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1 Tuesday, January 11

1 Tuesday, January 11

Remark 1.0.1: This course: solving Lf = g for L a linear operator, in analogy to solving Ax = b
in matrices. References:

• Hutson-Pym-Cloud, Applications of Functional Analysis and Operator Theory
• Reed-Simon, Methods of Modern Mathematical Physics
• Brezis, Functional Analysis, Sobolev Spaces, and PDEs

Remark 1.0.2: The issue when passing to infinite-dimensional vector spaces: the topology matters.
E.g. the closure of the unit ball is closed and bounded and thus compact in finite dimensions, but
this may no longer be true in R∞ or C∞. Recall that a Banach space is a complete normed space,
and is further a Hilbert space if the norm is induced by an inner product. See the textbook for a
review of vector spaces, metric spaces, norms, and inner products.

Example 1.0.3(?): Our first example of infinite dimensional vector spaces: sequence spaces ℓ with
elements f := (f1, f2, · · · ) with each fi ∈ R.

Remark 1.0.4: Linear subspaces are subspaces that contain zero, as opposed to affine subspaces.
An example is C0([0, L];R) ≤ C([0, L];R), the subspace of bounded continuous functionals on [0, L]
which vanish at the endpoints. For any subset S ⊆ V , write [S] or spanS for the linear span of S:
all finite linear combinations of elements in S.

Example 1.0.5(?): Let V = C([−1, 1]) and x1 ̸= x2 ∈ [−1, 1], and set Mi :=
{
f ∈ V

∣∣∣ f(xi) = 0
}

.
Then Mi ≤ V is a linear subspace, and in fact V = M1 + M2 but V ̸= M1 ⊕ M2 since the zero
function is in both subspaces.

Remark 1.0.6: Limits of finite operators are compact. The classical example: set (AN )i,i = 1
i
,

so AN = diag
(

1, 1
2 ,

1
3 , · · · , 1

N

)
. Then SpecAN =

{ 1
n

}
n≤N

, but A := lim
N
AN is an operator with

0 ∈ Spec(A) as an accumulation point. Exercise: what is kerA? Is it nontrivial?

Definition 1.0.7 (Convexity)
A subset S ⊆ V is convex iff

tf + (1 − t)g ∈ S ∀f, g ∈ S, ∀t ∈ (0, 1].

Equivalently,

af + bg

a+ b
∈ S ∀f, g ∈ S, ∀a, b ≥ 0

where not both of a and b are zero. The convex hull of S is the smallest convex set containing
S.
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2 Tuesday, January 11

Remark 1.0.8: Recall Holder’s inequality:

∥fg∥1 ≤ ∥f∥p · ∥g∥q,

Schwarz’s inequality

|⟨f, g⟩| ≤ ∥f∥∥g∥ ∥f∥ :=
√

⟨f, f⟩,

and Minkowski’s inequality

∥f + g∥p ≤ ∥f∥p + ∥g∥p.

A nice proof of Cauchy-Schwarz:

Tuesday, January 11 4



2 Thursday, January 13

2 Thursday, January 13

Remark 2.0.1: My notes:

• K ⊆ H is complete iff K⊥ = 0.
• Bessel: for f ∈ H write fn := ⟨f, en⟩en, then ∥(fn)∥ℓ2(C) ≤ ∥f∥2

H.
• Best estimate: for any other sequence (cn) ∈ ℓ2(C),

∥∥∥f −
∑

cnen

∥∥∥ ≥
∥∥∥f −

∑
fnen

∥∥∥.
• For {en} orthonormal, (cn) ∈ ℓ2(C) ⇐⇒

∑
cnen converges. If the series converges, it can

be rearranged.
• Differentiating through an integral:

• Parseval, Plancherel, and Fourier inversion:

Thursday, January 13 5



2 Thursday, January 13

Remark 2.0.2: Last time: any norm yields a metric: d(f, g) := ∥f − g∥.

• Open/closed balls: Br(f) :=
{
x
∣∣∣ ∥f − x∥ < r

}
.

• Bounded subsets: contained in some ball of finite radius.
• diamS = inf

r,f
diamBr(f) is the diameter of the smallest ball containing S.

• d(f, S) := inf
x∈S

∥f − x∥.

• V = Rn with ∥f∥2
2 :=

∑
k≤n

f2
i , B0(1) is a metric space but not a vector space.

• For L2, there are unique least squares projections, but uniqueness may fail for L1.

– Counterexample: take a line M = {[α, α]} in R2 of angle π/4 with respect to the x-axis
and consider f := [[]0, 1]. Then for g := (α, α), ∥f − g∥ = |1 − α| + |α| ≥ |1 − α+ α| = 1,
and the minimizer occurs for any α ∈ [0, 1].

– Similar issues may happen for L∞ – but L1, L∞ have sharper tails than L2, so this can
be useful e.g. in image problems.

• If limits of sequences (fn) exist, i.e. ∥fn − fm∥ → 0, then the limiting function fn → f is
unique by the triangle inequality.

• Example from last time: diag
(

1, 1
2 , · · · , 1

n

)
→ A a compact self-adjoint operator with

SpecA =
{ 1
n

}
n≥0

.

– What is kerA? Note that 0 ∈ σ(A), where σ(A) is the set where (A − Iλ)−1 is not
defined. It turns out kerA = {0}.
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3 Tuesday, January 18

• Defining closures of subsets: for S ⊆ V , say f ∈ S iff there exists a sequence of not necessarily
distinct points fn ∈ S with fn → f .

– Say S1 ⊆ S2 ⊆ V is closed in S2 iff S1 = C ∩ S2 for some C closed in V . The closure of
S1 in S2 is clV (S1) ∩ S2.

• A set that is neither open nor closed: X := [a, b] ∩ Q, and ∂X = [a, b] ⊇ X is actually larger.

• Recall the little ℓp norms: ∥(fn)∥p :=
(∑

|fn|p
) 1

p and ∥(fn)∥∞ := sup
n

|fn|.

Exercise 2.0.3 (?) • Prove Jensen’s inequality for concave functions.
• Prove Young’s inequality.
• Prove Holder’s inequality.

– Idea: consider a = f̂n := |fn|/∥fn∥p, b = ĝn := |gn|/∥gn∥q and apply Young’s after
summing over n.

• Prove Minkowski’s inequality.

– Idea: use that (p − 1)q = p and apply the triangle inequality and then Holder to∑
|fn + gn|p. Also use that q−1 = 1 − p−1, and divide through this inequality at

the end. Be sure to check the cases ∥f + g∥p = 0,∞.

3 Tuesday, January 18

Remark 3.0.1: Last time:

• ∥f∥ℓp =
(∑

|fn|p
) 1

p

• ∥f∥ℓ∞ = sup
n

|fn|.

Today:

• ℓp =
{
f := (fn)

∣∣∣ ∥f∥ℓp < ∞
}

.

• Example: set fk := (0, 0, · · · , 1, 1, · · · ) with zeros for the first k − 1 entires and ones for
all remaining entries. Then fk

i
k→∞−→ 0 for each fixed component at index i. So fk → (0)

component-wise, but ∥fk∥ℓ∞ = 1 for every k, so this doesn’t converge in ℓ∞.

• Recall the ε-δ and limit definitions of continuity.

• Recall the definition of uniform continuity.

• For Ω ⊆ Rn, write C(Ω) for the R-vector space of continuous bounded functionals f : Ω → C
with the norm ∥f∥L∞ = sup

x∈Ω
|f(x)|.

Tuesday, January 18 7



3 Tuesday, January 18

• Define Ck(Ω,Cm) to be functions with k continuous partial derivatives which are bounded,
and set C∞(Ω,Cm) = ∩k≥0C

k(Ω,Cm). Define a norm ∥f∥Ck =
∑
j≤k

sup
x∈Ω

∣∣∣f (j)(x)
∣∣∣.

• Take g(x) = 2 − x2 and consider B 1
2
(g) in C[0, 1] with ∥−∥L∞ .

• Show that convergent implies Cauchy-convergent using the triangle inequality.

• Lipschitz with |c| < 1 implies Cauchy.

• Lemma 1.4.2: ∥fn+k − fn∥ ≤ qn(1 − q)−1∥f1 − f0∥ for all k ≥ 0. Use

∥fn+k − fn∥ =

∥∥∥∥∥∥
k∑

j=1
(fn+j − fn+j−1)

∥∥∥∥∥∥ ≤ ∥f1 − f0∥
k∑

j=1
qn+j−1 n→∞−→ 0.

• Counterexample, not all normed spaces are complete: take V = C[−1, 1] with ∥f∥L1 :=∫ 1

−1
|f(x)| dx. Define a sequence of functions (fn):

Check that ∥fn+1 − fn∥L1 ≤ q∥fn − fn−1∥L1 , and pointwise fn → χ[−1,0] which is discontinu-
ous and not in C[−1, 1].

• Banach spaces: complete normed vector spaces.

• Series:

Tuesday, January 18 8



3 Tuesday, January 18

– Convergent: f := lim
N

∑
n≤N

fn ∈ V .

– Absolute convergence:
∑

∥fn∥ < ∞.
– In a Banach space, absolutely convergent series can be rearranged.

• Theorem: A normed space is complete iff absolute convergence =⇒ convergence. Proof:

– Step 1: show that every Cauchy sequence has a convergent subsequence.
– Set an := sup

m>n
∥fn − fm∥, then Cauchy implies an → 0 in R.

– Get a convergent subsequence anj ≤ j−2.
– Set gj := fnj − fnj+1 , then g :=

∑
gj absolutely converges, say to g.

– Note fni − fni+1 =
i∑

j=1
gj , so the subsequence (fnj ) is convergent.

– Step 2: use this to show that the original sequence (fn) converges.
– Set f = lim fn, then ∥fn − f∥ ≤ ∥fn − fni∥ + ∥fni − f∥, using Cauchy for the first ε and

the convergent subsequence for the second.

Remark 3.0.2(Some random notes): Some theorems that hold in Hilbert spaces but not
necessarily Banach spaces:

Tuesday, January 18 9



3 Tuesday, January 18

Absolute continuity:

Lloc
p :

kerL = 0 may not be sufficient to guarantee bijectivity in infinite dimensions:

Tuesday, January 18 10



4 More Banach Spaces (Thursday, January 20)

Boundedness:

Bounded iff continuous:

4 More Banach Spaces (Thursday, January
20)

Remark 4.0.1: Last time: complete iff absolutely convergent implies convergent. Today: wrapping
up some results on Banach and Hilbert spaces, skipping a review of Lp spaces, and starting on
operators next week.

Remark 4.0.2: Note that S := (0, 1] is open and not complete, but clR(S) = [0, 1] is both closed
and complete. Generalizing:

More Banach Spaces (Thursday, January 20) 11



4 More Banach Spaces (Thursday, January 20)

Lemma 4.0.3(?).
A subset S ⊆ B of a Banach space is complete iff S is closed in B.

Proof (?).
⇐= : If S is closed, a Cauchy sequence (fn) in S converges to some f ∈ B. Since S is closed
in B, in fact f ∈ S.
=⇒ : Suppose that for f ∈ clB(S), there is a Cauchy sequence fn → f with fn ∈ S and
f ∈ B. Since S is complete, f ∈ S, so clB(S) ⊆ S making S closed.

■

Theorem 4.0.4(?).
For Ω ⊆ Rn, the space X = (C(Ω;C), ∥−∥∞) is a Banach space.

△! Warning 4.0.5
This is not complete with respect to any other Lp norm with p < ∞!

Proof (of theorem).
Use the lemma – write B for the space of all bounded (not necessarily continuous) functions
on Ω, which is clearly a normed vector space, so it suffice to show

• X ⊆ B is closed,
• B is a Banach space (i.e. complete).

Step 1: we’ll show clB(X) ⊆ X. Take f to be a limit point of X, then for every ε > 0 there
is a g ∈ X with ∥f − g∥ < ε. Apply the triangle inequality:

∥f∥ ≤ ∥f − g + g∥ ≤ ∥f − g∥ + ∥g∥ = ε+ C < ∞,

so f ∈ clB(X) ⊆ B since it is bounded. It remains to show f is continuous. Use that
∥f − g∥∞ < ε and continuity of g to get |g(x) − g(x0)| < ε for |x− x0| < ε. Now

|f(x) − f(x0)| = |f(x) − g(x) + g(x) − g(x0) + g(x0) − f(x0)|
≤ |f(x) − g(x)| + |g(x) − g(x0)| + |f(x0) − g(x0)|
≤ 3ε.

So X is closed in B.
Step 2: Let fn be Cauchy in B, and note that we have a pointwise bound |fn(x) − fn(x0)| ≤
∥fn − fm∥ → 0. So pointwise, fn(x) is a Cauchy sequence in C which is complete, so fn(x) →
f(x) for some f : Ω → C. We now want to show fn → f in X. Using that fn is Cauchy in X,

More Banach Spaces (Thursday, January 20) 12



4 More Banach Spaces (Thursday, January 20)

produce an N0 such that n,m ≥ N0 =⇒ ∥fn − fm∥ < ε. Now

∥f − fn∥ = sup
x∈Ω

|f(x) − fn(x)|

≤ sup
x∈Ω

sup
m≥N0

|fm(x) − fn(x)|

= sup
m≥N0

sup
x∈Ω

|fm(x) − fn(x)|

= sup
m≥N0

∥fm − fn∥

≤ ε.

Now use the reverse triangle inequality to show fn is bounded

∥f∥ − ∥fn∥ ≤ ∥f − fn∥ < ε =⇒ ∥f∥ < ∞.

Now by problem 1.13, every Cauchy sequence is bounded, so fn → f ∈ B.
■

Remark 4.0.6: Extending to vector-valued functions: for Ω ⊆ Rn, take x = [x1, · · · , xn] and
F = [f1, · · · , fm] : Cn → Cm. Then there is a Banach space

X = C(Ω,Cm), ∥f∥C1(Ω) :=
∑
i≤m

sup
x∈Ω

|f(x)| +
∑

i≤m,j≤n

sup
x∈Ω

∣∣∣∣∣ ∂fi

∂xj
(x)
∣∣∣∣∣.

Similarly define Lp(Ω), noting that ∥f∥L∞(Ω) is the essential supremum.

Theorem 4.0.7(?).
For p ∈ (1,∞), the sequence space X = (ℓp, ∥−∥ℓp) is a Banach space.

Definition 4.0.8 (Closed subspaces)
A closed subspace of a Banach space is a linear subspace M ≤ B which is norm-closed in B.

Example 4.0.9(?):

M := ker ∇· =
{
f ∈ C(Ω)

∣∣∣ ∇·f = 0
}

≤ C(Ω)

is closed, where ∇·f is the divergence of a function f .

For any S ⊆ B, one can also take the corresponding closed subspace [S] := clB span
C

{s ∈ S}, i.e. all
linear combinations of elements in S and their limits. This is called the closed linear span of S.

Exercise 4.0.10 (?)
Let B = (C[a, b], ∥−∥L∞ and for x0 ∈ [a, b] define

M :=
{
f ∈ C[a, b]

∣∣∣ f(x0) = 0
}
, N :=

{
f ∈ C[a, b]

∣∣∣ f(x0) ≤ c
}
.

More Banach Spaces (Thursday, January 20) 13



5 More Banach Spaces (Thursday, January 20)

Show that these are closed subspaces with no nontrivial open subsets of B, since any f ∈ M
can be perturbed to be nonzero at x0 with an arbitrarily small norm difference.

Remark 4.0.11: Recall that for S1 ⊆ S2 ⊆ B, S1 is dense in S2 iff clS2(S1) = S2. Recall
Weierstrass’ theorem: for Ω ⊆ Rn is closed and bounded and write O := R[x1, · · · , xn] for the
polynomials in n variables. Then O ⊆ C(Ω), and clC(Ω)O = C(Ω), i.e. O is a dense subspace in the
L∞ norms. In fact, piecewise linear functions are dense.

Remark 4.0.12: Norms are equivalent iff c1∥f∥a ≤ ∥f∥b ≤ c2∥f∥a for some constants ci. All
norms on Rn (resp. Cn) are equivalent.

Example 4.0.13(?): For a > 0, f ∈ C[0, 1], define

∥f∥ := sup
x∈I

∣∣e−axf(x)
∣∣,

which can be thought of as a weighting on the uniform norm which de-emphasizes the tails of
functions near the endpoints. This is equivalent to ∥−∥∞, since

ea sup |f | ≤ sup
∣∣e−axf

∣∣ ≤ 1 · sup |f |.

Remark 4.0.14: Note that a basis for a norm can be used as a basis with respect to an equivalent
norm in finite dimensions. In infinite dimensions this may not hold – e.g. for Fourier series,
{ek(x)}k∈Z is not a basis for C[0, 2π] with the sup norm.

Definition 4.0.15 (Separable Banach spaces)
An B ∈ B is separable iff X contains a countable dense subset S = {fk}k≥0 such that for
each f ∈ B and ε > 0, there is an fk ∈ S with ∥f − fk∥ < ε.

Example 4.0.16(?): Show that

• Ω ⊆ Rn a bounded subset, C(Ω), ∥−∥sup is separable.
• ℓp is separable for p ∈ (1,∞).
• ℓ∞ is not separable.

E 4.1 Random Notes e

Remark 4.1.1:

4.1 Random Notes 14



5 Tuesday, January 25

5 Tuesday, January 25

Remark 5.0.1: • Inner products:

– ⟨f, f⟩ ≥ 0 and ⟨f, f⟩ = 0 ⇐⇒ f = 0
– ⟨f, g + h⟩ = ⟨f, g⟩ + ⟨f, h⟩
– ⟨f, g⟩ = ⟨g, f⟩
– ⟨αf, g⟩ = α⟨f, g⟩

• A pre-Hilbert space is an inner-product space.
• Example: ⟨f, g⟩ :=

∫
Ω
w(x)f(x)g(x) dx for f, g ∈ C(Ω), where w is any weighting function.

• Example: ⟨f, g⟩ =
∑

figi for f, g ∈ Cn.
• Inner products induce norms: ∥f∥ :=

√
⟨f, f⟩

– Orthogonality: write f ⊥ g iff ⟨f, g⟩ = 0 and S⊥ =
{
f ∈ H

∣∣∣ f ⊥ s ∀s ∈ S
}

.

• Definition of a Hilbert space: a pre-Hilbert space complete with respect to the norm induced
by its inner product.

• Recall C(Ω) with ⟨f, g⟩ :=
∫

Ω
fg is not complete, thus not a Hilbert space.

• Example: a common optimization problem, argmin∥x∥ such that Ax = 0.

Theorem 5.0.2(Cauchy-Schwarz).

|⟨f, g⟩| ≤ ∥f∥∥g∥.

Proof (?).
Use ⟨f, g⟩ = |f ||g| cos θfg where |cos θ| ≤ 1. - Assume g ̸= 0, then STS

〈
f,

g

∥g∥

〉
≤ ∥f∥. -

Use

0 ≤ ∥f − ⟨f, g⟩g∥2

= ⟨f − ⟨f, g⟩g, f − ⟨f, g⟩g⟩
= ⟨f, f⟩ − ⟨f, g⟩⟨g, f⟩ − ⟨f, g⟩⟨f, g⟩ + ⟨f, g⟩⟨f, g⟩
= ∥f∥2 − |⟨f, g⟩|2.

■

Theorem 5.0.3(Closest approximations).
Let f ∈ M ≤ H be a closed (and thus complete) subspace of a Hilbert space H. Then there is
a unique element g in H closest to M in the norm.

Tuesday, January 25 15



5 Tuesday, January 25

Proof (?).
Let d := dist(f,M), choose a sequence gn ∈ M such that ∥f − gn∥ → d, which is possible since
d = inf

g∈M
∥f − g∥. Apply the parallelogram law to write

∥gn − gm∥2 = ∥(gn − f) − (gm − f)∥2

= 2∥gn − f∥2 + 2∥gm − f∥2 − 4
∥∥∥∥1

2(gn + gm) − f

∥∥∥∥2

≤ 2∥gn − f∥2 + 2∥gm − f∥2 − 4d2

≤ 2d2 + 2d2 − 4d2

= 0,

so the gn are Cauchy. Here we’ve used that 1
2(gn + gm) = m ∈ M since M is a subspace, and

∥m− f∥ ≥ d. Since M is complete, gn → g ∈ M and moreover ∥f − g∥ = d. For uniqueness,
if
∥∥f − g′∥∥ = d then ∥∥∥∥f − 1

2(g + g′)
∥∥∥∥2

= d2 −
∥∥g − g′∥∥2

< d2 E.

■

Theorem 5.0.4(Projection theorem).
Let M ≤ H be a closed subspace of a Hilbert space. Then M⊥ ≤ H is closed, and H = M⊕M⊥.
In the decomposition f = g+ h, in fact g ∈ M is the closest approximation to f in M , making
this decomposition unique.

Proof (?).
STS H = M + M⊥ by the exercises. If f ∈ M , take f = g + h where g = f and h = 0, so
suppose f ̸∈ M . Let g = argmin dist(f,M) ∈ M , and we claim f − g ∈ M⊥, so ⟨f − g, h⟩ = 0
for any h ∈ M . For all h ∈ M and α > 0, we have g + αh ∈ M , so

∥f − g∥2 ≤ ∥f − (g + αh)∥2

= ∥f − g∥2 − 2ℜα⟨h, f − g⟩ + α2∥h∥2,

so

2ℜα⟨h, f − g⟩ ≤ α2∥h∥2 =⇒ 2ℜ⟨h, f − g⟩ ≤ α∥h∥2 α→0−→ 0,

so ℜ⟨h, f − g⟩ = 0. Similarly ℑ⟨h, f − g⟩ = 0.
■

Exercise 5.0.5 (?)
Show S⊥ is closed for any S ∈ H, and in fact S⊥ = span

C
(clH(S))⊥, and if f ∈ S ∩ S⊥ then

f = 0.

Tuesday, January 25 16



6 Thursday, January 27

Exercise 5.0.6 (?)
Prove the parallelogram law

∥f − g∥2 + ∥f + g∥2 = 2∥f∥2 + 2∥g∥2.

6 Thursday, January 27

Remark 6.0.1: Notes:

• Bessel: ∑
n

|⟨f, φn⟩| ≤ ∥f∥2, ∥f∥ :=
√

⟨f, f⟩.

– Prove using the fact that

0 ≤

∥∥∥∥∥∥f −
∑

n≤m

⟨f, φn⟩φn

∥∥∥∥∥∥
2

= ∥f∥2 −
∑

n≤m

|⟨f, φn⟩|2.

• Best fit: ∥∥∥∥∥∥f −
∑

n≤m

cnφn

∥∥∥∥∥∥ ≥

∥∥∥∥∥∥f −
∑

n≤m

⟨f, φn⟩φn

∥∥∥∥∥∥,
so define projections PM (f) :=

∑
⟨f, φn⟩φn for span {φn} = M .

– Prove using ∥∥∥∥∥∥f −
∑

n≤m

cnφn

∥∥∥∥∥∥ = ∥f∥2 −
∑

n≤m

|⟨f, φn⟩|2 +
∑

n≤m

|⟨f, φn⟩ − cn|2

≥ ∥f∥2 −
∑

n≤m

|⟨f, φn⟩|2.

• Hilbert spaces are separable: have countable dense subsets.

– ℓ∞(Z) is not separable.

• For {φn} orthonormal and {cn} scalars,
∑

cnφn is convergent iff {an} ∈ ℓ2(Z), so
∑

|cn|2 <
∞. If it converges, it can be rearranged, and∥∥∥∑ cnφn

∥∥∥2
= ∥{cn}∥2

ℓ2(Z) =
∑

|cn|2.

– To prove, use that

∥∥∥∥∥∥
∑

i≤n≤j

cnφn

∥∥∥∥∥∥
2

=
∑

i≤n≤j

|cn|2, so the sequence {Sm}m≥0 where Sm :=∑
n≤m

cnφn is Cauchy since
∑

|cn|2 converges.
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7 Tuesday, February 01

– If g =
∑

cnφn and f =
∑

cmnφmn is a rearrangement, if {cn} ∈ ℓ2 then ∥f∥2 = ∥g∥2 =∑
|cn|2. Then ∥f − g∥2 = ∥f∥2 +∥g∥2 −2ℜ⟨f, g⟩, but ⟨f, g⟩ =

∑
|cn|2, so ∥f − g∥ = 0.

• If K = {φn} ⊆ H is a proper subset, so span {φn} ̸= H, write PK(f) =
∑

⟨f, φn⟩φn. Then
PK(f) = 0 if f ∈ cl(K)⊥, PK(f) = f if f ∈ cl(K), and if f ̸∈ K, since cl(K) ≤ H is closed then
there exists a g ∈ cl(K) where ∥f − g∥ = dist(f,K). Write f = h+ (f − g) ∈ cl(K) ⊕ cl(K)⊥,
so f = PKf + (I − PK)f .

• Recall complete subspaces of Banach spaces are closed.
• Next theorem: every separable Hilbert space admits an orthonormal basis.

Theorem 6.0.2(?).
If H is a separable Hilbert spaces and K = {φn} is an orthonormal set, then TFAE

• K is complete, i.e. K⊥ = 0 (taking the closure is not needed),
• clspanK = H,
• K is an orthonormal basis,
• For all f ∈ H, ∥f∥ =

∑
n≥0

|⟨f, φn⟩|2 (Parseval).

Remark 6.0.3: Note ⟨f, φn⟩ is the nth Fourier coefficient f̂(ξ) =
∑

⟨f, φn⟩φn(ξ), and Parseval

says ∥f∥2 =
∥∥∥f̂∥∥∥2

.

Proof (?).
1 =⇒ 2: Let f ∈ H \ cl span(K) and project, so f = g + h with g, h ̸= 0. But g ∈ cl span(K)
and h ∈ cl span(K)⊥ = 0, forcing K⊥ = cl(K)⊥ ̸= 0. E
2 =⇒ 3: Follows directly from previous lemma that f = PKf + (I − PK)f .
3 =⇒ 4: Write f ∈ H as f =

∑
⟨f, φn⟩φn by sending m → ∞ in the previous lemma.

4 =⇒ 1: Toward a contradiction, suppose f ̸= 0 ∈ K⊥. Then ∥f∥ ≠ 0 but ⟨f, φn⟩ = 0 for
all n, contradicting Parseval. E

■

7 Tuesday, February 01

Remark 7.0.1: Notes:

• Assume H is a separable Hilbert space: there exists a countable set of vectors {vi}i∈Z which
span a subspace that is dense in H, so cl(span {vi}) = H.

• Complete subspaces: M ≤ H with M⊥ = 0.
• Show that for any S ⊆ H, S⊥ is closed in H, S⊥ = (cl spanS)⊥, and f ∈ S ∩ S⊥ =⇒ f = 0.
• If K = {φk}k∈Z is an orthonormal set in H, then TFAE

– K ≤ H is a complete subspace, so K⊥ = 0, i.e. ⟨f, φk⟩ = 0 for all k implies f = 0.

Tuesday, February 01 18



7 Tuesday, February 01

– cl spanK = H, so every f ∈ H is the limit of a sequence of vectors from spanK.
– K is an orthonormal basis
– Parseval: equality in Bessel, i.e. ∥f∥ =

∑
|⟨f, φk⟩|2

• Lemma: if M,N ≤ H with dimM < dimN , then M⊥ ∩N ̸= 0.

– Without loss of generality assume dimN = n + 1 where n := dimM , take a basis
{ψk}k≤n+1 for N .

– Try to find f ∈ N with f ⊥ M , i.e. coefficients {bi}i≤n with
∑

biψi ⊥ φk for every φk

basis elements of M .
– This is a linear system of n equations in n+ 1 unknowns, so it has a nontrivial solution.

• Theorem, orthonormal bases are stable: if {φk} is an orthonormal basis and {ψk} is an
orthonormal system, if

∑
∥φk − ψk∥2 < ∞ then {ψk} is a basis.

– Assume note, then find a ψ0 ∈ H with ∥ψ0∥ = 1 and ⟨ψ0, ψj⟩ = 0 for all j.
– Choose N ≫ 1 so that

∑
k≥N

∥ψk − φk∥ < 1.

– Use previous lemma to produce w ∈ span {ψ0, ψ1, · · · , ψN } with w ̸= 0 and w ⊥ φj for
all j ≤ N .

– Note w ⊥ span {ψn}n>N .
– Apply Parseval:

0 < ∥w∥2

=
∑
n≥1

|⟨w, φn⟩|2

=
∑

n≥N+1
|⟨w, φn⟩|2

=
∑

n≥N+1
|⟨w, φn − ψn⟩|2

≤ ∥w∥2 ∑
n≥N+1

∥φn − ψn∥2

< ∥w∥2 · 1,

where we’ve used that ⟨w, ψn⟩ = 0 for n ≥ N . E

• H admits a countable orthonormal basis iff H is separable.

– =⇒ : clear, since the basis is countable, and every element is a limit of partial sums
against the basis.

– ⇐= : Gram-Schmidt.
♢ h1 = ψ1 and φ1 = h1/∥h1∥
♢ hn = ψn −

∑
1≤k≤n−1

⟨ψk, φk⟩φk and normalize.

• Exercise: a closed subspace of a separable Hilbert space is separable.
• Linearly isometric inner product spaces: E ∼ F iff there is a map A : E ↠ F with

– A(au+ bv) = aAu+ bAv
– ∥Au∥F = ∥u∥E
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• Theorem: if H1,H2 are infinite dimensional separable Hilbert spaces, then H1 ∼ H2. Thus
for any Hilbert space H over C, H ∼ ℓ2(C).

– Pick orthonormal bases {φk} ⊆ H1, {ψk} ⊆ H2.
– For u ∈ H1, define Au :=

∑
⟨u, φk⟩ψk, which converges – this will be the linear isometry,

and satisfies condition (i).
– Check ∥Au∥2

H2
=
∑
k≥1

|⟨u, φk⟩|2 = ∥u∥H2
, which is condition (ii).

– Check A is surjective: for y ∈ H2, write y =
∑

k

⟨y, ψk⟩ψk = Av for v :=
∑

k

⟨y, ψk⟩φk ∈

H1.

• Non-separable spaces: look at almost-periodic functions.

– E.g.
∑
k≤n

ck exp(iλkt) for λk ∈ R.

8 Tuesday, February 08

Remark 8.0.1: Motivating question: when is an operator equation solvable? Today: relation
between boundedness and continuity for linear operators. Nonlinear operators next week.

• A map of vector spaces V → W is a linear map defined on some domain D(A) ⊆ V , where
D(A) need not equal V .

– Notation: A(f) = Af = g.
– Af ⊆ W is the image of f , and R(A) :=

{
Af

∣∣∣ f ∈ D(A)
}

⊆ W is the range. Preimages

of S ⊆ W : A−1(S) =
{
f
∣∣∣ f ∈ D(A) and Af ∈ S

}
.

• We distinguish operators with different domains, e.g. Af := f ′ can be the formula for distinct
operators A1, A2 where D(A1) = C∞[0, 1] ⊆ C0[0, 1] or D(A2) = C1[0, 1] ⊆ C0[0, 1], so
A1 ̸= A2.

– I.e. A1 = A2 ⇐⇒ D(A1) = D(A2) and A1f = A2f for all f ∈ D(A1) = D(A2).
– If A1f = A2f with D(A1) ⊆ D(A2), say A2 is an extension of A1. The extension is

proper iff D(A1) ̸= D(A2).

• Example operator: the Laplace equation ∆f = g where ∆ = ∂xx + ∂yy. We can take domains
g ∈ C[0, 1], L2[0, 1], H2[0, 1] =

{
f ∈ L2(0, 1)

∣∣∣ ∂xxf, ∂yyf ∈ L2(0, 1)
}

.

– Why domains matter: boundary conditions affect what eigenfunctions you get. Examples
where A1 ̸= A2:

– Dirichlet boundary conditions: ∆f = g, f |∂Ω = 0. The relevant solution spaces is
D(A1) =

{
φ ∈ C2[0, 1]2

∣∣∣ φ|∂Ω = 0
}

for A1φ := ∆φ.
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9 Tuesday, February 15

– Neumann boundary conditions: ∆f = g,
∂f

∂n

∣∣∣∣
∂Ω

= 0, i.e. there is no flux across the

boundary. The relevant solution space is D(A2) =
{
ψ ∈ C2[0, 1]2

∣∣∣ ∂ψ
∂n

∣∣∣∣
∂Ω

= 0
}

for
A2ψ := ∆ψ.

• Injectivity: for A : V → W , for every g ∈ R(A) there is exactly one f ∈ D(A) with Af = g.
Equivalently for linear operators, Af = 0 =⇒ f = 0.

• Surjectivity: R(A) = W .
• Example: A := x 7→ sin(x) regarded as a function A : R → R is neither surjective nor injective:
R(A) = [−1, 1] ⊊ R, and sin(πZ) = 0.

• Linearity: for Lf = g, L is linear if L(af + bg) = aLf + bLg.

Exercise 8.0.2 (?)
Show that the following are equivalent conditions for continuity of A : V → W at f0 ∈ D(A):

• ∥Af −Af0∥W < ε for all f ∈ D(A) with ∥f − f0∥V < δ
• For every sequence {fk} → f0, Afk → Af0.
• Preimages of open sets in W are again open in V .

9 Tuesday, February 15

Remark 9.0.1: Last time:

• Continuous operators are bounded:

– If ∥Lfn∥ = 1 and ∥fn∥ → 0, check lim(Lfn) = L(lim fn) = L0 = 0.
– Take norms to contract ∥Lfn∥ = 1.

Theorem 9.0.2(3.4.4).
If L : B → C with dense image (so clB(D(L)) = B), if L is continuous on D(L) then it has a
unique extension L̃ to all of B, so D(L̃) = B, with ∥L∥ =

∥∥∥L̃∥∥∥.
Proof (of theorem).
In steps:

• Defining the extension:

– For f ∈ B, pick fn → f with fn ∈ D(L) using density.
– Convergent implies Cauchy, so estimate:

∥Lfn − Lfm∥ = ∥L(fn − fm)∥ ≤ ∥L∥∥fn − fm∥ → 0.

– Thus Lfn is Cauchy, by completeness Lfn → g for some g.
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• Preservation of norm:

– Define the extension as L̃f := g, by continuity it is independent of the sequence
{fk} → f .

– Check that L̃ is a bounded operator:∥∥∥L̃f∥∥∥ := ∥g∥ = ∥limLfn∥ = lim ∥Lfn∥ ≤ lim ∥L∥∥fn∥ = ∥L∥∥f∥

=⇒
∥∥∥L̃∥∥∥ ≤ ∥L∥.

– Since ∥A∥op is defined in terms of sups over test functions in D(A) for any operator
A and here D(L̃) ⊇ D(L) is a larger set, we have

∥∥∥L̃∥∥∥ ≥ ∥L∥ by definition, yielding∥∥∥L̃∥∥∥ = ∥L∥.

• Uniqueness of the extension:

– Take L̃1, L̃2 extending L, then

L̃1f = lim L̃1fn = limLfn = lim L̃2fn = L̃2f.

– Use linearity:

L̃1f − L̃2f = (L̃1 − L̃2)f = 0 =⇒ L̃1 − L̃2 = 0.

■

Example 9.0.3(?): Let L ∈ L(Cn,Cn) be defined in coordinates by (Lf)i :=
∑

1≤j≤n

αijfj for

1 ≤ i ≤ n. Take ∥−∥ℓ∞ and check

∥Lf∥∞ := sup
i

∣∣∣∑αijfj

∣∣∣
≤
(

sup
i

∑
|αij |

)
sup

j
|fj |

:= m∥f∥ℓ∞ .

So ∥L∥ ≤ m, where m is the largest row sum. Is there an f for which equality holds? In this case,
we’d need

∥Lf∥ℓ∞ ≥ m∥f∥ℓ∞ .

Identify the row k so that m =
∑

1≤j≤n

|αkj |. Set f to be a unit vector with coefficients (f)j =
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αkj/|αkj |. Then

∥Lf∥∞ = sup
i

∣∣∣∣∣∣
∑

j

αijfj

∣∣∣∣∣∣
≥

∣∣∣∣∣∣
∑

j

αkjfj

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

j

αkjαkj/|αkj |

∣∣∣∣∣∣
=
∑

j

|αkj |

= m∥f∥ℓ∞ .

So the answer is yes in this case. Does this also work for ∥−∥ℓp with p ∈ (1,∞)? Recall Holder’s
inequality: ∣∣∣∑αijfj

∣∣∣ ≤
(∑

|αij |q
) 1

q
(∑

|fj |p
) 1

p

=
(∑

|αij |q
) 1

q ∥f∥ℓp .

Check that

∥Lf∥p
ℓp =

∑
i

|(Lf)i|p

=
∑

i

∣∣∣∣∣∣
∑

j

αijfj

∣∣∣∣∣∣
p

≤
∑

i

∑
j

|αij |


p
q

∥f∥p
ℓp ,

where we’ve applied Holder in the last line. Thus

∥L∥ ≤

∑
i

∑
j

|αij |


p
q


1
p

.

Exercise 9.0.4(?)
Is there an f that attains this bound in the ℓp case?

Remark 9.0.5: For L ∈ L(C∞,C∞) defined by (Lf)i =
∑

j≥11
αijfj for j ≥ 1, one needs a notion

of convergence of the coordinates αij in order for L to be bounded. A sufficient condition is
m := sup

i

∑
j≥1

|αij | < ∞.
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9 ToDos

Definition 9.0.6 (?)
Some notation:

∥∥α∥∥1 := sup
j

∑
i

|αij |

∥∥α∥∥p :=

∑
i

∑
j

|αij |q


p
q


1
p

∥∥α∥∥∞ := sup
i

∑
j

|αij |.

Remark 9.0.7: Note that if L : ℓp → ℓp, then ∥L∥ ≤ ∥∥α∥∥p for p ∈ [1,∞) and for p = ∞ this is
an equality.

Example 9.0.8(Kernels): Consider C[a, b] with ∥−∥∞ and k ∈ C0([a, b]×2
,C). Define

K : C[a, b] → C[a, b]

f 7→
∫ b

a
k(x, y)f(y) dy.

What is ∥K∥? Estimate

∥Kf∥ ≤ sup
y∈[a,b]

|f(y)| sup
x∈[a,b]

∫ b

a
|k(x, y)| dy

≤ ∥f∥∞∥k∥∞,

so ∥K∥ ≤ ∥k∥∞.

Define

∥∥k∥∥1 := sup
y

∫
|k| dx

∥∥k∥∥p :=
(∫ (∫

|k|q dy
) p

q

dx

) 1
p

∥∥k∥∥∞ := sup
x

∫
|k| dy.

ToDos

List of Todos
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