\newcommand{\cat}[1]{\mathsf{#1}} \newcommand{\Sets}[0]{{\mathsf{Set}}} \newcommand{\Set}[0]{{\mathsf{Set}}} \newcommand{\sets}[0]{{\mathsf{Set}}} \newcommand{\set}{{\mathsf{Set} }} \newcommand{\Poset}[0]{\mathsf{Poset}} \newcommand{\GSets}[0]{{G\dash\mathsf{Set}}} \newcommand{\Groups}[0]{{\mathsf{Group}}} \newcommand{\Grp}[0]{{\mathsf{Grp}}} % Modifiers \newcommand{\der}[0]{{\mathsf{d}}} \newcommand{\dg}[0]{{\mathsf{dg}}} \newcommand{\comm}[0]{{\mathsf{C}}} \newcommand{\pre}[0]{{\mathsf{pre}}} \newcommand{\fn}[0]{{\mathsf{fn}}} \newcommand{\smooth}[0]{{\mathsf{sm}}} \newcommand{\Aff}[0]{{\mathsf{Aff}}} \newcommand{\Ab}[0]{{\mathsf{Ab}}} \newcommand{\Add}[0]{{\mathsf{Add}}} \newcommand{\Assoc}[0]{\mathsf{Assoc}} \newcommand{\Ch}[0]{\mathsf{Ch}} \newcommand{\Coh}[0]{{\mathsf{Coh}}} \newcommand{\Comm}[0]{\mathsf{Comm}} \newcommand{\Cor}[0]{\mathsf{Cor}} \newcommand{\Corr}[0]{\mathsf{Cor}} \newcommand{\Fin}[0]{{\mathsf{Fin}}} \newcommand{\Free}[0]{\mathsf{Free}} \newcommand{\Tors}[0]{\mathsf{Tors}} \newcommand{\Perf}[0]{\mathsf{Perf}} \newcommand{\Unital}[0]{\mathsf{Unital}} \newcommand{\eff}[0]{\mathsf{eff}} \newcommand{\derivedcat}[1]{\mathbf{D} {#1} } \newcommand{\bderivedcat}[1]{\mathbf{D}^b {#1} } \newcommand{\Cx}[0]{\mathsf{Ch}} \newcommand{\Stable}[0]{\mathsf{Stab}} \newcommand{\ChainCx}[1]{\mathsf{Ch}\qty{ #1 } } \newcommand{\Vect}[0]{{ \mathsf{Vect} }} \newcommand{\kvect}[0]{{ \mathsf{Vect}\slice{k} }} \newcommand{\loc}[0]{{\mathsf{loc}}} \newcommand{\locfree}[0]{{\mathsf{locfree}}} \newcommand{\Bun}{{\mathsf{Bun}}} \newcommand{\bung}{{\mathsf{Bun}_G}} % Rings \newcommand{\Local}[0]{\mathsf{Local}} \newcommand{\Fieldsover}[1]{{ \mathsf{Fields}_{#1} }} \newcommand{\Field}[0]{\mathsf{Field}} \newcommand{\Number}[0]{\mathsf{Number}} \newcommand{\Numberfield}[0]{\Field\slice{\QQ}} \newcommand{\NF}[0]{\Numberfield} \newcommand{\Art}[0]{\mathsf{Art}} \newcommand{\Global}[0]{\mathsf{Global}} \newcommand{\Ring}[0]{\mathsf{Ring}} \newcommand{\Mon}[0]{\mathsf{Mon}} \newcommand{\CMon}[0]{\mathsf{CMon}} \newcommand{\CRing}[0]{\mathsf{CRing}} \newcommand{\DedekindDomain}[0]{\mathsf{DedekindDom}} \newcommand{\IntDomain}[0]{\mathsf{IntDom}} \newcommand{\Domain}[0]{\mathsf{Domain}} \newcommand{\DVR}[0]{\mathsf{DVR}} \newcommand{\Dedekind}[0]{\mathsf{Dedekind}} % Modules \newcommand{\modr}[0]{{\mathsf{Mod}\dash\mathsf{R}}} \newcommand{\modsleft}[1]{\mathsf{#1}\dash\mathsf{Mod}} \newcommand{\modsright}[1]{\mathsf{Mod}\dash\mathsf{#1}} \newcommand{\mods}[1]{{\mathsf{#1}\dash\mathsf{Mod}}} \newcommand{\stmods}[1]{{\mathsf{#1}\dash\mathsf{stMod}}} \newcommand{\grmods}[1]{{\mathsf{#1}\dash\mathsf{grMod}}} \newcommand{\comods}[1]{{\mathsf{#1}\dash\mathsf{coMod}}} \newcommand{\algs}[1]{{{#1}\dash\mathsf{Alg}}} \newcommand{\Quat}[0]{{\mathsf{Quat}}} \newcommand{\torsors}[1]{{\mathsf{#1}\dash\mathsf{Torsors}}} \newcommand{\torsorsright}[1]{\mathsf{Torsors}\dash\mathsf{#1}} \newcommand{\torsorsleft}[1]{\mathsf{#1}\dash\mathsf{Torsors}} \newcommand{\bimod}[2]{({#1}, {#2})\dash\mathsf{biMod}} \newcommand{\bimods}[2]{({#1}, {#2})\dash\mathsf{biMod}} \newcommand{\Mod}[0]{{\mathsf{Mod}}} \newcommand{\Dmod}[0]{{ \mathcal{D}\dash\mathsf{Mod} }} \newcommand{\zmod}[0]{{\mathbb{Z}\dash\mathsf{Mod}}} \newcommand{\rmod}[0]{{\mathsf{R}\dash\mathsf{Mod}}} \newcommand{\amod}[0]{{\mathsf{A}\dash\mathsf{Mod}}} \newcommand{\kmod}[0]{{\mathsf{k}\dash\mathsf{Mod}}} \newcommand{\gmod}[0]{{\mathsf{G}\dash\mathsf{Mod}}} \newcommand{\grMod}[0]{{\mathsf{grMod}}} \newcommand{\gr}[0]{{\mathsf{gr}\,}} \newcommand{\mmod}[0]{{\dash\mathsf{Mod}}} \newcommand{\Rep}[0]{{\mathsf{Rep}}} \newcommand{\Irr}[0]{{\mathsf{Irr}}} \newcommand{\Adm}[0]{{\mathsf{Adm}}} \newcommand{\semisimp}[0]{{\mathsf{ss}}} % Vector Spaces and Bundles \newcommand{\VectBundle}[0]{{ \Bun\qty{\GL_r} }} \newcommand{\VectBundlerk}[1]{{ \Bun\qty{\GL_{#1}} }} \newcommand{\VectSp}[0]{{ \VectSp }} \newcommand{\VectBun}[0]{{ \VectBundle }} \newcommand{\VectBunrk}[1]{{ \VectBundlerk{#1} }} \newcommand{\Bung}[0]{{ \Bun\qty{G} }} % Algebras \newcommand{\Hopf}[0]{\mathsf{Hopf}} \newcommand{\alg}[0]{\mathsf{Alg}} \newcommand{\Alg}[0]{{\mathsf{Alg}}} \newcommand{\scalg}[0]{\mathsf{sCAlg}} \newcommand{\cAlg}[0]{{\mathsf{cAlg}}} \newcommand{\calg}[0]{\mathsf{CAlg}} \newcommand{\liegmod}[0]{{\mathfrak{g}\dash\mathsf{Mod}}} \newcommand{\liealg}[0]{{\mathsf{Lie}\dash\mathsf{Alg}}} \newcommand{\Lie}[0]{\mathsf{Lie}} \newcommand{\kalg}[0]{{\mathsf{Alg}_{/k} }} \newcommand{\kAlg}[0]{{\mathsf{Alg}_{/k} }} \newcommand{\kSch}[0]{{\mathsf{Sch}_{/k}}} \newcommand{\rAlg}[0]{{\mathsf{Alg}_{/R}}} \newcommand{\ralg}[0]{{\mathsf{Alg}_{/R}}} \newcommand{\zalg}[0]{{\mathsf{Alg}_{/\ZZ}}} \newcommand{\CCalg}[0]{{\mathsf{Alg}_{\mathbb{C}} }} \newcommand{\dga}[0]{{\mathsf{dg\Alg} }} \newcommand{\cdga}[0]{{ \mathsf{c}\dga }} \newcommand{\dgla}[0]{{\dg\Lie\Alg }} \newcommand{\Poly}[0]{{\mathsf{Poly} }} \newcommand{\Hk}[0]{{\mathsf{Hk} }} \newcommand{\Grpd}[0]{{\mathsf{Grpd}}} \newcommand{\inftyGrpd}[0]{{ \underset{\infty}{ \Grpd } }} \newcommand{\Algebroid}[0]{{\mathsf{Algd}}} % Schemes and Sheaves \newcommand{\Loc}[0]{\mathsf{Loc}} \newcommand{\Locsys}[0]{\mathsf{LocSys}} \newcommand{\Ringedspace}[0]{\mathsf{RingSp}} \newcommand{\RingedSpace}[0]{\mathsf{RingSp}} \newcommand{\LRS}[0]{\Loc\RingedSpace} \newcommand{\IndCoh}[0]{{\mathsf{IndCoh}}} \newcommand{\Ind}[0]{{\mathsf{Ind}}} \newcommand{\Pro}[0]{{\mathsf{Pro}}} \newcommand{\DCoh}[0]{{\mathsf{DCoh}}} \newcommand{\QCoh}[0]{{\mathsf{QCoh}}} \newcommand{\Cov}[0]{{\mathsf{Cov}}} \newcommand{\sch}[0]{{\mathsf{Sch}}} \newcommand{\presh}[0]{ \underset{ \mathsf{pre} } {\mathsf{Sh} }} \newcommand{\prest}[0]{ {\underset{ \mathsf{pre} } {\mathsf{St} } } } \newcommand{\Descent}[0]{{\mathsf{Descent}}} \newcommand{\Desc}[0]{{\mathsf{Desc}}} \newcommand{\FFlat}[0]{{\mathsf{FFlat}}} \newcommand{\Perv}[0]{\mathsf{Perv}} \newcommand{\smsch}[0]{{ \smooth\Sch }} \newcommand{\Sch}[0]{{\mathsf{Sch}}} \newcommand{\Schf}[0]{{\mathsf{Schf}}} \newcommand{\Sh}[0]{{\mathsf{Sh}}} \newcommand{\St}[0]{{\mathsf{St}}} \newcommand{\Stacks}[0]{{\mathsf{St}}} \newcommand{\Vark}[0]{{\mathsf{Var}_{/k} }} \newcommand{\Var}[0]{{\mathsf{Var}}} \newcommand{\Open}[0]{{\mathsf{Open}}} % Homotopy \newcommand{\CW}[0]{{\mathsf{CW}}} \newcommand{\sset}[0]{{\mathsf{sSet}}} \newcommand{\sSet}[0]{{\mathsf{sSet}}} \newcommand{\ssets}[0]{\mathsf{sSet}} \newcommand{\hoTop}[0]{{\mathsf{hoTop}}} \newcommand{\hoType}[0]{{\mathsf{hoType}}} \newcommand{\ho}[0]{{\mathsf{ho}}} \newcommand{\SHC}[0]{{\mathsf{SHC}}} \newcommand{\SH}[0]{{\mathsf{SH}}} \newcommand{\Spaces}[0]{{\mathsf{Spaces}}} \newcommand{\GSpaces}[1]{{G\dash\mathsf{Spaces}}} \newcommand{\Spectra}[0]{{\mathsf{Sp}}} \newcommand{\Sp}[0]{{\mathsf{Sp}}} \newcommand{\Top}[0]{{\mathsf{Top}}} \newcommand{\Bord}[0]{{\mathsf{Bord}}} \newcommand{\TQFT}[0]{{\mathsf{TQFT}}} \newcommand{\Kc}[0]{{\mathsf{K^c}}} \newcommand{\triang}[0]{{\mathsf{triang}}} \newcommand{\TTC}[0]{{\mathsf{TTC}}} \newcommand{\dchrmod}{{\derivedcat{\Ch(\rmod)} }} % Infty Cats \newcommand{\Finset}[0]{{\mathsf{FinSet}}} \newcommand{\Cat}[0]{\mathsf{Cat}} \newcommand{\Fun}[0]{{\mathsf{Fun}}} \newcommand{\Kan}[0]{{\mathsf{Kan}}} \newcommand{\Monoid}[0]{\mathsf{Mon}} \newcommand{\Arrow}[0]{\mathsf{Arrow}} \newcommand{\quasiCat}[0]{{ \mathsf{quasiCat} } } \newcommand{\inftycat}[0]{{ \underset{\infty}{ \Cat} }} \newcommand{\inftycatn}[1]{{ \underset{(\infty, {#1})}{ \Cat} }} \newcommand{\core}[0]{{ \mathsf{core} }} \newcommand{\Indcat}[0]{ \mathsf{Ind} } % New? \newcommand{\Prism}[0]{\mathsf{Prism}} \newcommand{\Solid}[0]{\mathsf{Solid}} \newcommand{\WCart}[0]{\mathsf{WCart}} % Motivic \newcommand{\Torsor}[1]{{\mathsf{#1}\dash\mathsf{Torsor}}} \newcommand{\Torsorleft}[1]{{\mathsf{#1}\dash\mathsf{Torsor}}} \newcommand{\Torsorright}[1]{{\mathsf{Torsor}\dash\mathsf{#1} }} \newcommand{\Quadform}[0]{{\mathsf{QuadForm}}} \newcommand{\HI}[0]{{\mathsf{HI}}} \newcommand{\DM}[0]{{\mathsf{DM}}} \newcommand{\hoA}[0]{{\mathsf{ho}_*^{\scriptstyle \AA^1}}} \newcommand\Tw[0]{\mathsf{Tw}} \newcommand\SB[0]{\mathsf{SB}} \newcommand\CSA[0]{\mathsf{CSA}} \newcommand{\CSS}[0]{{ \mathsf{CSS} } } % Unsorted \newcommand{\FGL}[0]{\mathsf{FGL}} \newcommand{\FI}[0]{{\mathsf{FI}}} \newcommand{\CE}[0]{{\mathsf{CE}}} \newcommand{\Fuk}[0]{{\mathsf{Fuk}}} \newcommand{\Lag}[0]{{\mathsf{Lag}}} \newcommand{\Mfd}[0]{{\mathsf{Mfd}}} \newcommand{\Riem}[0]{\mathsf{Riem}} \newcommand{\Wein}[0]{{\mathsf{Wein}}} \newcommand{\gspaces}[1]{{#1}\dash{\mathsf{Spaces}}} \newcommand{\deltaring}[0]{{\delta\dash\mathsf{Ring}}} \newcommand{\terminal}[0]{{ \mathscr{1}_{\scriptscriptstyle \uparrow} }} \newcommand{\initial}[0]{{ \mathscr \emptyset^{\scriptscriptstyle \downarrow} }} % Universal guys \newcommand{\coeq}[0]{\operatorname{coeq}} \newcommand{\cocoeq}[0]{\operatorname{eq}} \newcommand{\dgens}[1]{\gens{\gens{ #1 }}} \newcommand{\ctz}[1]{\, {\converges{{#1} \to\infty}\longrightarrow 0} \, } \newcommand{\conj}[1]{{\overline{{#1}}}} \newcommand{\complex}[1]{{ {#1}_{\scriptscriptstyle \bullet}} } \newcommand{\cocomplex}[1]{ { {#1}^{\scriptscriptstyle \bullet}} } \newcommand{\bicomplex}[1]{{ {#1}_{\scriptscriptstyle \bullet, \bullet}} } \newcommand{\cobicomplex}[1]{ { {#1}^{\scriptscriptstyle \bullet, \bullet}} } \newcommand{\floor}[1]{{\left\lfloor #1 \right\rfloor}} \newcommand{\ceiling}[1]{{\left\lceil #1 \right\rceil}} \newcommand{\fourier}[1]{\widehat{#1}} \newcommand{\embedsvia}[1]{\xhookrightarrow{#1}} \newcommand{\openimmerse}[0]{\underset{\scriptscriptstyle O}{\hookrightarrow}} \newcommand{\weakeq}[0]{\underset{\scriptscriptstyle W}{\rightarrow}} \newcommand{\fromvia}[1]{\xleftarrow{#1}} \newcommand{\generators}[1]{\left\langle{#1}\right\rangle} \newcommand{\gens}[1]{\left\langle{#1}\right\rangle} \newcommand{\globsec}[1]{{{\Gamma}\qty{#1} }} \newcommand{\Globsec}[1]{{{\Gamma}\qty{#1} }} \newcommand{\langL}[1]{ {}^{L}{#1} } \newcommand{\equalsbecause}[1]{\overset{#1}{=}} \newcommand{\congbecause}[1]{\overset{#1}{\cong}} \newcommand{\congas}[1]{\underset{#1}{\cong}} \newcommand{\isoas}[1]{\underset{#1}{\cong}} \newcommand{\addbase}[1]{{ {}_{\pt} }} \newcommand{\ideal}[1]{\mathcal{#1}} \newcommand{\adjoin}[1]{ { \left[ \scriptstyle {#1} \right] } } \newcommand{\polynomialring}[1]{ { \left[ {#1} \right] } } \newcommand{\htyclass}[1]{ { \left[ {#1} \right] } } \newcommand{\qtext}[1]{{\quad \operatorname{#1} \quad}} \newcommand{\abs}[1]{{\left\lvert {#1} \right\rvert}} \newcommand{\stack}[1]{\mathclap{\substack{ #1 }}} \newcommand{\powerseries}[1]{ { \left[ {#1} \right] } } \newcommand{\functionfield}[1]{ { \left( {#1} \right) } } \newcommand{\rff}[1]{ \functionfield{#1} } \newcommand{\fps}[1]{{\left[\left[ #1 \right]\right] }} \newcommand{\formalseries}[1]{ \fps{#1} } \newcommand{\formalpowerseries}[1]{ \fps{#1} } \newcommand\fls[1]{{\left(\left( #1 \right)\right) }} \newcommand\lshriek[0]{{}_{!}} \newcommand\pushf[0]{{}^{*}} \newcommand{\nilrad}[1]{{\sqrt{0_{#1}} }} \newcommand{\jacobsonrad}[1]{{J ({#1}) }} \newcommand{\localize}[1]{ \left[ { \scriptstyle { {#1}\inv} } \right]} \newcommand{\primelocalize}[1]{ \left[ { \scriptstyle { { ({#1}^c) }\inv} } \right]} \newcommand{\plocalize}[1]{\primelocalize{#1}} \newcommand{\sheafify}[1]{ \left( #1 \right)^{\scriptscriptstyle \mathrm{sh}} } \newcommand{\complete}[1]{{ {}_{ \hat{#1} } }} \newcommand{\takecompletion}[1]{{ \overbrace{#1}^{\widehat{\hspace{4em}}} }} \newcommand{\pcomplete}[0]{{ {}^{ \wedge }_{p} }} \newcommand{\kv}[0]{{ k_{\hat{v}} }} \newcommand{\Lv}[0]{{ L_{\hat{v}} }} \newcommand{\twistleft}[2]{{ {}^{#1} #2 }} \newcommand{\twistright}[2]{{ #2 {}^{#1} }} \newcommand{\liesover}[1]{{ {}_{/ {#1}} }} \newcommand{\liesabove}[1]{{ {}_{/ {#1}} }} \newcommand{\slice}[1]{_{/ {#1}} } \newcommand{\coslice}[1]{_{{#1/}} } \newcommand{\quotright}[2]{ {}^{#1}\mkern-2mu/\mkern-2mu_{#2} } \newcommand{\quotleft}[2]{ {}_{#2}\mkern-.5mu\backslash\mkern-2mu^{#1} } \newcommand{\invert}[1]{{ \left[ { \scriptstyle \frac{1}{#1} } \right] }} \newcommand{\symb}[2]{{ \qty{ #1 \over #2 } }} \newcommand{\squares}[1]{{ {#1}_{\scriptscriptstyle \square} }} \newcommand{\shift}[2]{{ \Sigma^{\scriptstyle[#2]} #1 }} \newcommand\cartpower[1]{{ {}^{ \scriptscriptstyle\times^{#1} } }} \newcommand\disjointpower[1]{{ {}^{ \scriptscriptstyle\coprod^{#1} } }} \newcommand\sumpower[1]{{ {}^{ \scriptscriptstyle\oplus^{#1} } }} \newcommand\prodpower[1]{{ {}^{ \scriptscriptstyle\times^{#1} } }} \newcommand\tensorpower[2]{{ {}^{ \scriptstyle\otimes_{#1}^{#2} } }} \newcommand\tensorpowerk[1]{{ {}^{ \scriptscriptstyle\otimes_{k}^{#1} } }} \newcommand\derivedtensorpower[3]{{ {}^{ \scriptstyle {}_{#1} {\otimes_{#2}^{#3}} } }} \newcommand\smashpower[1]{{ {}^{ \scriptscriptstyle\smashprod^{#1} } }} \newcommand\wedgepower[1]{{ {}^{ \scriptscriptstyle\smashprod^{#1} } }} \newcommand\fiberpower[2]{{ {}^{ \scriptscriptstyle\fiberprod{#1}^{#2} } }} \newcommand\powers[1]{{ {}^{\cdot #1} }} \newcommand\skel[1]{{ {}^{ (#1) } }} \newcommand\transp[1]{{ \, {}^{t}{ \left( #1 \right) } }} \newcommand{\inner}[2]{{\left\langle {#1},~{#2} \right\rangle}} \newcommand{\inp}[2]{{\left\langle {#1},~{#2} \right\rangle}} \newcommand{\poisbrack}[2]{{\left\{ {#1},~{#2} \right\} }} \newcommand\tmf{ \mathrm{tmf} } \newcommand\taf{ \mathrm{taf} } \newcommand\TAF{ \mathrm{TAF} } \newcommand\TMF{ \mathrm{TMF} } \newcommand\String{ \mathrm{String} } \newcommand{\BO}[0]{{\B \Orth}} \newcommand{\EO}[0]{{\mathsf{E} \Orth}} \newcommand{\BSO}[0]{{\B\SO}} \newcommand{\ESO}[0]{{\mathsf{E}\SO}} \newcommand{\BG}[0]{{\B G}} \newcommand{\EG}[0]{{\mathsf{E} G}} \newcommand{\BP}[0]{{\operatorname{BP}}} \newcommand{\BU}[0]{\B{\operatorname{U}}} \newcommand{\MO}[0]{{\operatorname{MO}}} \newcommand{\MSO}[0]{{\operatorname{MSO}}} \newcommand{\MSpin}[0]{{\operatorname{MSpin}}} \newcommand{\MSp}[0]{{\operatorname{MSpin}}} \newcommand{\MString}[0]{{\operatorname{MString}}} \newcommand{\MStr}[0]{{\operatorname{MString}}} \newcommand{\MU}[0]{{\operatorname{MU}}} \newcommand{\KO}[0]{{\operatorname{KO}}} \newcommand{\KU}[0]{{\operatorname{KU}}} \newcommand{\smashprod}[0]{\wedge} \newcommand{\ku}[0]{{\operatorname{ku}}} \newcommand{\hofib}[0]{{\operatorname{hofib}}} \newcommand{\hocofib}[0]{{\operatorname{hocofib}}} \DeclareMathOperator{\Suspendpinf}{{\Sigma_+^\infty}} \newcommand{\Loop}[0]{{\Omega}} \newcommand{\Loopinf}[0]{{\Omega}^\infty} \newcommand{\Suspend}[0]{{\Sigma}} \newcommand*\dif{\mathop{}\!\operatorname{d}} \newcommand*{\horzbar}{\rule[.5ex]{2.5ex}{0.5pt}} \newcommand*{\vertbar}{\rule[-1ex]{0.5pt}{2.5ex}} \newcommand\Fix{ \mathrm{Fix} } \newcommand\CS{ \mathrm{CS} } \newcommand\FP{ \mathrm{FP} } \newcommand\places[1]{ \mathrm{Pl}\qty{#1} } \newcommand\Ell{ \mathrm{Ell} } \newcommand\homog{ { \mathrm{homog} } } \newcommand\Kahler[0]{\operatorname{Kähler}} \newcommand\Prinbun{\mathrm{Bun}^{\mathrm{prin}}} \newcommand\aug{\fboxsep=-\fboxrule\!\!\!\fbox{\strut}\!\!\!} \newcommand\compact[0]{\operatorname{cpt}} \newcommand\hyp[0]{{\operatorname{hyp}}} \newcommand\jan{\operatorname{Jan}} \newcommand\curl{\operatorname{curl}} \newcommand\kbar{ { \bar{k} } } \newcommand\ksep{ { k\sep } } \newcommand\mypound{\scalebox{0.8}{\raisebox{0.4ex}{\#}}} \newcommand\rref{\operatorname{RREF}} \newcommand\RREF{\operatorname{RREF}} \newcommand{\Tatesymbol}{\operatorname{TateSymb}} \newcommand\tilt[0]{ {}^{ \flat } } \newcommand\vecc[2]{\textcolor{#1}{\textbf{#2}}} \newcommand{\Af}[0]{{\mathbb{A}}} \newcommand{\Ag}[0]{{\mathcal{A}_g}} \newcommand{\Mg}[0]{{\mathcal{M}_g}} \newcommand{\Ahat}[0]{\hat{ \operatorname{A}}_g } \newcommand{\Ann}[0]{\operatorname{Ann}} \newcommand{\sinc}[0]{\operatorname{sinc}} \newcommand{\Banach}[0]{\mathcal{B}} \newcommand{\Arg}[0]{\operatorname{Arg}} \newcommand{\BB}[0]{{\mathbb{B}}} \newcommand{\Betti}[0]{{\operatorname{Betti}}} \newcommand{\CC}[0]{{\mathbb{C}}} \newcommand{\CF}[0]{\operatorname{CF}} \newcommand{\CH}[0]{{\operatorname{CH}}} \newcommand{\CP}[0]{{\mathbb{CP}}} \newcommand{\CY}{{ \text{CY} }} \newcommand{\Cl}[0]{{ \operatorname{Cl}} } \newcommand{\Crit}[0]{\operatorname{Crit}} \newcommand{\DD}[0]{{\mathbb{D}}} \newcommand{\DSt}[0]{{ \operatorname{DSt}}} \newcommand{\Def}{\operatorname{Def} } \newcommand{\Diffeo}[0]{{\operatorname{Diffeo}}} \newcommand{\Diff}[0]{\operatorname{Diff}} \newcommand{\Disjoint}[0]{\displaystyle\coprod} \newcommand{\resprod}[0]{\prod^{\res}} \newcommand{\restensor}[0]{\bigotimes^{\res}} \newcommand{\Disk}[0]{{\operatorname{Disk}}} \newcommand{\Dist}[0]{\operatorname{Dist}} \newcommand{\EE}[0]{{\mathbb{E}}} \newcommand{\EKL}[0]{{\mathrm{EKL}}} \newcommand{\QH}[0]{{\mathrm{QH}}} \newcommand{\AMGM}[0]{{\mathrm{AMGM}}} \newcommand{\resultant}[0]{{\mathrm{res}}} \newcommand{\tame}[0]{{\mathrm{tame}}} \newcommand{\primetop}[0]{{\scriptscriptstyle \mathrm{prime-to-}p}} \newcommand{\VHS}[0]{{\mathrm{VHS} }} \newcommand{\ZVHS}[0]{{ \ZZ\mathrm{VHS} }} \newcommand{\CR}[0]{{\mathrm{CR}}} \newcommand{\unram}[0]{{\scriptscriptstyle\mathrm{un}}} \newcommand{\Emb}[0]{{\operatorname{Emb}}} \newcommand{\minor}[0]{{\operatorname{minor}}} \newcommand{\Et}{\text{Ét}} \newcommand{\trace}{\operatorname{tr}} \newcommand{\Trace}{\operatorname{Trace}} \newcommand{\Kl}{\operatorname{Kl}} \newcommand{\Rel}{\operatorname{Rel}} \newcommand{\Norm}{\operatorname{Nm}} \newcommand{\Extpower}[0]{\bigwedge\nolimits} \newcommand{\Extalgebra}[0]{\bigwedge\nolimits} \newcommand{\Extalg}[0]{\Extalgebra} \newcommand{\Extcomplex}[0]{\cocomplex{ \Extalgebra} } \newcommand{\Extprod}[0]{\bigwedge\nolimits} \newcommand{\Ext}{\operatorname{Ext} } \newcommand{\FFbar}[0]{{ \bar{ \mathbb{F}} }} \newcommand{\FFpn}[0]{{\mathbb{F}_{p^n}}} \newcommand{\FFp}[0]{{\mathbb{F}_p}} \newcommand{\FF}[0]{{\mathbb{F}}} \newcommand{\FS}{{ \text{FS} }} \newcommand{\Fil}[0]{{\operatorname{Fil}}} \newcommand{\Flat}[0]{{\operatorname{Flat}}} \newcommand{\Fpbar}[0]{\bar{\mathbb{F}_p}} \newcommand{\Fpn}[0]{{\mathbb{F}_{p^n} }} \newcommand{\Fppf}[0]{\mathrm{\operatorname{Fppf}}} \newcommand{\Fp}[0]{{\mathbb{F}_p}} \newcommand{\Frac}[0]{\operatorname{Frac}} \newcommand{\GF}[0]{{\mathbb{GF}}} \newcommand{\GG}[0]{{\mathbb{G}}} \newcommand{\GL}[0]{\operatorname{GL}} \newcommand{\GW}[0]{{\operatorname{GW}}} \newcommand{\Gal}[0]{{ \mathsf{Gal}} } \newcommand{\bigo}[0]{{ \mathsf{O}} } \newcommand{\Gl}[0]{\operatorname{GL}} \newcommand{\Gr}[0]{{\operatorname{Gr}}} \newcommand{\HC}[0]{{\operatorname{HC}}} \newcommand{\HFK}[0]{\operatorname{HFK}} \newcommand{\HF}[0]{\operatorname{HF}} \newcommand{\HHom}{\mathscr{H}\kern-2pt\operatorname{om}} \newcommand{\HH}[0]{{\mathbb{H}}} \newcommand{\HP}[0]{{\operatorname{HP}}} \newcommand{\HT}[0]{{\operatorname{HT}}} \newcommand{\HZ}[0]{{H\mathbb{Z}}} \newcommand{\Hilb}[0]{\operatorname{Hilb}} \newcommand{\Homeo}[0]{{\operatorname{Homeo}}} \newcommand{\Honda}[0]{\mathrm{\operatorname{Honda}}} \newcommand{\Hsh}{{ \mathcal{H} }} \newcommand{\Id}[0]{\operatorname{Id}} \newcommand{\Intersect}[0]{\displaystyle\bigcap} \newcommand{\JCF}[0]{\operatorname{JCF}} \newcommand{\RCF}[0]{\operatorname{RCF}} \newcommand{\Jac}[0]{\operatorname{Jac}} \newcommand{\II}[0]{{\mathbb{I}}} \newcommand{\KK}[0]{{\mathbb{K}}} \newcommand{\KH}[0]{ \K^{\scriptscriptstyle \mathrm{H}} } \newcommand{\KMW}[0]{ \K^{\scriptscriptstyle \mathrm{MW}} } \newcommand{\KMimp}[0]{ \hat{\K}^{\scriptscriptstyle \mathrm{M}} } \newcommand{\KM}[0]{ \K^{\scriptstyle\mathrm{M}} } \newcommand{\Kah}[0]{{ \operatorname{Kähler} } } \newcommand{\LC}[0]{{\mathrm{LC}}} \newcommand{\LL}[0]{{\mathbb{L}}} \newcommand{\Log}[0]{\operatorname{Log}} \newcommand{\MCG}[0]{{\operatorname{MCG}}} \newcommand{\MM}[0]{{\mathcal{M}}} \newcommand{\mbar}[0]{\bar{\mathcal{M}}} \newcommand{\MW}[0]{\operatorname{MW}} \newcommand{\Mat}[0]{\operatorname{Mat}} \newcommand{\NN}[0]{{\mathbb{N}}} \newcommand{\NS}[0]{{\operatorname{NS}}} \newcommand{\OO}[0]{{\mathcal{O}}} \newcommand{\OP}[0]{{\mathbb{OP}}} \newcommand{\OX}[0]{{\mathcal{O}_X}} \newcommand{\Obs}{\operatorname{Obs} } \newcommand{\obs}{\operatorname{obs} } \newcommand{\Ob}[0]{{\operatorname{Ob}}} \newcommand{\Op}[0]{{\operatorname{Op}}} \newcommand{\Orb}[0]{{\mathrm{Orb}}} \newcommand{\Conj}[0]{{\mathrm{Conj}}} \newcommand{\Orth}[0]{{\operatorname{O}}} \newcommand{\PD}[0]{\mathrm{PD}} \newcommand{\PGL}[0]{\operatorname{PGL}} \newcommand{\GU}[0]{\operatorname{GU}} \newcommand{\PP}[0]{{\mathbb{P}}} \newcommand{\PSL}[0]{{\operatorname{PSL}}} \newcommand{\Pic}[0]{{\operatorname{Pic}}} \newcommand{\Pin}[0]{{\operatorname{Pin}}} \newcommand{\Places}[0]{{\operatorname{Places}}} \newcommand{\Presh}[0]{\presh} \newcommand{\QHB}[0]{\operatorname{QHB}} \newcommand{\PHS}[0]{\operatorname{PHS}} \newcommand{\QHS}[0]{\mathbb{Q}\kern-0.5pt\operatorname{HS}} \newcommand{\QQpadic}[0]{{ \QQ_p }} \newcommand{\ZZelladic}[0]{{ \ZZ_\ell }} \newcommand{\QQ}[0]{{\mathbb{Q}}} \newcommand{\QQbar}[0]{{ \bar{ \mathbb{Q} } }} \newcommand{\Quot}[0]{\operatorname{Quot}} \newcommand{\RP}[0]{{\mathbb{RP}}} \newcommand{\RR}[0]{{\mathbb{R}}} \newcommand{\Rat}[0]{\operatorname{Rat}} \newcommand{\Reg}[0]{\operatorname{Reg}} \newcommand{\Ric}[0]{\operatorname{Ric}} \newcommand{\SF}[0]{\operatorname{SF}} \newcommand{\SL}[0]{{\operatorname{SL}}} \newcommand{\SNF}[0]{\mathrm{SNF}} \newcommand{\SO}[0]{{\operatorname{SO}}} \newcommand{\SP}[0]{{\operatorname{SP}}} \newcommand{\SU}[0]{{\operatorname{SU}}} \newcommand{\F}[0]{{\operatorname{F}}} \newcommand{\Sgn}[0]{{ \Sigma_{g, n} }} \newcommand{\Sm}[0]{{\operatorname{Sm}}} \newcommand{\SpSp}[0]{{\mathbb{S}}} \newcommand{\Spec}[0]{\operatorname{Spec}} \newcommand{\Spf}[0]{\operatorname{Spf}} \newcommand{\Spc}[0]{\operatorname{Spc}} \newcommand{\spc}[0]{\operatorname{Spc}} \newcommand{\Spinc}[0]{\mathrm{Spin}^{{ \scriptscriptstyle \mathbb C} }} \newcommand{\Spin}[0]{{\operatorname{Spin}}} \newcommand{\Mp}[0]{{\operatorname{Mp}}} \newcommand{\Herm}[0]{{\mathsf{Herm}}} \newcommand{\coinv}[0]{{\operatorname{coinv}}} \newcommand{\Sq}[0]{\operatorname{Sq}} \newcommand{\Stab}[0]{{\operatorname{Stab}}} \newcommand{\Sum}[0]{ \displaystyle\sum } \newcommand{\Syl}[0]{{\operatorname{Syl}}} \newcommand{\Sym}[0]{\operatorname{Sym}} \newcommand{\Tor}[0]{\operatorname{Tor}} \newcommand{\Homcx}[0]{\operatorname{Hom}^{\bullet}} \newcommand{\Tr}[0]{\operatorname{Tr}} \newcommand{\Ug}[0]{{\mathcal{U}(\mathfrak{g}) }} \newcommand{\Uh}[0]{{\mathcal{U}(\mathfrak{h}) }} \newcommand{\Union}[0]{\displaystyle\bigcup} \newcommand{\U}[0]{{\operatorname{U}}} \newcommand{\Wedge}[0]{\bigwedge} \newcommand{\Wittvectors}[0]{{\mathbb{W}}} \newcommand{\ZHB}[0]{\operatorname{ZHB}} \newcommand{\ZHS}[0]{\mathbb{Z}\operatorname{HS}} \newcommand{\ZZG}[0]{{\mathbb{Z}G}} \newcommand{\ZZH}[0]{{\mathbb{Z}H}} \newcommand{\ZZlocal}[1]{{ \ZZ_{\hat{#1}} }} \newcommand{\plocal}[0]{{ \scriptsize {}_{ \localize{p} } }} \newcommand{\ZZpadic}[0]{{ \ZZ_{\hat p} }} \newcommand{\ZZpcomplete}[0]{{ \ZZpadic }} \newcommand{\ZZplocal}[0]{{ L_p \ZZ }} \newcommand{\ZZprof}[0]{{ \hat{\ZZ} }} \newcommand{\ZZladic}[0]{{ \ZZ_\ell }} \newcommand{\QQladic}[0]{{ \QQ_\ell }} \newcommand{\CCpadic}[0]{{ \CC_p }} \newcommand{\ZZ}[0]{{\mathbb{Z}}} \newcommand{\ZZbar}[0]{{ \bar{ \mathbb{Z} } }} \newcommand{\ZZhat}[0]{{ \widehat{ \mathbb{Z} } }} \newcommand{\Zar}[0]{{\mathrm{Zar}}} \newcommand{\ZpZ}[0]{\mathbb{Z}/p} \newcommand{\abuts}[0]{\Rightarrow} \newcommand{\ab}[0]{{\operatorname{ab}}} \newcommand{\Rees}[0]{{\operatorname{Rees}}} \newcommand{\actsonl}[0]{\curvearrowleft} \newcommand{\actson}[0]{\curvearrowright} \newcommand{\adjoint}[0]{\dagger} \newcommand{\adj}[0]{\operatorname{adj}} \newcommand{\ad}[0]{{ \operatorname{ad}}} \newcommand{\Ad}[0]{{ \operatorname{Ad} }} \newcommand{\afp}[0]{A_{/\FF_p}} \newcommand{\annd}[0]{{\operatorname{ and }}} \newcommand{\ann}[0]{\operatorname{Ann}} %\newcommand{\sech}[0]{\operatorname{sech}} \newcommand{\csch}[0]{\operatorname{csch}} \newcommand{\arccot}[0]{\operatorname{arccot}} \newcommand{\arccsc}[0]{\operatorname{arccsc}} \newcommand{\arcsec}[0]{\operatorname{arcsec}} \newcommand{\bP}[0]{\operatorname{bP}} \newcommand{\barz}{\bar{z} } \newcommand{\bbm}[0]{{\mathbb{M}}} \newcommand{\bd}[0]{{\del}} \newcommand{\bigast}[0]{{\mathop{\text{\Large $\ast$}}}} \newcommand{\bmgn}[0]{{ \bar{\mathcal{M}}_{g, n} }} \newcommand{\bundle}[1]{\mathcal{#1}} \newcommand{\by}[0]{\times} \newcommand{\candim}[0]{\operatorname{candim}} \newcommand{\chp}[0]{\operatorname{ch. p}} \newcommand{\ch}[0]{\operatorname{ch}} \newcommand{\AJ}[0]{\operatorname{AJ}} \newcommand{\chr}[0]{\operatorname{ch}} \newcommand{\characteristic}[0]{\operatorname{ch}} \newcommand{\character}[0]{\operatorname{ch}} \newcommand{\cl}[0]{{ \operatorname{cl}} } \newcommand{\codim}[0]{\operatorname{codim}} \newcommand{\cohdim}[0]{\operatorname{cohdim}} \newcommand{\coim}[0]{\operatorname{coim}} \newcommand{\coker}[0]{\operatorname{coker}} \newcommand{\cok}[0]{\operatorname{coker}} \newcommand{\cone}[0]{\operatorname{cone}} \newcommand{\conjugate}[1]{{\overline{{#1}}}} \newcommand{\connectsum}[0]{\mathop{ \Large\mypound }} \newcommand{\const}[0]{{\operatorname{const.}}} \newcommand{\converges}[1]{\overset{#1}} \newcommand{\convergesto}[1]{\overset{#1}\too} \newcommand{\convolve}[0]{\ast} \newcommand{\correspond}[1]{\theset{\substack{#1}}} \newcommand{\covers}[0]{\rightrightarrows} \newcommand{\cocovers}[0]{\leftleftarrows} \newcommand{\coveredby}[0]{\leftleftarrows} \newcommand{\projresolve}[0]{\rightrightarrows} \newcommand{\injresolve}[0]{\leftleftarrows} \newcommand{\covol}[0]{\operatorname{covol}} \newcommand{\cpt}[0]{{ \operatorname{compact} } } \newcommand{\crit}[0]{\operatorname{crit}} \newcommand{\cross}[0]{\times} \newcommand{\dR}[0]{\mathrm{dR}} \newcommand{\dV}{\,dV} \newcommand{\dash}[0]{{\hbox{-}}} \newcommand{\da}[0]{\coloneqq} \newcommand{\ddd}[2]{{\frac{d #1}{d #2}\,}} \newcommand{\ddim}[0]{\operatorname{ddim}} \newcommand{\ddt}{\tfrac{\dif}{\dif t}} \newcommand{\ddx}{\tfrac{\dif}{\dif x}} \newcommand{\dd}[2]{{\frac{\partial #1}{\partial #2}\,}} \newcommand{\definedas}[0]{\coloneqq} \newcommand{\del}[0]{{\partial}} \newcommand{\diagonal}[1]{\Delta} \newcommand{\Diagonal}[1]{\Delta} \newcommand{\diag}[0]{\operatorname{diag}} \newcommand{\diam}[0]{{\operatorname{diam}}} \newcommand{\diff}[0]{\operatorname{Diff}} \newcommand{\discriminant}[0]{{\Delta}} \newcommand{\disc}[0]{{\operatorname{disc}}} \newcommand{\disjoint}[0]{{\textstyle\coprod}} \newcommand{\dist}[0]{\operatorname{dist}} \newcommand{\dlog}[0]{\operatorname{dLog}} \newcommand{\logd}[0]{{ \del^{\scriptsize \log} }} \newcommand{\dom}[0]{\operatorname{dom}} \newcommand{\BM}[0]{{\operatorname{BM}}} \newcommand{\dual}[0]{ {}^{ \vee }} \newcommand{\shriek}[0]{ { ! }} \newcommand{\dmu}{\,d\mu} \newcommand{\dr}{\,dr} \newcommand{\dtau}{\,d\tau} \newcommand{\ds}{\,ds} \newcommand{\dtheta}{\,d\theta} \newcommand{\dt}{\,dt} \newcommand{\du}{\,du} \newcommand{\dw}{\,dw} \newcommand{\dxi}{\,d\xi} \newcommand{\dx}{\,dx} \newcommand{\dm}{\,dm} \newcommand{\dA}{\,dA} \newcommand{\dy}{\,dy} \newcommand{\dn}{\,dn} \newcommand{\dalpha}{\,d\alpha} \newcommand{\dzbar}{\,d\bar{z} } \newcommand{\dzeta}{\,d\zeta} \newcommand{\dz}{\,dz} \newcommand{\drho}{\,d\rho} \newcommand{\embeds}[0]{\hookrightarrow} \newcommand{\eo}[0]{{\operatorname{eo}}} \newcommand{\eps}[0]{{\varepsilon}} \newcommand{\essdim}[0]{\operatorname{essdim}} \newcommand{\et}{\text{ét}} \newcommand{\eul}[0]{{\operatorname{eul}}} \newcommand{\evalfrom}[0]{\Big|} \newcommand{\ext}{\operatorname{Ext} } \newcommand{\ff}[0]{\operatorname{ff}} \newcommand{\fppf}[0]{{\operatorname{fppf}}} \newcommand{\fpqc}[0]{{\operatorname{fpqc}}} \newcommand{\fp}[0]{{ \operatorname{fp} }} \newcommand{\fqr}[0]{{\mathbb{F}_{q^r}}} \newcommand{\fq}[0]{{\mathbb{F}_{q}}} \newcommand{\fqbar}[0]{\bar{\mathbb{F}_{q}}} \newcommand{\freeprod}[0]{\ast} \newcommand{\from}[0]{\leftarrow} \newcommand{\gal}[0]{{ \operatorname{Gal}} } \newcommand{\gl}[0]{{\mathfrak{gl}}} \newcommand{\gp}[0]{ {\operatorname{gp} } } \newcommand{\grad}[0]{\operatorname{grad}} \newcommand{\grdim}[0]{{\operatorname{gr\,dim}}} \newcommand{\height}[0]{\operatorname{ht}} \newcommand{\homotopic}[0]{\simeq} \newcommand{\id}[0]{\operatorname{id}} \newcommand{\im}[0]{\operatorname{im}} \newcommand{\decreasesto}[0]{\searrow} \newcommand{\increasesto}[0]{\nearrow} \newcommand{\injectivelim}[0]{\varinjlim} \newcommand{\injects}[0]{\hookrightarrow} \newcommand{\interior}[0]{^\circ} \newcommand{\intersect}[0]{\cap} \newcommand{\Todd}[0]{\operatorname{Td} } \newcommand{\into}[0]{\to} \newcommand{\inverselim}[0]{\varprojlim} \newcommand{\inv}[0]{^{-1}} \newcommand{\ip}[2]{{\left\langle {#1},~{#2} \right\rangle}} \newcommand{\kG}[0]{{kG}} \newcommand{\kfq}[0]{K_{/\mathbb{F}_q}} \newcommand{\kk}[0]{{\mathbb{k}}} \newcommand{\ko}[0]{{\operatorname{ko}}} \newcommand{\krulldim}[0]{\operatorname{krulldim}} \newcommand{\ks}[0]{\operatorname{ks}} \newcommand{\kxn}[0]{k[x_1, \cdots, x_{n}]} \newcommand{\kx}[1]{k[x_1, \cdots, x_{#1}]} \newcommand{\lci}[0]{\mathrm{lci}} \newcommand{\tb}[0]{\mathrm{tb}} \newcommand{\lcm}[0]{\operatorname{lcm}} \newcommand{\liealgk}[0]{{ \liealg_{/k} }} \newcommand{\liea}[0]{{\mathfrak{a}}} \newcommand{\lieb}[0]{{\mathfrak{b}}} \newcommand{\lied}[0]{{\mathfrak{d}}} \newcommand{\lief}[0]{{\mathfrak{f}}} \newcommand{\liegl}[0]{{\mathfrak{gl}}} \newcommand{\liep}[0]{{\mathfrak{p}}} \newcommand{\liesu}[0]{{\mathfrak{su}}} \newcommand{\lieg}[0]{{\mathfrak{g}}} \newcommand{\lieh}[0]{{\mathfrak{h}}} \newcommand{\liel}[0]{{\mathfrak{l}}} \newcommand{\lien}[0]{{\mathfrak{n}}} \newcommand{\lieo}[0]{{\mathfrak{o}}} \newcommand{\lier}[0]{{\mathfrak{r}}} \newcommand{\liesl}[0]{{\mathfrak{sl}}} \newcommand{\lieso}[0]{{\mathfrak{so}}} \newcommand{\liesp}[0]{{\mathfrak{sp}}} \newcommand{\liet}[0]{{\mathfrak{t}}} \newcommand{\lieu}[0]{{\mathfrak{u}}} \newcommand{\lieW}[0]{{\mathfrak{W}}} \newcommand{\liey}[0]{{\mathfrak{y}}} \newcommand{\mfX}[0]{{\mathfrak{X}}} \newcommand{\mfS}[0]{{\mathfrak{S}}} \newcommand{\gitquot}{{ \mathbin{/\mkern-6mu/}}} \newcommand{\htyquot}{\gitquot} \newcommand{\lk}[0]{\operatorname{lk}} \newcommand{\rot}[0]{\operatorname{rot}} \newcommand{\mTHH}[0]{{\operatorname{THH}}} \newcommand{\mHH}[0]{{\operatorname{HH}}} \newcommand{\TCH}[0]{{\operatorname{TCH}}} \newcommand{\TC}[0]{{\operatorname{TC}}} \newcommand{\THC}[0]{{\operatorname{THC}}} \newcommand{\THoH}[0]{{\operatorname{THH}}} \newcommand{\HoH}[0]{{\operatorname{HH}}} \newcommand{\TP}[0]{{\operatorname{TP}}} \newcommand{\TT}[0]{{\mathbb{T}}} \newcommand{\mapscorrespond}[2]{\mathrel{\operatorname*{\rightleftharpoons}_{#2}^{#1}}} \newcommand{\mapstofrom}[0]{\rightleftharpoons} \newcommand{\mapstovia}[1]{\xmapsto{#1}} \newcommand{\mapsvia}[1]{\xrightarrow{#1}} \newcommand{\torational}[0]{\dashrightarrow} \newcommand{\birational}[0]{\underset{\sim}{\torational}} \newcommand{\isomorphic}{{ \, \mapsvia{\sim}\, }} \newcommand{\iso}{ \isomorphic } \newcommand{\qiso}{ \homotopic } \newcommand{\isovia}[1]{\underset{#1}{\iso}} \newcommand{\isoin}[1]{\overset{#1}{\iso}} \newcommand{\injectsvia}[1]{\xhookrightarrow{#1}} \newcommand{\embedsdense}[0]{{ \underset{ {\scriptscriptstyle\mathrm{dense}} }{\hookrightarrow} }} \newcommand{\injectsfromvia}[1]{\xhookleftarrow{#1}} \newcommand{\maps}[0]{\operatorname{Maps}} \newcommand{\mat}[0]{\operatorname{Mat}} \newcommand{\maxspec}[0]{{\operatorname{maxSpec}}} \newcommand{\mcTop}[0]{\mathcal{T}\mathsf{op}} \newcommand{\mca}[0]{{\mathcal{A}}} \newcommand{\mcb}[0]{{\mathcal{B}}} \newcommand{\mcc}[0]{{\mathcal{C}}} \newcommand{\mcd}[0]{{\mathcal{D}}} \newcommand{\mce}[0]{{\mathcal{E}}} \newcommand{\mcf}[0]{{\mathcal{F}}} \newcommand{\mcg}[0]{{\mathcal{G}}} \newcommand{\mch}[0]{{\mathcal{H}}} \newcommand{\mci}[0]{{\mathcal{I}}} \newcommand{\mcj}[0]{{\mathcal{J}}} \newcommand{\mck}[0]{{\mathcal{K}}} \newcommand{\mcl}[0]{{\mathcal{L}}} \newcommand{\mcm}[0]{{\mathcal{M}}} \newcommand{\mcn}[0]{{\mathcal{N}}} \newcommand{\mco}[0]{{\mathcal{O}}} \newcommand{\mcp}[0]{{\mathcal{P}}} \newcommand{\mcr}[0]{{\mathcal{R}}} \newcommand{\mcs}[0]{{\mathcal{S}}} \newcommand{\mct}[0]{{\mathcal{T}}} \newcommand{\mcu}[0]{{\mathcal{U}}} \newcommand{\mcv}[0]{{\mathcal{V}}} \newcommand{\mcw}[0]{{\mathcal{W}}} \newcommand{\mcx}[0]{{\mathcal{X}}} \newcommand{\mcX}[0]{{\mathcal{X}}} \newcommand{\mcy}[0]{{\mathcal{Y}}} \newcommand{\mcz}[0]{{\mathcal{Z}}} \newcommand{\mfa}[0]{{\mathfrak{a}}} \newcommand{\mfb}[0]{{\mathfrak{b}}} \newcommand{\mfc}[0]{{\mathfrak{c}}} \newcommand{\mff}[0]{{\mathfrak{f}}} \newcommand{\mfi}[0]{{\mathfrak{I}}} \newcommand{\mfh}[0]{{\mathfrak{h}}} \newcommand{\mfm}[0]{{\mathfrak{m}}} \newcommand{\mfn}[0]{{\mathfrak{n}}} \newcommand{\mfp}[0]{{\mathfrak{p}}} \newcommand{\mfo}[0]{{\mathfrak{o}}} \newcommand{\mfq}[0]{{\mathfrak{q}}} \newcommand{\mfr}[0]{{\mathfrak{r}}} \newcommand{\mfs}[0]{{\mathfrak{s}}} \newcommand{\mfy}[0]{{\mathfrak{Y}}} \newcommand{\mfx}[0]{{\mathfrak{X}}} \newcommand{\mg}[0]{{ \mathcal{M}_{g} }} \newcommand{\mgn}[0]{{ \mathcal{M}_{g, n} }} \newcommand{\Mgn}[0]{{ \mathcal{M}_{g, n} }} \newcommand{\Mell}[0]{{ \mathcal{M}_{\mathrm{ell}} }} \newcommand{\cusp}[0]{{ \mathrm{cusp} }} \newcommand{\Noeth}[0]{{ \mathrm{Noeth} }} \newcommand{\minpoly}[0]{{\operatorname{minpoly}}} \newcommand{\mltext}[1]{\left\{\begin{array}{c}#1\end{array}\right\}} \newcommand{\mm}[0]{{\mathfrak{m}}} \newcommand{\mot}[0]{{ \mathrm{mot}} } \newcommand{\cell}[0]{{ \mathrm{cell}} } \newcommand{\mspec}[0]{\operatorname{mSpec}} \newcommand{\ms}[0]{\xrightarrow{\sim}} \newcommand{\multinomial}[1]{\left(\!\!{#1}\!\!\right)} \newcommand{\mult}[0]{{\operatorname{mult}}} \newcommand{\mveq}[0]{{\mapsvia{\sim}}} \newcommand{\mviso}[0]{{\mapsvia{\sim}}} \newcommand{\nd}[0]{\operatorname{nd}} \newcommand{\nil}[0]{{\operatorname{nil}}} \newcommand{\nonzero}[0]{^{\bullet}} \newcommand{\normalneq}{\mathrel{\reflectbox{$\trianglerightneq$}}} \newcommand{\normal}[0]{{~\trianglelefteq~}} \newcommand{\norm}[1]{{\left\lVert {#1} \right\rVert}} \newcommand{\normm}[1]{{\left\lVert \left\lVert {#1} \right\rVert\right\rVert}} \newcommand{\notimplies}[0]{\centernot\implies} \newcommand{\onto}[0]{\twoheadhthtarrow} \newcommand{\open}[1]{\overset{\circ}{#1}} \newcommand{\op}[0]{^{\operatorname{op}}} \newcommand{\ord}[0]{{\operatorname{Ord}}} \newcommand{\order}[0]{{\operatorname{Ord}}} \newcommand{\oriented}[0]{{ \operatorname{oriented} } } \newcommand{\orr}[0]{{\operatorname{ or }}} \newcommand{\padic}[0]{p\dash\text{adic}} \newcommand{\pic}[0]{{\operatorname{Pic}}} \newcommand{\pnorm}[2]{{\left\lVert {#1} \right\rVert}_{#2}} \newcommand{\poly}[0]{\mathrm{poly}} \newcommand{\prim}[0]{{\operatorname{prim}}} \newcommand{\projectivelim}[0]{\varprojlim} \newcommand{\pr}[0]{{\operatorname{pr}}} \newcommand{\pt}[0]{{\operatorname{pt}}} \newcommand{\qc}[0]{{\operatorname{qc}}} \newcommand{\qst}[0]{{\quad \operatorname{such that} \quad}} \newcommand{\rank}[0]{\operatorname{rank}} \newcommand{\realpart}[1]{{\mathcal{Re}({#1})}} \newcommand{\red}[0]{{ \text{red} }} \newcommand{\reg}[0]{\mathrm{reg}} \newcommand{\reldim}[0]{\operatorname{reldim}} \newcommand{\hilbdim}[0]{\operatorname{hilbdim}} \newcommand{\gendim}[0]{\operatorname{gendim}} \newcommand{\restrictionof}[2]{ {\left.{{#1}} \right|_{{#2}} } } \newcommand{\rk}[0]{{\operatorname{rank}}} \newcommand{\rotate}[2]{{\style{display: inline-block; transform: rotate(#1deg)}{#2}}} \newcommand{\ro}[2]{{ \left.{{#1}} \right|_{{#2}} }} \newcommand{\selfmap}[0]{{\circlearrowleft}} \newcommand{\semidirect}[0]{\rtimes} \newcommand{\wreath}[0]{\wr} \newcommand{\size}[0]{{\sharp}} \newcommand{\sep}[0]{{ {}^{ \operatorname{sep} } }} \newcommand{\sgn}[0]{\operatorname{sgn}} \newcommand{\shom}{ {\mathcal{H}}\kern-0.5pt{\operatorname{om}}} \newcommand{\signature}[0]{\operatorname{sig}} \newcommand{\sign}[0]{\operatorname{sign}} \newcommand{\Sing}[0]{{\operatorname{Sing}}} \newcommand{\sing}[0]{{\mathrm{sing}}} \newcommand{\Pet}[0]{{\mathrm{Pet}}} \newcommand{\CM}[0]{{\mathrm{CM}}} \newcommand{\slope}[0]{{\mathrm{slope}}} \newcommand{\smpt}[1]{\setminus\theset{#1}} \newcommand{\smts}[1]{\setminus\theset{ #1 }} \newcommand{\smz}[0]{\setminus\theset{0}} \newcommand{\sm}[0]{\setminus} \newcommand{\spec}[0]{\operatorname{Spec}} \newcommand{\stab}[0]{{\operatorname{Stab}}} \newcommand{\stirlingfirst}[2]{\genfrac{[}{]}{0pt}{}{#1}{#2}} \newcommand{\stirling}[2]{\genfrac\{\}{0pt}{}{#1}{#2}} \newcommand{\surjectsvia}[2][]{ \xrightarrow[#1]{#2} { \mathrel{\mkern-16mu}\rightarrow }\, } \newcommand{\surjects}[0]{\twoheadrightarrow} \newcommand{\syl}[0]{{\operatorname{Syl}}} \newcommand{\sym}[0]{\operatorname{Sym}} \newcommand{\Symalg}[0]{\sym} \newcommand{\td}[0]{\mathrm{td}} \newcommand{\Tensor}[0]{\bigotimes} \newcommand{\tensor}[0]{\otimes} \newcommand{\boxtensor}[0]{\boxtimes} \newcommand{\Ltensor}[0]{ \overset{\mathbb{L}}{ \otimes} } \newcommand{\dtensor}[0]{ \overset{\mathbb{L}}{ \otimes} } \newcommand{\tgn}[0]{{ \mathcal{T}_{g, n} }} \newcommand{\theset}[1]{\left\{{#1}\right\}} \newcommand{\thetaref}[0]{{ \theta_{\mathrm{Ref} } }} \newcommand{\thevector}[1]{{\left[ {#1} \right]}} \newcommand{\thinrank}[0]{T_n\dash\operatorname{rank}} \newcommand{\too}[1]{{\xrightarrow{#1}}} \newcommand{\tors}[0]{{\operatorname{tors}}} \newcommand{\tor}[0]{\operatorname{Tor}} \newcommand{\transverse}[0]{\pitchfork} \newcommand{\trdeg}[0]{\operatorname{trdeg}} \newcommand{\trianglerightneq}{\mathrel{\ooalign{\raisebox{-0.5ex}{\reflectbox{\rotatebox{90}{$\nshortmid$}}}\cr$\triangleright$\cr}\mkern-3mu}} \newcommand{\tr}[0]{{\mathrm{tr}}} \newcommand{\tspt}[0]{{\{\operatorname{pt}\}}} \newcommand{\ts}[1]{\left\{{#1}\right\}} \newcommand{\tv}[1]{{\left[ {#1} \right]}} \newcommand{\txand}[0]{{\operatorname{ and }}} \newcommand{\txor}[0]{{\operatorname{ or }}} \newcommand{\type}[0]{{\operatorname{type}}} \newcommand{\uniformlyconverges}[0]{\rightrightarrows} \newcommand{\union}[0]{\cup} \newcommand{\unital}[0]{{\operatorname{unital}}} \newcommand{\units}[0]{^{\times}} \newcommand{\up}[0]{\uparrow} \newcommand{\vhat}[1]{\widehat{ \vector{#1} }} \newcommand{\vol}[0]{\operatorname{vol}} \newcommand{\wait}[0]{{-}} \newcommand{\wt}[0]{{\operatorname{wt}}} \newcommand{\zar}[0]{{\mathrm{zar}}} \newcommand{\zbar}{\bar{z} } \newcommand{\zlnz}[0]{\mathbb{Z}/\ell^n\mathbb{Z}} \newcommand{\zlz}[0]{\mathbb{Z}/\ell\mathbb{Z}} \newcommand{\znz}[0]{\mathbb{Z}/n\mathbb{Z}} \newcommand{\zpz}[0]{\mathbb{Z}/p\mathbb{Z}} \newcommand{\divergence}[0]{{ \nabla\cdot }} \newcommand{\normalizer}[0]{{ N }} \newcommand{\fracId}[0]{{ \ddot{\Id} }} \newcommand{\Ord}[0]{{ \mathrm{Ord} }} \renewcommand{\AA}[0]{{\mathbb{A}}} \renewcommand{\SS}[0]{{\mathbb{S}}} \renewcommand{\bar}[1]{\mkern 1.5mu\overline{\mkern-1.5mu#1\mkern-1.5mu}\mkern 1.5mu} \renewcommand{\det}{\operatorname{det}} \renewcommand{\div}[0]{\operatorname{Div}} \newcommand{\Div}[0]{\operatorname{Div}} \renewcommand{\hat}[1]{\widehat{#1}} \renewcommand{\labelitemiii}{$\diamondsuit$} \renewcommand{\labelitemiv}{$\diamondsuit$} \renewcommand{\mid}[0]{\mathrel{\Big|}} \renewcommand{\mod}{\operatorname{mod}} \renewcommand{\qed}[0]{\hfill\blacksquare} \renewcommand{\too}[0]{\longrightarrow} \renewcommand{\vector}[1]{\mathbf{#1}} \DeclareMathOperator*{\spanof}{span} \DeclareMathOperator*{\Mor}{Mor} \DeclareMathOperator*{\Hom}{Hom} \DeclareMathOperator*{\Sec}{Sec} \DeclareMathOperator*{\supp}{supp} \DeclareMathOperator*{\eq}{=} \DeclareMathOperator*{\hocolim}{hocolim} \DeclareMathOperator{\Index}{Index} \DeclareMathOperator{\aut}{Aut} \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\Inn}{Inn} \DeclareMathOperator{\Out}{Out} \DeclareMathOperator{\BiHol}{BiHol} \DeclareMathOperator{\Br}{Br} \DeclareMathOperator{\Curv}{Curv} \DeclareMathOperator{\Deck}{Deck} \DeclareMathOperator{\Der}{Der} \DeclareMathOperator{\Endo}{End} \DeclareMathOperator{\Exists}{\exists} \DeclareMathOperator{\Forall}{\forall} \DeclareMathOperator{\Forget}{Forget} \DeclareMathOperator{\Frame}{Frame} \DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\Griff}{Griff} \DeclareMathOperator{\Hol}{Hol} \DeclareMathOperator{\Ld}{{\mathbb{L} }} \DeclareMathOperator{\Maps}{Maps} \DeclareMathOperator{\Map}{Maps} \DeclareMathOperator{\OFrame}{OFrame} \DeclareMathOperator{\Prin}{Prin} \DeclareMathOperator{\Cart}{Cart} \DeclareMathOperator{\Proj}{Proj} \DeclareMathOperator{\RHom}{\mathbb{R}Hom} \DeclareMathOperator{\Rad}{Rad} \DeclareMathOperator{\Rd}{{\mathbb{R} }} \DeclareMathOperator{\Res}{Res} \DeclareMathOperator{\Symb}{Symb} \DeclareMathOperator{\Taut}{Taut} \DeclareMathOperator{\Th}{Th} \DeclareMathOperator{\Triv}{Triv} \DeclareMathOperator{\UFrame}{UFrame} \DeclareMathOperator{\Isom}{Isom} \DeclareMathOperator{\codom}{codom} \DeclareMathOperator{\coh}{coh} \DeclareMathOperator{\coinfl}{coinf} \DeclareMathOperator{\colspace}{colspace} \DeclareMathOperator{\cores}{coRes} \DeclareMathOperator{\hd}{Head} \DeclareMathOperator{\hilb}{Hilb} \DeclareMathOperator{\infl}{inf} \DeclareMathOperator{\len}{len} \DeclareMathOperator{\length}{length} \DeclareMathOperator{\nullity}{nullspace} \DeclareMathOperator{\nullspace}{nullspace} \DeclareMathOperator{\per}{per} \DeclareMathOperator{\prin}{prin} \DeclareMathOperator{\projection}{Proj} \DeclareMathOperator{\proj}{proj} \DeclareMathOperator{\range}{range} \DeclareMathOperator{\rowspace}{rowspace} \DeclareMathOperator{\soc}{Soc} \DeclareMathOperator{\submfds}{SubMfds} \newcommand{\st}[0]{{~\mathrel{\Big\vert}~}} \newcommand{\suchthat}[0]{\st} \newcommand{\Suchthat}[0]{\middle\vert} \newcommand{\delbar}[0]{{ \bar{\del}}} \newcommand{\containedin}[0]{\subseteq} \newcommand{\contains}[0]{\supseteq} \newcommand{\containing}[0]{\supseteq} \newcommand{\iscontainedin}[0]{\supseteq} \newcommand{\rad}[1]{\sqrt{#1}} \newcommand{\thecat}[1]{\mathbf{#1}} \newcommand{\sheaf}[1]{\operatorname{\mathcal{#1}}} \newcommand{\IC}[0]{\sheaf{IC}} \newcommand{\rightderive}[0]{{\mathbf{R}}} \newcommand\rrarrows{\rightrightarrows} \newcommand\rrrarrows{ \mathrel{\substack{\textstyle\rightarrow\\[-0.6ex] \textstyle\rightarrow \\[-0.6ex] \textstyle\rightarrow}} } \newcommand\ul[1]{\underline{#1}} \newcommand\constantsheaf[1]{\underline{#1}} \newcommand\holomorphic[0]{\text{holo}} \newcommand\hol[0]{\text{hol}} \newcommand\cts[0]{\text{cts}} \newcommand\std[0]{\text{std}} \newcommand\Mero[0]{\operatorname{Mero}} \newcommand\Bl[0]{\operatorname{Bl}} \newcommand\res[0]{\operatorname{res}} \newcommand\coind[0]{\operatorname{coInd}} \newcommand\ind[0]{\operatorname{Ind}} \newcommand\Sel[0]{\operatorname{Sel}} \newcommand\Frob[0]{\operatorname{Frob}} \newcommand\transfer[0]{\operatorname{transfer}} \newcommand\modiso[0]{{_{\scriptstyle / \sim} }} \newcommand\even[0]{\text{even}} \newcommand\odd[0]{\text{odd}} \newcommand\hodgestar[0]{\star} \newcommand\dirac[0]{\mkern-3mu \not{ \partial} } \newcommand\laplacian[0]{\Delta} \newcommand\Laplacian[0]{\Delta} \newcommand\stardstar[0]{\hodgestar \mathrm{d} \mkern-1mu \hodgestar} \newcommand\covariant[0]{\nabla} \newcommand\ol[1]{\overline{#1}} \newcommand\univcover[1]{\overline{#1}} \newcommand\closure[1]{\overline{#1}} \newcommand\laurent[1]{{\left(\left( #1 \right)\right) }} \newcommand\laurentseries[1]{{\left(\left( #1 \right)\right) }} \newcommand\capprod{\frown} \newcommand\cupprod{\smile} \newcommand\Path{\mathcal{P}} \newcommand\gradient{\nabla} \newcommand\cechH[0]{{\check{H}}} \newcommand\Hc[0]{{\check{H}}} \newcommand\Cc[0]{{\check{C}}} \newcommand\cupp[0]{\smile} \newcommand\capp[0]{\frown} \newcommand\sig[0]{\operatorname{sig}} \newcommand\ev[0]{\operatorname{ev}} \newcommand\coev[0]{\operatorname{coev}} \newcommand\period[0]{\operatorname{period}} \newcommand{\fractional}[1]{\theset{#1}} \newcommand{\fractionalpart}[1]{\theset{#1}} \newcommand{\integerpart}[1]{\left[ {#1}\right] } \newcommand{\zadjoin}[1]{\mathbb{Z}\left[ {#1} \right]} \newcommand{\wedgeprod}[0]{\vee} \newcommand{\Wedgepower}[0]{\bigwedge\nolimits} \def\multichoose#1#2{{\left(\kern-.3em\left(\genfrac{}{}{0pt}{}{#1}{#2}\right)\kern-.3em\right)}} \def\rising#1#2{ \qty{#1}^{ (#2) } } \def\falling#1#2{ \qty{#1}_{ (#2) } } \newcommand\elts[2]{{ {#1}_1, {#1}_2, \cdots, {#1}_{#2}}} \newcommand\tselts[2]{{ \theset{ {#1}_1, {#1}_2, \cdots, {#1}_{#2} } }} \newcommand\mix[1]{\overset{\scriptscriptstyle {#1} }{\times}} \newcommand\fiberproduct[1]{\underset{\scriptscriptstyle {#1} }{\times}} \newcommand\fiberprod[1]{{ \fiberproduct{#1} }} \newcommand\basechange[1]{{ \fiberproduct{k} {#1} }} \newcommand\fprod[1]{{ \fiberproduct{#1} }} \newcommand\smallprod[0]{{ \scriptscriptstyle\prod }} \newcommand\eqLH[0]{{ \equalsbecause{\scriptscriptstyle\text{LH}} }} \newcommand\drcomplex[0]{{\cocomplex{\Omega}}} \newcommand{\cxH}[0]{{\complex{H}}} \newcommand{\ccxH}[0]{{\cocomplex{H}}} \newcommand{\chern}[0]{{\mathrm{ch}}} \newcommand{\qsymb}[2]{{ \left( {#1} \over {#2} \right) }} \newcommand{\spinornorm}[0]{{\mathrm{spinornorm}}} \newcommand{\RT}[0]{{\mathrm{RT}}} \newcommand{\Tot}[0]{{ \operatorname{Tot} }} \newcommand{\PV}[0]{{ \operatorname{PV} }} \newcommand{\Totsum}[0]{\Tot^{\oplus}} \newcommand{\Totprod}[0]{\Tot^{\Pi}} \newcommand{\xpn}[0]{ { x^{p^n} } } \newcommand{\Qbar}[0]{{ \bar{ \mathbb{Q} } }} \newcommand{\ptd}{{\scriptstyle { * } }} \newcommand{\charpoly}[0]{{\mathrm{charpoly}}} \newcommand{\Sw}[0]{{\mathrm{Sw}}} \newcommand{\Sieg}[0]{{\mathrm{Sieg}}} \newcommand{\Inertia}[0]{{\mathrm{In}}} \newcommand{\generic}[0]{{\mathrm{gen}}} \newcommand{\Conf}[0]{{\mathrm{Conf}}} \newcommand{\Sub}[0]{{\mathrm{Sub}}} \newcommand{\fin}[0]{{\mathrm{fin}}} \newcommand{\can}[0]{{\mathrm{can}}} \newcommand{\ess}[0]{{\mathrm{ess}}} \newcommand{\fd}[0]{{\mathrm{fd}}} \newcommand{\fg}[0]{{\mathrm{fg}}} \newcommand{\free}[0]{{\mathrm{free}}} \newcommand{\lf}[0]{{\mathrm{lf}}} \newcommand{\holonomy}[0]{{\mathrm{holon}}} \newcommand{\qproj}[0]{{\mathrm{qproj}}} \newcommand{\irr}[0]{{\mathrm{irr}}} \newcommand{\ft}[0]{{\mathrm{ft}}} \newcommand{\smol}[0]{{\mathrm{small}}} \newcommand{\alev}[0]{{\,\mathrm{a.e.}}} \newcommand{\semisimple}[0]{{\mathrm{ss}}} \newcommand{\semisimplification}[0]{{\mathrm{ss}}} \newcommand{\val}[0]{{\operatorname{val}}} \newcommand{\gon}[0]{{\dash\mathrm{gon}}} \newcommand{\semi}[0]{{\mathrm{semi}}} \newcommand{\inc}[0]{{\mathrm{inc}}} \newcommand{\Ball}[0]{{B}} \newcommand{\hq}[0]{{/}} \newcommand{\unioninfty}[0]{{\union\ts{\infty}}} \newcommand{\dualnumbers}[0]{{ [\eps] / \eps^2 }} \newcommand{\crys}[0]{{\mathrm{crys}}} \newcommand{\Xff}[0]{{X_\mathrm{FF}}} \newcommand{\an}[0]{{\mathrm{an}}} \newcommand{\prop}[0]{{\mathrm{prop}}} \newcommand{\ram}[0]{{\mathrm{ram}}} \newcommand{\Nis}[0]{{\mathrm{Nis}}} \newcommand{\perf}[0]{{\mathrm{perf}}} \newcommand{\exist}[0]{{\exists}} \newcommand{\quillenplus}[0]{{ {}^{+} }} \newcommand{\glue}[1]{{ \Disjoint_{#1} }} \newcommand{\normcomplex}[1]{{\norm{\complex{#1}}}} \newcommand{\nerve}[1]{{ \mathcal{N}({#1}) }} \newcommand{\realize}[1]{{ \abs{#1} }} \newcommand{\opcat}[1]{{ {#1}\op }} \newcommand{\intcl}[0] { \operatorname{cl}^{\mathrm{int}} } \newcommand{\algcl}[0] { \operatorname{cl}^{\mathrm{alg}} } \newcommand{\sepcl}[0] { \operatorname{cl}^{\mathrm{sep}} } \newcommand{\B}[0]{{\mathbf{B}}} \newcommand{\E}[0]{{\mathbf{E}}} \newcommand{\T}[0]{{\mathbf{T}}} \newcommand{\TX}[0]{{\T X} } \newcommand{\TM}[0]{{\T M} } \newcommand{\K}[0]{{\mathsf{K}}} \newcommand{\G}[0]{{\mathsf{G}}} %\newcommand{\H}[0]{{\mathsf{H}}} \newcommand{\D}{{ \mathsf{D} }} \newcommand{\mH}{{ \mathsf{H} }} \newcommand{\BGL}[0]{ \mathbf{B}\mkern-3mu \operatorname{GL} } \newcommand{\proportional}{ \propto } \newcommand{\asymptotic}{ \ll } \newcommand{\RM}[1]{% \textup{\uppercase\expandafter{\romannumeral#1}}% } \DeclareMathOperator{\righttriplearrows} {{\; \tikz{ \foreach \y in {0, 0.1, 0.2} { \draw [-stealth] (0, \y) -- +(0.5, 0);}} \; }} \DeclareMathOperator*{\mapbackforth}{\rightleftharpoons} \newcommand{\fourcase}[4]{ \begin{cases}{#1} & {#2} \\ {#3} & {#4}\end{cases} } \newcommand{\matt}[4]{{ \begin{bmatrix} {#1} & {#2} \\ {#3} & {#4} \end{bmatrix} }} \newcommand{\mattt}[9]{{ \begin{bmatrix} {#1} & {#2} & {#3} \\ {#4} & {#5} & {#6} \\ {#7} & {#8} & {#9} \end{bmatrix} }} \newcommand\stacksymbol[3]{ \mathrel{\stackunder[2pt]{\stackon[4pt]{$#3$}{$\scriptscriptstyle#1$}}{ $\scriptscriptstyle#2$}} } \newcommand{\textoperatorname}[1]{ \operatorname{\textnormal{#1}} } \newcommand\caniso[0]{{ \underset{\can}{\iso} }} \renewcommand{\ae}[0]{{ \text{a.e.} }} \newcommand\eqae[0]{\underset{\ae}{=}} \newcommand{\sech}[0]{{ \mathrm{sech} }} %\newcommand{\strike}[1]{{\enclose{\horizontalstrike}{#1}}} \DeclarePairedDelimiter{\ceil}{\lceil}{\rceil} # Tuesday, January 11 :::{.remark} This course: solving $Lf=g$ for $L$ a linear operator, in analogy to solving $Ax=b$ in matrices. References: - Hutson-Pym-Cloud, *Applications of Functional Analysis and Operator Theory* - Reed-Simon, *Methods of Modern Mathematical Physics* - Brezis, *Functional Analysis, Sobolev Spaces, and PDEs* ::: :::{.remark} The issue when passing to infinite-dimensional vector spaces: the topology matters. E.g. the closure of the unit ball is closed and bounded and thus compact in finite dimensions, but this may no longer be true in $\RR^\infty$ or $\CC^\infty$. Recall that a Banach space is a complete normed space, and is further a Hilbert space if the norm is induced by an inner product. See the textbook for a review of vector spaces, metric spaces, norms, and inner products. ::: :::{.example title="?"} Our first example of infinite dimensional vector spaces: sequence spaces $\ell$ with elements $f \da (f_1, f_2, \cdots )$ with each $f_i\in \RR$. ::: :::{.remark} Linear subspaces are subspaces that contain zero, as opposed to affine subspaces. An example is $C_0([0, L]; \RR) \leq C([0, L]; \RR)$, the subspace of bounded continuous functionals on $[0, L]$ which vanish at the endpoints. For any subset $S \subseteq V$, write $[S]$ or $\spanof S$ for the linear span of $S$: all finite linear combinations of elements in $S$. ::: :::{.example title="?"} Let $V = C([-1, 1])$ and $x_1\neq x_2\in [-1, 1]$, and set $M_i \da \ts{f\in V \st f(x_i) = 0}$. Then $M_i \leq V$ is a linear subspace, and in fact $V = M_1 + M_2$ but $V\neq M_1 \oplus M_2$ since the zero function is in both subspaces. ::: :::{.remark} Limits of finite operators are compact. The classical example: set $(A_N)_{i, i} = {1\over i}$, so $A_N = \diag\qty{{1}, {1\over 2}, {1\over 3}, \cdots, {1\over N}}$. Then $\spec A_N = \ts{1\over n}_{n\leq N}$, but $A\da \lim_N A_N$ is an operator with $0\in \bar{\spec(A)}$ as an accumulation point. Exercise: what is $\ker A$? Is it nontrivial? ::: :::{.definition title="Convexity"} A subset $S \subseteq V$ is **convex** iff \[ tf + (1-t)g \in S \qquad \forall f, g\in S,\quad \forall t\in (0, 1] .\] Equivalently, \[ {af+bg\over a+b}\in S \qquad \forall f, g\in S,\quad \forall a,b\geq 0 \] where not both of $a$ and $b$ are zero. The **convex hull** of $S$ is the smallest convex set containing $S$. ::: :::{.remark} Recall Holder's inequality: \[ \norm{fg}_1 \leq \norm{f}_p \cdot \norm{g}_q ,\] Schwarz's inequality \[ \abs{\inner{f}{g}} \leq \norm{f} \norm{g} \qquad \norm{f} \da \sqrt{\inner{f}{f}} ,\] and Minkowski's inequality \[ \norm{f+g}_p \leq \norm{f}_p + \norm{g}_p .\] A nice proof of Cauchy-Schwarz: ![](figures/2022-01-11_15-43-17.png) ![](figures/2022-01-11_15-43-24.png) ::: # Thursday, January 13 :::{.remark} My notes: - $K \subseteq \mch$ is **complete** iff $K^\perp = 0$. - Bessel: for $f\in \mch$ write $f_n \da \inner{f}{e_n} e_n$, then $\norm{(f_n)}_{\ell^2(\CC)} \leq \norm{f}_{\mch}^2$. - Best estimate: for any other sequence $(c_n) \in \ell^2(\CC), \norm{f - \sum c_n e_n} \geq \norm{f - \sum f_n e_n}$. - For $\ts{e_n}$ orthonormal, $(c_n) \in \ell^2(\CC) \iff \sum c_n e_n$ converges. If the series converges, it can be rearranged. - Differentiating through an integral: ![](figures/2022-01-13_14-58-19.png) - Parseval, Plancherel, and Fourier inversion: ![](figures/2022-01-13_15-02-34.png) ::: :::{.remark} Last time: any norm yields a metric: $d(f, g) \da \norm{f-g}$. - Open/closed balls: $B_r(f) \da \ts{x\st \norm{f-x} < r}$. - Bounded subsets: contained in some ball of finite radius. - $\diam S = \inf_{r, f} \diam B_r(f)$ is the diameter of the smallest ball containing $S$. - $d(f, S) \da \inf_{x\in S} \norm{f-x}$. - $V = \RR^n$ with $\norm{f}_2^2 \da \sum_{k\leq n} f_i^2$, $\bar B_0(1)$ is a metric space but not a vector space. - For $L^2$, there are unique least squares projections, but uniqueness may fail for $L^1$. - Counterexample: take a line $M = \ts{\tv{\alpha, \alpha}}$ in $\RR^2$ of angle $\pi/4$ with respect to the $x\dash$axis and consider $f\da \tv[0, 1]$. Then for $g\da (\alpha, \alpha)$, $\norm{f-g} = \abs{1-\alpha} + \abs{\alpha} \geq \abs{1-\alpha + \alpha} = 1$, and the minimizer occurs for *any* $\alpha \in [0, 1]$. - Similar issues may happen for $L^\infty$ -- but $L^1, L^\infty$ have sharper tails than $L^2$, so this can be useful e.g. in image problems. - If limits of sequences $(f_n)$ exist, i.e. $\norm{f_n - f_m}\to 0$, then the limiting function $f_n\to f$ is unique by the triangle inequality. - Example from last time: $\diag\qty{ 1, {1\over 2}, \cdots, {1\over n}} \to A$ a compact self-adjoint operator with $\spec A = \ts{1\over n}_{n\geq 0}$. - What is $\ker A$? Note that $0\in \sigma(A)$, where $\sigma(A)$ is the set where $(A-I\lambda)\inv$ is not defined. It turns out $\ker A = \ts{0}$. - Defining closures of subsets: for $S \subseteq V$, say $f\in \bar{S}$ iff there exists a sequence of not necessarily distinct points $f_n \in S$ with $f_n\to f$. - Say $S_1 \subseteq S_2 \subseteq V$ is closed in $S_2$ iff $S_1 = C \intersect S_2$ for some $C$ closed in $V$. The closure of $S_1$ in $S_2$ is $\cl_V(S_1) \intersect S_2$. - A set that is neither open nor closed: $X \da [a, b] \intersect \QQ$, and $\bd X = [a,b] \contains X$ is actually larger. - Recall the little $\ell^p$ norms: $\norm{(f_n)}_{p} \da \qty{ \sum \abs{f_n}^p }^{1\over p}$ and $\norm{(f_n)}_{\infty} \da \sup_n \abs{f_n}$. ::: :::{.exercise title="?"} - Prove Jensen's inequality for concave functions. - Prove Young's inequality. - Prove Holder's inequality. - Idea: consider $a = \hat{f_n} \da \abs{f_n}/\norm{f_n}^p, b = \hat{g_n} \da \abs{g_n}/\norm{g_n}_q$ and apply Young's after summing over $n$. - Prove Minkowski's inequality. - Idea: use that $(p-1)q=p$ and apply the triangle inequality and then Holder to $\sum \abs{f_n + g_n}^p$. Also use that $q\inv = 1-p\inv$, and divide through this inequality at the end. Be sure to check the cases $\norm{f+g}_p = 0, \infty$. ::: # Tuesday, January 18 :::{.remark} Last time: - $\norm{f}_{\ell^p} = \qty{\sum \abs{f_n} ^p}^{1\over p}$ - $\norm{f}_{\ell^ \infty} = \sup_{n} \abs{f_n}$. Today: - $\ell_p = \ts{f \da (f_n) \st \norm{f}_{\ell^p} < \infty }$. - Example: set $f^k \da (0, 0, \cdots, 1, 1, \cdots)$ with zeros for the first $k-1$ entires and ones for all remaining entries. Then $f^k_i \convergesto{k\to\infty}0$ for each fixed component at index $i$. So $f^k \to (0)$ component-wise, but $\norm{f_k}_{\ell^\infty} = 1$ for every $k$, so this doesn't converge in $\ell_\infty$. - Recall the $\eps\dash\delta$ and limit definitions of continuity. - Recall the definition of uniform continuity. - For $\Omega \subseteq \RR^n$, write $C(\Omega)$ for the $\RR\dash$vector space of continuous bounded functionals $f: \Omega\to \CC$ with the norm $\norm{f}_{L^\infty} = \sup_{x\in \Omega} \abs{f(x)}$. - Define $C^k(\Omega, \CC^m)$ to be functions with $k$ continuous partial derivatives which are bounded, and set $C^\infty(\Omega, \CC^m) = \intersect _{k\geq 0} C^k(\Omega, \CC^m)$. Define a norm $\norm{f}_{C^k} = \sum_{j\leq k} \sup_{x\in \Omega} \abs{f^{(j)} (x)}$. - Take $g(x) = 2-x^2$ and consider $\BB_{1\over 2}(g)$ in $C[0, 1]$ with $\norm{\wait}_{L^\infty}$. - Show that convergent implies Cauchy-convergent using the triangle inequality. - Lipschitz with $\abs{c} < 1$ implies Cauchy. - Lemma 1.4.2: $\norm{f_{n+k} - f_n} \leq q^n (1-q)^{-1} \norm{f_1 - f_0}$ for all $k\geq 0$. Use \[ \norm{f_{n+k} - f_n} = \norm{\sum_{j=1}^k (f_{n+j} - f_{n+j-1} ) } \leq \norm{f_1 - f_0} \sum_{j=1}^k q^{n+j-1} \convergesto{n\to\infty}0 .\] - Counterexample, not all normed spaces are complete: take $V = C[-1, 1]$ with $\norm{f}_{L^1} \da \int_{-1}^1 \abs{f(x) }\dx$. Define a sequence of functions $(f_n)$: ![](figures/2022-01-18_15-09-38.png) Check that $\norm{f_{n+1} - f_n}_{L^1} \leq q \norm{f_n - f_{n-1}}_{L^1}$, and pointwise $f_n \to \chi_{[-1, 0]}$ which is discontinuous and not in $C[-1, 1]$. - Banach spaces: complete normed vector spaces. - Series: - Convergent: $f \da \lim_N \sum_{n\leq N} f_n \in V$. - Absolute convergence: $\sum \norm{f_n} < \infty$. - In a Banach space, absolutely convergent series can be rearranged. - Theorem: A normed space is complete iff absolute convergence $\implies$ convergence. Proof: - Step 1: show that every Cauchy sequence has a convergent subsequence. - Set $a_n \da \sup_{m > n} \norm{f_n - f_m}$, then Cauchy implies $a_n\to 0$ in $\RR$. - Get a convergent subsequence $a_{n_j} \leq j^{-2}$. - Set $g_j \da f_{n_j} - f_{n_{j+1}}$, then $g\da \sum g_j$ absolutely converges, say to $g$. - Note $f_{n_i} - f_{n_{i+1}} = \sum_{j=1}^i g_j$, so the subsequence $(f_{n_j})$ is convergent. - Step 2: use this to show that the original sequence $(f_n)$ converges. - Set $f = \lim f_n$, then $\norm{f_n - f} \leq \norm{f_n - f_{n_i}} + \norm{f_{n_i} - f}$, using Cauchy for the first $\eps$ and the convergent subsequence for the second. ::: --- :::{.remark title="Some random notes"} Some theorems that hold in Hilbert spaces but not necessarily Banach spaces: ![](figures/2022-01-18_14-48-04.png) ![](figures/2022-01-18_14-48-13.png) ![](figures/2022-01-18_14-54-38.png) Absolute continuity: ![](figures/2022-01-18_14-55-21.png) ![](figures/2022-01-18_14-56-04.png) $L_p^\loc$: ![](figures/2022-01-18_14-57-54.png) $\ker L = 0$ may not be sufficient to guarantee bijectivity in infinite dimensions: ![](figures/2022-01-18_15-27-21.png) Boundedness: ![](figures/2022-01-18_15-28-55.png) Bounded iff continuous: ![](figures/2022-01-18_15-29-25.png) ::: # More Banach Spaces (Thursday, January 20) :::{.remark} Last time: complete iff absolutely convergent implies convergent. Today: wrapping up some results on Banach and Hilbert spaces, skipping a review of $L^p$ spaces, and starting on operators next week. ::: :::{.remark} Note that $S \da (0, 1]$ is open and not complete, but $\cl_\RR(S) = [0, 1]$ is both closed and complete. Generalizing: ::: :::{.lemma title="?"} A subset $S \subseteq B$ of a Banach space is complete iff $S$ is closed in $B$. ::: :::{.proof title="?"} $\impliedby$: If $S$ is closed, a Cauchy sequence $(f_n)$ in $S$ converges to some $f\in B$. Since $S$ is closed in $B$, in fact $f\in S$. $\implies$: Suppose that for $f\in \cl_B(S)$, there is a Cauchy sequence $f_n\to f$ with $f_n \in S$ and $f\in B$. Since $S$ is complete, $f\in S$, so $\cl_B(S) \subseteq S$ making $S$ closed. ::: :::{.theorem title="?"} For $\Omega \subseteq \RR^n$, the space $X = (C(\Omega; \CC), \norm{\wait}_\infty)$ is a Banach space. ::: :::{.warnings} This is *not* complete with respect to any other $L^p$ norm with $p<\infty$! ::: :::{.proof title="of theorem"} Use the lemma -- write $B$ for the space of all bounded (not necessarily continuous) functions on $\Omega$, which is clearly a normed vector space, so it suffice to show - $X \subseteq B$ is closed, - $B$ is a Banach space (i.e. complete). **Step 1**: we'll show $\cl_B(X) \subseteq X$. Take $f$ to be a limit point of $X$, then for every $\eps>0$ there is a $g\in X$ with $\norm{f-g} < \eps$. Apply the triangle inequality: \[ \norm{f} \leq \norm{f-g+g}\leq \norm{f-g} + \norm{g} = \eps + C < \infty ,\] so $f\in \cl_B(X) \subseteq B$ since it is bounded. It remains to show $f$ is continuous. Use that $\norm{f-g}\infty <\eps$ and continuity of $g$ to get $\abs{g(x) - g(x_0)} < \eps$ for $\abs{x-x_0}<\eps$. Now \[ \abs{f(x) - f(x_0)} &= \abs{f(x) - g(x) + g(x) -g(x_0) + g(x_0) - f(x_0)} \\ &\leq \abs{f(x) - g(x)} + \abs{g(x) - g(x_0)} + \abs{f(x_0) - g(x_0)} \\ &\leq 3\eps .\] So $X$ is closed in $B$. **Step 2**: Let $f_n$ be Cauchy in $B$, and note that we have a pointwise bound $\abs{f_n(x) - f_n(x_0)} \leq \norm{f_n - f_m} \to 0$. So pointwise, $f_n(x)$ is a Cauchy sequence in $\CC$ which is complete, so $f_n(x) \to f(x)$ for some $f: \Omega\to \CC$. We now want to show $f_n\to f$ in $X$. Using that $f_n$ is Cauchy in $X$, produce an $N_0$ such that $n, m\geq N_0 \implies \norm{f_n - f_m}< \eps$. Now \[ \norm{f - f_n} &= \sup_{x\in \Omega} \abs{f(x) - f_n(x)} \\ &\leq \sup_{x\in \Omega} \sup_{m\geq N_0} \abs{f_m(x) - f_n(x)} \\ &= \sup_{m\geq N_0} \sup_{x\in \Omega} \abs{f_m(x) - f_n(x)} \\ &= \sup_{m\geq N_0} \norm{f_m - f_n} \\ &\leq \eps .\] Now use the reverse triangle inequality to show $f_n$ is bounded \[ \norm{f} - \norm{f_n} \leq \norm{f-f_n} < \eps \implies \norm{f} < \infty .\] Now by problem 1.13, every Cauchy sequence is bounded, so $f_n \to f\in B$. ::: :::{.remark} Extending to vector-valued functions: for $\Omega \subseteq \RR^n$, take $\vector x = \tv{x_1, \cdots, x_n}$ and $F = \tv{f_1, \cdots, f_m}: \CC^n\to \CC^m$. Then there is a Banach space \[ X = C^(\Omega, \CC^m), \qquad \norm{f}_{C_1(\Omega)} \da \sum_{i\leq m} \sup_{x\in \Omega} \abs{f(x)} + \sum_{i\leq m, j\leq n} \sup_{x\in \Omega} \abs{\dd{f_i}{x_j}(x) } .\] Similarly define $L^p(\Omega)$, noting that $\norm{f}_{L^\infty(\Omega)}$ is the *essential supremum*. ::: :::{.theorem title="?"} For $p\in (1, \infty)$, the sequence space $X = (\ell^p, \norm{\wait}_{\ell^p})$ is a Banach space. ::: :::{.definition title="Closed subspaces"} A **closed subspace** of a Banach space is a linear subspace $M \leq B$ which is norm-closed in $B$. ::: :::{.example title="?"} \[ M \da \ker \divergence = \ts{f\in C(\Omega) \st \divergence f = 0} \leq C(\Omega) \] is closed, where $\divergence f$ is the divergence of a function $f$. For any $S \subseteq B$, one can also take the corresponding closed subspace $\bar{[S]} \da \cl_B \spanof_\CC\ts{s\in S}$, i.e. all linear combinations of elements in $S$ and their limits. This is called the **closed linear span** of $S$. ::: :::{.exercise title="?"} Let $B = ( C[a, b], \norm{\wait}_{L^\infty}$ and for $x_0 \in [a, b]$ define \[ M \da \ts{f\in C[a, b] \st f(x_0) = 0}, \qquad N \da \ts{f\in C[a, b] \st f(x_0) \leq c} .\] Show that these are closed subspaces with no nontrivial open subsets of $B$, since any $f\in M$ can be perturbed to be nonzero at $x_0$ with an arbitrarily small norm difference. ::: :::{.remark} Recall that for $S_1 \subseteq S_2 \subseteq B$, $S_1$ is **dense** in $S_2$ iff $\cl_{S_2}(S_1) = S_2$. Recall Weierstrass' theorem: for $\Omega \subseteq \RR^n$ is closed and bounded and write $\OO \da \RR[x_1, \cdots, x_n]$ for the polynomials in $n$ variables. Then $\OO \subseteq C(\Omega)$, and $\cl_{C(\Omega)} \OO = C(\Omega)$, i.e. $\OO$ is a dense subspace in the $L^\infty$ norms. In fact, piecewise linear functions are dense. ::: :::{.remark} Norms are equivalent iff $c_1 \norm{f}_a \leq \norm{f}_b\leq c_2 \norm{f}_a$ for some constants $c_i$. All norms on $\RR^n$ (resp. $\CC^n$) are equivalent. ::: :::{.example title="?"} For $a>0, f\in C[0, 1]$, define \[ \norm{f} \da \sup_{x\in I} \abs{e^{-ax} f(x)} ,\] which can be thought of as a weighting on the uniform norm which de-emphasizes the tails of functions near the endpoints. This is equivalent to $\norm{\wait}_\infty$, since \[ e^a \sup \abs{f} \leq \sup \abs{e^{-ax} f} \leq 1\cdot \sup \abs{f} .\] ::: :::{.remark} Note that a basis for a norm can be used as a basis with respect to an equivalent norm in finite dimensions. In infinite dimensions this may not hold -- e.g. for Fourier series, $\ts{e_k(x)}_{k\in \ZZ}$ is not a basis for $C[0, 2\pi]$ with the sup norm. ::: :::{.definition title="Separable Banach spaces"} An $B\in \Banach$ is **separable** iff $X$ contains a countable dense subset $S = \ts{f_k}_{k\geq 0}$ such that for each $f\in B$ and $\eps>0$, there is an $f_k\in S$ with $\norm{f-f_k} < \eps$. ::: :::{.example title="?"} Show that - $\Omega \subseteq \RR^n$ a bounded subset, $C(\Omega), \norm{\wait}_{\sup}$ is separable. - $\ell^p$ is separable for $p\in (1,\infty)$. - $\ell^\infty$ is *not* separable. ::: ## Random Notes :::{.remark} ![](figures/2022-01-20_14-48-53.png) ![](figures/2022-01-20_14-49-39.png) ::: # Tuesday, January 25 :::{.remark} - Inner products: - $\inp{f}{f} \geq 0$ and $\inp{f}{f} = 0 \iff f=0$ - $\inp{f}{g+h} = \inp{f}{g} + \inp{f}{h}$ - $\inp{f}{g} = \bar{\inp{g}{f}}$ - $\inp{\alpha f}{g} = \alpha \inp{f}{g}$ - A pre-Hilbert space is an inner-product space. - Example: $\inp f g \da \int_\Omega w(x) f(x) \bar{g(x)}\dx$ for $f,g\in C(\Omega)$, where $w$ is any weighting function. - Example: $\inp f g = \sum f_i \bar{g_i}$ for $f,g\in \CC^n$. - Inner products induce norms: $\norm{f} \da \sqrt{\inp f f}$ - Orthogonality: write $f\perp g$ iff $\inp f g = 0$ and $S^\perp = \ts{f\in \mch \st f\perp s \, \forall s\in S}$. - Definition of a Hilbert space: a pre-Hilbert space complete with respect to the norm induced by its inner product. - Recall $C(\Omega)$ with $\inp f g \da \int_\Omega f\bar{g}$ is not complete, thus not a Hilbert space. - Example: a common optimization problem, $\mathrm{argmin} \norm{x}$ such that $Ax=0$. ::: :::{.theorem title="Cauchy-Schwarz"} \[ \abs{\inp{f}{g}}\leq \norm{f} \norm{g} .\] ::: :::{.proof title="?"} Use $\inp f g = \abs f \abs g \cos \theta_{fg}$ where $\abs{ \cos \theta } \leq 1$. - Assume $g\neq 0$, then STS $\inp{f}{g\over \norm g} \leq \norm f$. - Use\[ 0 &\leq \norm{f - \inp f g g}^2 \\ &= \inp{f - \inp f g g}{f - \inp f g g} \\ &= \inp f f - \inp f g \inp g f - \bar{\inp f g} \inp f g + \inp f g \bar{\inp f g } \\ &= \norm{f}^2 - \abs{ \inp f g}^2 .\] ::: :::{.theorem title="Closest approximations"} Let $f\in M\leq \mch$ be a closed (and thus complete) subspace of a Hilbert space $\mch$. Then there is a unique element $g$ in $\mch$ closest to $M$ in the norm. ::: :::{.proof title="?"} Let $d\da \dist(f, M)$, choose a sequence $g_n \in M$ such that $\norm{f-g_n}\to d$, which is possible since $d = \inf_{g\in M}\norm{f-g}$. Apply the parallelogram law to write \[ \norm{g_n - g_m}^2 &= \norm{(g_n - f) - (g_m - f) }^2 \\ &= 2\norm{g_n - f}^2 + 2\norm{g_m - f}^2 - 4\norm{ {1\over 2} (g_n + g_m) - f}^2 \\ &\leq 2\norm{g_n - f}^2 + 2\norm{g_m - f}^2 - 4d^2 \\ &\leq 2d^2 + 2d^2 - 4d^2 \\ &= 0 ,\] so the $g_n$ are Cauchy. Here we've used that ${1\over 2}(g_n + g_m) = m \in M$ since $M$ is a subspace, and $\norm{m-f} \geq d$. Since $M$ is complete, $g_n\to g\in M$ and moreover $\norm{f-g} = d$. For uniqueness, if $\norm{f-g'} = d$ then \[ \norm{ f - {1\over 2} (g+g')}^2 = d^2 - \norm{g-g'}^2 < d^2 \qquad \contradiction .\] ::: :::{.theorem title="Projection theorem"} Let $M\leq \mch$ be a closed subspace of a Hilbert space. Then $M^\perp \leq \mch$ is closed, and $\mch = M \oplus M^\perp$. In the decomposition $f= g+h$, in fact $g\in M$ is the closest approximation to $f$ in $M$, making this decomposition unique. ::: :::{.proof title="?"} STS $\mch = M + M^\perp$ by the exercises. If $f\in M$, take $f=g+h$ where $g=f$ and $h=0$, so suppose $f\not\in M$. Let $g = \mathrm{argmin} \dist(f, M) \in M$, and we claim $f-g\in M^\perp$, so $\inp {f-g}{h} = 0$ for any $h\in M$. For all $h\in M$ and $\alpha > 0$, we have $g + \alpha h\in M$, so \[ \norm{f - g}^2 &\leq \norm{f - (g+\alpha h)}^2 \\ &= \norm{f-g}^2 -2\Re\alpha \inp{h}{f-g} + \alpha^2 \norm{h}^2 ,\] so \[ 2\Re \alpha \inp h {f-g} \leq \alpha^2 \norm{h}^2 \implies 2\Re \inp h {f-g} \leq \alpha \norm{h}^2 \convergesto{\alpha\to 0} 0 ,\] so $\Re\inp{h}{f-g} = 0$. Similarly $\Im\inp{h}{f-g} = 0$. ::: :::{.exercise title="?"} Show $S^\perp$ is closed for any $S\in \mch$, and in fact $S^\perp = \spanof_\CC(\cl_\mch(S))^\perp$, and if $f\in S \intersect S^\perp$ then $f=0$. ::: :::{.exercise title="?"} Prove the parallelogram law \[ \norm{f-g}^2 + \norm{f+g}^2 = 2\norm{f}^2 + 2\norm{g}^2 .\] ::: # Thursday, January 27 :::{.remark} Notes: - Bessel: \[ \sum_n \abs{ \inp{f}{\phi_n} } \leq \norm{f}^2,\qquad \norm{f} \da \sqrt{\inp{f}{f}} .\] - Prove using the fact that \[ 0\leq \norm{f - \sum_{n\leq m} \inp{f}{\phi_n} \phi_n }^2 = \norm{f}^2 - \sum_{n\leq m} \abs{\inp{f}{\phi_n}}^2 .\] - Best fit: \[ \norm{f - \sum_{n\leq m} c_n \phi_n } \geq \norm{f - \sum_{n\leq m} \inp{f}{\phi_n} \phi_n } ,\] so define projections $P_M(f) \da \sum \inp{f}{\phi_n} \phi_n$ for $\spanof\ts{\phi_n} = M$. - Prove using \[ \norm{f - \sum_{n\leq m} c_n \phi_n } &= \norm{f}^2 - \sum_{n\leq m} \abs{\inp{f}{\phi_n}}^2 + \sum_{n\leq m} \abs{\inp{f}{\phi_n} - c_n }^2 \\ &\geq \norm{f}^2 - \sum_{n\leq m} \abs{\inp{f}{\phi_n}}^2 .\] - Hilbert spaces are separable: have countable dense subsets. - $\ell^\infty(\ZZ)$ is not separable. - For $\ts{\phi_n}$ orthonormal and $\ts{c_n}$ scalars, $\sum c_n \phi_n$ is convergent iff $\ts{a_n}\in \ell^2(\ZZ)$, so $\sum\abs{c_n}^2<\infty$. If it converges, it can be rearranged, and \[ \norm{\sum c_n \phi_n}^2 = \norm{\ts{c_n}}_{\ell^2(\ZZ)}^2 = \sum \abs{c_n}^2 .\] - To prove, use that $\norm{ \sum_{i\leq n\leq j}c_n \phi_n}^2 = \sum_{i\leq n\leq j}\abs{c_n}^2$, so the sequence $\ts{S_m}_{m\geq 0}$ where $S_m \da \sum_{n\leq m} c_n\phi_n$ is Cauchy since $\sum\abs{c_n}^2$ converges. - If $g = \sum c_n \phi_n$ and $f = \sum c_{m_n} \phi_{m_n}$ is a rearrangement, if $\ts{c_n}\in \ell^2$ then $\norm{f}^2 = \norm{g}^2 = \sum \abs{c_n}^2$. Then $\norm{f-g}^2 = \norm{f}^2 + \norm{g}^2 - 2\Re\inp{f}{g}$, but $\inp{f}{g} = \sum \abs{c_n}^2$, so $\norm{f-g} = 0$. - If $K = \ts{\phi_n} \subseteq \mch$ is a proper subset, so $\spanof\ts{\phi_n}\neq \mch$, write $P_K(f) = \sum \inp{f}{\phi_n}\phi_n$. Then $P_K(f) = 0$ if $f\in \cl(K)^\perp$, $P_K(f) = f$ if $f\in \cl(K)$, and if $f\not \in K$, since $\cl(K)\leq \mch$ is closed then there exists a $g\in \cl(K)$ where $\norm{f-g} = \dist(f, K)$. Write $f = h + (f-g) \in \cl(K) \oplus \cl(K)^\perp$, so $f = P_K f + (I-P_K)f$. - Recall complete subspaces of Banach spaces are closed. - Next theorem: every separable Hilbert space admits an orthonormal basis. ::: :::{.theorem title="?"} If $\mch$ is a separable Hilbert spaces and $K = \ts{\phi_n}$ is an orthonormal set, then TFAE - $K$ is complete, i.e. $K^\perp = 0$ (taking the closure is not needed), - $\cl{\spanof K} = \mch$, - $K$ is an orthonormal *basis*, - For all $f\in \mch$, $\norm{f} = \sum_{n\geq 0} \abs{\inp{f}{\phi_n}}^2$ (Parseval). ::: :::{.remark} Note $\inp{f}{\phi_n}$ is the $n$th Fourier coefficient $\hat{f}(\xi) = \sum \inp{f}{\phi_n}\phi_n(\xi)$, and Parseval says $\norm{f}^2 = \norm{\hat{f}}^2$. ::: :::{.proof title="?"} $1\implies 2$: Let $f\in \mch \sm \cl\spanof(K)$ and project, so $f= g+h$ with $g,h\neq 0$. But $g\in \cl\spanof(K)$ and $h\in \cl\spanof(K)^\perp = 0$, forcing $K^\perp = \cl(K)^\perp \neq 0$. $\contradiction$ $2\implies 3$: Follows directly from previous lemma that $f = P_Kf + (I-P_K)f$. $3\implies 4$: Write $f\in \mch$ as $f = \sum \inp{f}{\phi_n} \phi_n$ by sending $m\to \infty$ in the previous lemma. $4\implies 1$: Toward a contradiction, suppose $f\neq 0\in K^\perp$. Then $\norm{f} \neq 0$ but $\inp{f}{\phi_n}=0$ for all $n$, contradicting Parseval. $\contradiction$ ::: # Tuesday, February 01 :::{.remark} Notes: - Assume $\mch$ is a **separable** Hilbert space: there exists a countable set of vectors $\ts{v_i}_{i\in \ZZ}$ which span a subspace that is dense in $\mch$, so $\cl(\spanof \ts{v_i}) = \mch$. - Complete subspaces: $M\leq \mch$ with $M^\perp = 0$. - Show that for any $S \subseteq \mch$, $S^\perp$ is closed in $\mch$, $S^\perp = \qty{\cl\spanof S}^\perp$, and $f\in S \intersect S^\perp \implies f=0$. - If $K = \ts{\phi_k}_{k\in \ZZ}$ is an orthonormal set in $\mch$, then TFAE - $K \leq \mch$ is a complete subspace, so $K^\perp = 0$, i.e. $\inp{f}{\phi_k} = 0$ for all $k$ implies $f=0$. - $\cl\spanof K = \mch$, so every $f\in \mch$ is the limit of a sequence of vectors from $\spanof K$. - $K$ is an orthonormal *basis* - Parseval: equality in Bessel, i.e. $\norm{f} = \sum \abs{ \inp{f}{\phi_k} }^2$ - Lemma: if $M, N\leq \mch$ with $\dim M < \dim N$, then $M^\perp \intersect N \neq 0$. - Without loss of generality assume $\dim N = n + 1$ where $n\da \dim M$, take a basis $\ts{\psi_k}_{k\leq n+1}$ for $N$. - Try to find $f\in N$ with $f\perp M$, i.e. coefficients $\ts{b_i}_{i\leq n}$ with $\sum b_i \psi_i \perp \phi_k$ for every $\phi_k$ basis elements of $M$. - This is a linear system of $n$ equations in $n+1$ unknowns, so it has a nontrivial solution. - Theorem, orthonormal bases are stable: if $\ts{\phi_k}$ is an orthonormal basis and $\ts{\psi_k}$ is an orthonormal *system*, if $\sum \norm{\phi_k - \psi_k}^2 < \infty$ then $\ts{\psi_k}$ is a basis. - Assume note, then find a $\psi_0 \in \mch$ with $\norm{\psi_0} = 1$ and $\inp{\psi_0}{\psi_j} = 0$ for all $j$. - Choose $N\gg 1$ so that $\sum_{k\geq N} \norm{\psi_k - \phi_k} < 1$. - Use previous lemma to produce $w\in \spanof\ts{\psi_0, \psi_1,\cdots, \psi_N}$ with $w\neq 0$ and $w\perp \phi_j$ for all $j\leq N$. - Note $w\perp \spanof\ts{\psi_n}_{n > N}$. - Apply Parseval: \[ 0 &< \norm{w}^2 \\ &= \sum_{n\geq 1} \abs{\inp{w}{\phi_n}}^2 \\ &= \sum_{n\geq N+1}\abs{\inp{w}{\phi_n}}^2 \\ &= \sum_{n\geq N+1} \abs{\inp{w}{\phi_n - \psi_n}}^2 \\ &\leq \norm{w}^2 \sum_{n\geq N+1}\norm{\phi_n - \psi_n}^2 \\ &< \norm{w}^2 \cdot 1 ,\] where we've used that $\inp{w}{\psi_n} = 0$ for $n\geq N$. $\contradiction$ - $\mch$ admits a countable orthonormal basis iff $\mch$ is separable. - $\implies$: clear, since the basis is countable, and every element is a limit of partial sums against the basis. - $\impliedby$: Gram-Schmidt. - $h_1 = \psi_1$ and $\phi_1 = h_1/\norm{h_1}$ - $h_n = \psi_n - \sum_{1\leq k\leq n-1} \inp{\psi_k}{\phi_k} \phi_k$ and normalize. - Exercise: a closed subspace of a separable Hilbert space is separable. - Linearly isometric inner product spaces: $E\sim F$ iff there is a map $A: E\surjects F$ with - $A(au + bv) = aAu + bAv$ - $\norm{Au}_F = \norm{u}_E$ - Theorem: if $\mch_1, \mch_2$ are infinite dimensional separable Hilbert spaces, then $\mch_1 \sim \mch_2$. Thus for any Hilbert space $\mch$ over $\CC$, $\mch \sim \ell^2(\CC)$. - Pick orthonormal bases $\ts{\phi_k} \subseteq \mch_1, \ts{\psi_k} \subseteq \mch_2$. - For $u\in \mch_1$, define $Au \da \sum \inp{u}{\phi_k}\psi_k$, which converges -- this will be the linear isometry, and satisfies condition (i). - Check $\norm{Au}_{\mch_2}^2 = \sum_{k\geq 1}\abs{\inp{u}{\phi_k}}^2 = \norm{u}_{\mch_2}$, which is condition (ii). - Check $A$ is surjective: for $y\in \mch_2$, write $y = \sum_{k} \inp{y}{\psi_k} \psi_k = Av$ for $v\da \sum_k \inp{y}{\psi_k}\phi_k \in \mch_1$. - Non-separable spaces: look at *almost-periodic functions*. - E.g. $\sum_{k\leq n} c_k \exp(i\lambda_k t)$ for $\lambda_k \in \RR$. ::: # Tuesday, February 08 :::{.remark} Motivating question: when is an operator equation solvable? Today: relation between boundedness and continuity for linear operators. Nonlinear operators next week. - A map of vector spaces $V\to W$ is a linear map defined on some domain $D(A) \subseteq V$, where $D(A)$ need not equal $V$. - Notation: $A(f) = Af = g$. - $Af \subseteq W$ is the image of $f$, and $R(A) \da \ts{Af\st f\in D(A)} \subseteq W$ is the range. Preimages of $S \subseteq W$: $A\inv(S) = \ts{f\st f\in D(A) \text{ and } Af\in S}$. - We distinguish operators with different domains, e.g. $Af \da f'$ can be the formula for distinct operators $A_1, A_2$ where $D(A_1) = C^\infty[0, 1] \subseteq C^0[0, 1]$ or $D(A_2) = C^1[0, 1] \subseteq C^0[0, 1]$, so $A_1\neq A_2$. - I.e. $A_1 = A_2 \iff D(A_1) = D(A_2)$ and $A_1 f = A_2 f$ for all $f\in D(A_1)=D(A_2)$. - If $A_1 f = A_2 f$ with $D(A_1) \subseteq D(A_2)$, say $A_2$ is an extension of $A_1$. The extension is proper iff $D(A_1)\neq D(A_2)$. - Example operator: the Laplace equation $\laplacian f= g$ where $\laplacian = \del_{xx} + \del_{yy}$. We can take domains $g\in C[0, 1], L^2[0, 1], H^2[0, 1] = \ts{f\in L^2(0, 1) \st \del_{xx} f, \del_{yy} f\in L^2(0, 1) }$. - Why domains matter: boundary conditions affect what eigenfunctions you get. Examples where $A_1\neq A_2$: - Dirichlet boundary conditions: $\laplacian f = g, \ro{f}{\bd \Omega} = 0$. The relevant solution spaces is $D(A_1) = \ts{\phi\in C^2[0,1]^2 \st \ro \phi {\bd \Omega} = 0}$ for $A_1 \phi \da \laplacian \phi$. - Neumann boundary conditions: $\laplacian f = g, \ro{ \dd{f}{\vector n}}{\bd \Omega} = 0$, i.e. there is no flux across the boundary. The relevant solution space is $D(A_2) = \ts{\psi \in C^2[0,1]^2\st \ro{ \dd{\psi}{\vector n} }{\bd\Omega} = 0 }$ for $A_2 \psi \da \laplacian \psi$. - Injectivity: for $A: V\to W$, for every $g\in R(A)$ there is exactly one $f\in D(A)$ with $Af=g$. Equivalently for linear operators, $Af = 0 \implies f=0$. - Surjectivity: $R(A) = W$. - Example: $A\da x\mapsto \sin(x)$ regarded as a function $A:\RR\to \RR$ is neither surjective nor injective: $R(A) = [-1, 1] \subsetneq \RR$, and $\sin(\pi \ZZ) = 0$. - Linearity: for $Lf = g$, $L$ is linear if $L(af + bg) = aLf + bLg$. ::: :::{.exercise title="?"} Show that the following are equivalent conditions for continuity of $A: V\to W$ at $f_0\in D(A)$: - $\norm{Af - Af_0}_W < \eps$ for all $f\in D(A)$ with $\norm{f-f_0}_V < \delta$ - For every sequence $\ts{f_k} \to f_0$, $Af_k \to Af_0$. - Preimages of open sets in $W$ are again open in $V$. ::: # Tuesday, February 15 :::{.remark} Last time: - Continuous operators are bounded: - If $\norm{Lf_n} = 1$ and $\norm{f_n} \to 0$, check $\lim (Lf_n) = L(\lim f_n) = L0 = 0$. - Take norms to contract $\norm{Lf_n} = 1$. ::: :::{.theorem title="3.4.4"} If $L: B\to C$ with dense image (so $\cl_B(D(L)) = B$), if $L$ is continuous on $D(L)$ then it has a unique extension $\tilde L$ to all of $B$, so $D(\tilde L) = B$, with $\norm{L} = \norm{\tilde L}$. ::: :::{.proof title="of theorem"} In steps: - Defining the extension: - For $f\in B$, pick $f_n \to f$ with $f_n \in D(L)$ using density. - Convergent implies Cauchy, so estimate: \[ \norm{Lf_n - Lf_m} = \norm{L(f_n - f_m)} \leq \norm{L} \norm{f_n - f_m} \to 0 .\] - Thus $Lf_n$ is Cauchy, by completeness $Lf_n \to g$ for some $g$. - Preservation of norm: - Define the extension as $\tilde L f \da g$, by continuity it is independent of the sequence $\ts{f_k}\to f$. - Check that $\tilde L$ is a bounded operator: \[ \norm{\tilde L f} \da \norm{g} = \norm{\lim L f_n} = \lim \norm{Lf_n} \leq \lim \norm{L} \norm{f_n} = \norm{L} \norm{f} \\ \implies \norm{\tilde L} \leq \norm{L} .\] - Since $\norm{A}_{\op}$ is defined in terms of sups over test functions in $D(A)$ for any operator $A$ and here $D(\tilde L) \contains D(L)$ is a larger set, we have $\norm{\tilde L} \geq \norm{L}$ by definition, yielding $\norm{\tilde L} = \norm{L}$. - Uniqueness of the extension: - Take $\tilde L_1, \tilde L_2$ extending $L$, then \[ \tilde L_1 f = \lim \tilde L_1 f_n = \lim L f_n = \lim \tilde L_2 f_n = \tilde L_2 f .\] - Use linearity: \[ \tilde L_1 f - \tilde L_2 f = (\tilde L_1 - \tilde L_2)f = 0 \implies \tilde L_1 - \tilde L_2 = 0 .\] ::: :::{.example title="?"} Let $\mcl \in L(\CC^n, \CC^n)$ be defined in coordinates by $(\mcl f)_i \da \sum_{1\leq j\leq n} \alpha_{ij} f_j$ for $1\leq i\leq n$. Take $\norm{\wait}_{\ell^\infty}$ and check \[ \norm{Lf}_\infty &\da \sup_i \abs{\sum \alpha_{ij} f_j} \\ &\leq \qty{ \sup_i \sum \abs{\alpha_{ij} } } \sup_j \abs{f_j} \\ &\da m \norm{f}_{\ell^\infty} .\] So $\norm{L} \leq m$, where $m$ is the largest row sum. Is there an $f$ for which equality holds? In this case, we'd need \[ \norm{Lf}_{\ell^\infty} \geq m \norm{f}_{\ell^\infty} .\] Identify the row $k$ so that $m = \sum_{1\leq j\leq n} \abs{\alpha_{kj}}$. Set $f$ to be a unit vector with coefficients $(f)_j = \bar{\alpha_{kj}} / \abs{\alpha_{kj}}$. Then \[ \norm{Lf}_\infty &= \sup_i \abs{ \sum_j \alpha_{ij} f_j } \\ &\geq \abs{\sum_j \alpha_{kj} f_j } \\ &= \abs{\sum_j \alpha_{kj} {\bar \alpha_{kj} / \abs{\alpha_{k j}} } } \\ &= \sum_j \abs{\alpha_{kj}} \\ &= m \norm{f}_{\ell^\infty} .\] So the answer is yes in this case. Does this also work for $\norm{\wait}_{\ell^p}$ with $p\in (1, \infty)$? Recall Holder's inequality: \[ \abs{\sum \alpha_{ij} f_j } &\leq \qty{ \sum \abs{\alpha_{ij}}^q }^{1\over q} \qty{\sum \abs{f_j}^p }^{1\over p} \\ &= \qty{ \sum \abs{\alpha_{ij}}^q }^{1\over q} \norm{f}_{\ell^p} .\] Check that \[ \norm{Lf}_{\ell^p}^p &= \sum_i \abs{(Lf)_i }^p \\ &= \sum_i \abs{\sum_j \alpha_{ij} f_j }^p \\ &\leq \sum_i \qty{ \sum_j \abs{\alpha_{ij} } }^{p\over q} \norm{f}_{\ell^p}^p ,\] where we've applied Holder in the last line. Thus \[ \norm{L} \leq \qty{ \sum_i \qty{ \sum_j \abs{ \alpha_{ij}} }^{p\over q} }^{1\over p} .\] :::{.exercise title="?"} Is there an $f$ that attains this bound in the $\ell^p$ case? ::: ::: :::{.remark} For $\mcl \in L(\CC^\infty, \CC^\infty)$ defined by $(Lf)_i = \sum_{j\geq 11} \alpha_{ij} f_j$ for $j\geq 1$, one needs a notion of convergence of the coordinates $\alpha_{ij}$ in order for $\mcl$ to be bounded. A sufficient condition is $m\da \sup_i \sum_{j\geq 1} \abs{\alpha_{ij}} < \infty$. ::: :::{.definition title="?"} Some notation: \[ \normm{\alpha}_1 &\da \sup_j \sum_i \abs{ \alpha_{ij}} \\ \normm{\alpha}_p &\da \qty{ \sum_i \qty{ \sum_j \abs{\alpha_{ij} }^{q} }^{p\over q} }^{1\over p} \\ \normm{\alpha}_\infty &\da \sup_i \sum_j \abs{ \alpha_{ij}} .\] ::: :::{.remark} Note that if $\mcl: \ell^p\to \ell^p$, then $\norm{L} \leq \normm{\alpha}_p$ for $p\in [1, \infty)$ and for $p=\infty$ this is an equality. ::: :::{.example title="Kernels"} Consider $C[a, b]$ with $\norm{\wait}_\infty$ and $k\in C^0( [a,b]\cartpower{2}, \CC)$. Define \[ K: C[a, b] &\to C[a, b] \\ f &\mapsto \int_a^b k(x, y) f(y) \dy .\] What is $\norm{K}$? Estimate \[ \norm{Kf} &\leq \sup_{y\in [a, b]}\abs{f(y)} \sup_{x\in [a, b]} \int_a^b \abs{k(x, y)} \dy \\ &\leq \norm{f}_\infty \norm{k}_\infty ,\] so $\norm{K} \leq \norm{k}_\infty$. Define \[ \normm{k}_1 &\da \sup_y \int \abs{k} \dx \\ \normm{k}_p &\da \qty{\int \qty{ \int \abs{k}^q \dy }^{p\over q} \dx }^{1\over p} \\ \normm{k}_\infty &\da \sup_x \int \abs{k} \dy .\] :::