving counterclockwise from 0/1 on the Farey graph, then −a/b =
[r0, · · · , rk + 1].
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Remark 14.1.4: This gives the minimal graph path from p/q back to 0/1 by jumping the maximal
distance along the circle to a/b. Noting that [r1, · · · , rk−1,−1] = [r1, · · · , rk−1 +1] which is a shorter
continued fraction.

Example 14.1.5(?): Let p/q = 53/17, then

• r0 = −4 = −68/17
• r1 = −2 = −30/15
• r2 = −2 = −26/13
• r3 = −2 = · · ·

So this yields [−4,−2, · · ·7 ,−2,−3].

Remark 14.1.6: Idea: decompose p/q = [r0, · · · , rk] surgery into integer surgeries on a link with
k components.

15 Tuesday, March 29

Remark 15.0.1: Goal: classification of tight contact structures on lens spaces.

Lens spaces: Lp,q = S3/Cp where the action is [z1, z2] 7→
[
e

2πi
p , e

2πiq
p

]
which has order p. Note

Lp,q
∼= Lp,q′ when q ≡ q′ mod p, so we can assume −p < q ≤ 0, so p/q < −1.

Some examples:

• L1,q
∼= S3

• L2,1 ∼= RP3 ∼= SO3(R).

There is a genus 1 Heegaard splitting. The double branched cover of a 2-bridge link is a lens space:
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All lens spaces can be generated by genus 1 Heegaard splittings?

Remark 15.0.2: −p/q Dehn surgery is equivalent to a sequence of linked unknots with numbers
r1, · · · , rk. When can this be done in a way that preserves the contact structure? Idea: Legendrian
surgery, which removes a Legendrian knot and reglues.

Remark 15.0.3: Let L be Legendrian and ν(L) is a standard neighborhood (so standard contact
structure). Then ∂ν(L) ∼= T 2 is convex with 2 dividing curves, where “slope” is the contact framing.
For [θ, x, y] ∈ S1 × R2, set α = dx + y dθ. Then [θ, 0, 0] is Legendrian. When can we extend ξ
uniquely across surgery S1 × D2? Need to attach handles along integer framing (choice of integer
in π1SO2(R) ∼= Z corresponding to trivializing the normal bundle ν(K) in an embedding). Need
good surgery slopes: {n}n∈Z ∩

{1
k

}
k∈Z

= {±1}, relative to the tb-framing. So tb − 1 is the best
framing.:
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Stabilize up to rK + 1 on each Legendrian knot. Fact: yields a Stein fillable thing, implies tight
contact structure.

Remark 15.0.4: There are −r0 − 1 ways to perform −r0 − 2 stabilizations. E.g. for −r0 − 2 = 3,
break into positive and negative stabilizations:

• (3, 0)
• (2, 1)
• (1, 2)
• (0, 3)

So there are
∏

1≤i≤k

(−rk − 1) tight contact structures on −p/q = [r0, · · · , rk].
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E 16.1 Symplectic Fillings e

Example 16.1.1(Properties of the standard contact structure on S3): Consider (S3, ξstd) ⊆
C2; some things that are true:

• There is a symplectic form ω = dx1 ∧ dy1 + dx2 ∧ dy2 where dω = 0 and ω ∧ ω = 2dVol > 0.
Write φ =

∑
x2

i +
∑

y2
i , then S3 = φ−1(1).

• Letting ρ =
∑

xi∂xi +
∑

yi∂yi = 1
2 gradφ in the standard metric yields a contact form

α = ω(ρ,−).
• Since ω|ξstd

> 0, this yields an area form on contact planes.
• There is also a complex structure J : TpC2 → TpC2 where J(∂xi) = ∂yi and J(∂yi) = −∂xi

with a compatibility g(x, y) = ω(x, Jy).

Definition 16.1.2 (Fillings)
A complex symplectic manifold (X4, ω, J) is a filling of (Y 3, ξ) if Y = ∂X,

• Stein filling: (X4, J) is a Stein manifold, and ξ = TY ∩ J(TY ).
• Strong filling: if there is an outward pointing (Liouville) vector field ρ with Lρω = ω

with ξ ker(ω(ρ,−)) (which is always contact). Note Lρω = d(ιρω) + ιρ(dω) where the
2nd term vanishes for a symplectic form.

• Weak filling: ω|ξ > 0.

Note that we aren’t defining what “Stein” means
here.

Theorem 16.1.3(?).
There are strict implications

• Stein =⇒
• Strong =⇒
• Weak =⇒
• Tight.

Note that the last implication is the harder part of the theorem.

Problem 16.1.1 (?)
Given (Y, ξ), classify all fillings.

Example 16.1.4(?): Consider (T 3, ξn) – if n = 1, this is Stein fillable, and for n ≥ 2 these are
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weakly fillable but not strongly fillable. In this case, all of the filling manifolds are T 2 × B2.

Example 16.1.5(?): For lens spaces Lp,q all tight contact structures are Stein fillable with the same
smooth filling. Take the linear plumbing X of copies of S2 corresponding to −p/q = [r1, r2, · · · , rk]
as a continued fraction expansion. They’re distinguished by Chern classes c1(TX , J).

Example 16.1.6(?): Brieskorn spheres are examples of fillings, related to Milnor fibers. For
p, q, r ≥ 2, define

Σ(p, q, r) := {Fp,q,r(x, y, z) = xp + yq + zr = ε} ∩ S5 ⊆ C3 = span
C

{x, y, z} .

In this case, we have:

Note that ε = 0 yields a singular variety, while ε > 0 small yields a smooth manifold.

Exercise 16.1.7 (?)
Show Σp,q,r is the r-fold cyclic branched cover of S3 over the torus knot Tp,q.

Remark 16.1.8: Let J : TX → TX with J2 = − id, so the eigenvalues are ±i. So consider
complexifying to TCX := TX ⊗R C, so e.g. ∂xk 7→ (ak + ibk)∂xk. This splits into positive
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(holomorphic) and negative (antiholomorphic) eigenspaces T1,0
C X ⊕ T0,1

C X. Take a change of basis
[x1, y1, x2, y2] 7→ [z1, z1, z2, z2] which yields ∂z = 1

2 (∂x− i∂y) and ∂z = 1
2 (∂x+ i∂y).

Exercise 16.1.9 (?)
Let f(z) = |z|2 and check

• ∂∂f = ∂(zdz) = dz ∧ dz = −2i(dx ∧ dy).
• d = ∂ + ∂

Practicing this type of change of variables is important!

Definition 16.1.10 (Levi forms and plurisubharmonicity)
Let φ : X → R for X a complex manifold, then the Levi form of φ is

Lφ = ∂∂φ =
∑
i,j

∂2

∂zj∂zk

dzj ∧ dzk,

generalizing the Hessian. The function φ is plurisubharmonic if Lφ is positive semidefinite
at every point.

Example 16.1.11(?): Consider φ : C → R, then

Lφ = ∂∂φ

= 2
(1

2 (φx + iφy)
)

= 1
2

(1
2 (φxx − φxy) + 1

2 (φyx − iφyy)
)

= 1
4 (φxx + φyy)

= 1
4∆φ,

so plurisubharmonic implies positive Laplacian. Note that in 1 dimension, ∆f = 0 =⇒ f ′′ = 0, so
(x, f(x)) is a straight line. In higher dimensions, f ′′ > 0 forces convexity, so secant lines are under
the straight lines, hence the “sub” in subharmonic.

Proposition 16.1.12(?).
If φ : X → R is plurisubharmonic and 0 is a regular value, then (φ−1(0), ξ) (where ξ is its
complex tangencies) forms a contact structure and the sub-level set φ−1(−∞, 0] is a Stein
filling.

Example 16.1.13(A basic example of a plurisubharmonic function): The radical function
φ : C3 → R where φ(z1, z2, z3) =

∑
|zi|2 is plurisubharmonic, as is its restriction to any submanifold

of C3, including any filling of Σp,q,r. Hard theorem: any Stein manifold and any Stein filling
essentially comes from this construction.
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Note: student talks in previous weeks!

Remark 17.0.1: Possible topics for the remainder of the class:

• Open book decompositions
• Every (Y 3, ξ) is homotopic to a contact structure.
• Seifert fibered spaces

E 17.1 Seifert Fibered Spaces e

Remark 17.1.1: Brieskorn spheres Σ(p, r, q) := {xp + yq + zr = 0} ∩ S5
ε ⊆ C3 are 3-manifolds

foliated by S1. Note that S1 → X → S2 for X = S3 or L(p, q) are actual fibrations. Idea: a
foliation by F ’s is a decomposition X =

∐
F → B which is a fibration with ramification in some

fibers.

Definition 17.1.2 (Seifert fibered spaces)
A Seifert fibered space associated to (Σ, (p1/q1, · · · , pn/qn)) with pi/qi ∈ Q and Σ an
orbifold surface is a 3-manifold Y and knots L1, · · · , Ln with neighborhoods νLi such that

• Y \ ∪iν(Li) = (Σ \ {pt1, · · · , ptn}) × S1

• νLi = S1 × D2 is glued in by pi/qi Dehn surgery.

Example 17.1.3(?): L(p, q) is −p/q surgery on S1, or by a slam-dunk move:
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Σ(p, q, r):
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Exercise 17.1.4 (?)
Show that for Σ(p, q, r), removing the axes in C3 yields a trivial fibration by copies of S1 over
S2 \ pt1, pt2, pt3 and check the surgery slopes.

Exercise 17.1.5 (?)
Prove that Σ(p, q, r) comes from the plumbing diagram for the Milnor fibration using Kirby
calculus.

18 Tuesday, April 26

Remark 18.0.1: Recall that PHS3 = Σ(2, 3, 5) has a Stein-fillable (and hence tight) contact
structure.

Theorem 18.0.2(?).
The negative −Σ(2, 3, 5) admits no tight contact structures.

Remark 18.0.3: Let S = S3 \ {pt1,pt2, pt3} be a pair of pants and consider X = S × S1. Note
∂X = T 2 ∪ T 2 ∪ T 2:

Note −Σ(2, 3, 5) = Σ(2,−3,−5), since PHS3 is −1 surgery on the trefoil. Glue in 3 solid torii by

A1 =
[
2 −1
1 0

]
, A2 =

[
3 1

−1 0

]
, A3 =

[
5 1

−1 0

]
.

acting on [m,λ] in S1 × D2:
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Exercise 18.0.4 (?)
Show via Kirby calculus:
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Lemma 18.0.5(?).
There exist Legendrian representatives F2, F3 with twisting numbers m2,m3 = −1.

Proof (?).
Idea: by stabilization, we can assume m2,m3 < 0, and the claim is that we can destabilize
them back up to −1 simultaneously using bypass moves. Reduce to studying dividing sets on
T 2 × I or S1 × D2. Check that the dividing set has slope −1/2, which implies that there is an
overtwisted disc. Reduce to 2 · 3 · 5 = 30 cases, check that an overtwisted disc can be found in
each case.

■

ToDos

List of Todos
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