# Tuesday, January 18 :::{.remark} Last time: - $\norm{f}_{\ell^p} = \qty{\sum \abs{f_n} ^p}^{1\over p}$ - $\norm{f}_{\ell^ \infty} = \sup_{n} \abs{f_n}$. Today: - $\ell_p = \ts{f \da (f_n) \st \norm{f}_{\ell^p} < \infty }$. - Example: set $f^k \da (0, 0, \cdots, 1, 1, \cdots)$ with zeros for the first $k-1$ entires and ones for all remaining entries. Then $f^k_i \convergesto{k\to\infty}0$ for each fixed component at index $i$. So $f^k \to (0)$ component-wise, but $\norm{f_k}_{\ell^\infty} = 1$ for every $k$, so this doesn't converge in $\ell_\infty$. - Recall the $\eps\dash\delta$ and limit definitions of continuity. - Recall the definition of uniform continuity. - For $\Omega \subseteq \RR^n$, write $C(\Omega)$ for the $\RR\dash$vector space of continuous bounded functionals $f: \Omega\to \CC$ with the norm $\norm{f}_{L^\infty} = \sup_{x\in \Omega} \abs{f(x)}$. - Define $C^k(\Omega, \CC^m)$ to be functions with $k$ continuous partial derivatives which are bounded, and set $C^\infty(\Omega, \CC^m) = \intersect _{k\geq 0} C^k(\Omega, \CC^m)$. Define a norm $\norm{f}_{C^k} = \sum_{j\leq k} \sup_{x\in \Omega} \abs{f^{(j)} (x)}$. - Take $g(x) = 2-x^2$ and consider $\BB_{1\over 2}(g)$ in $C[0, 1]$ with $\norm{\wait}_{L^\infty}$. - Show that convergent implies Cauchy-convergent using the triangle inequality. - Lipschitz with $\abs{c} < 1$ implies Cauchy. - Lemma 1.4.2: $\norm{f_{n+k} - f_n} \leq q^n (1-q)^{-1} \norm{f_1 - f_0}$ for all $k\geq 0$. Use \[ \norm{f_{n+k} - f_n} = \norm{\sum_{j=1}^k (f_{n+j} - f_{n+j-1} ) } \leq \norm{f_1 - f_0} \sum_{j=1}^k q^{n+j-1} \convergesto{n\to\infty}0 .\] - Counterexample, not all normed spaces are complete: take $V = C[-1, 1]$ with $\norm{f}_{L^1} \da \int_{-1}^1 \abs{f(x) }\dx$. Define a sequence of functions $(f_n)$: ![](figures/2022-01-18_15-09-38.png) Check that $\norm{f_{n+1} - f_n}_{L^1} \leq q \norm{f_n - f_{n-1}}_{L^1}$, and pointwise $f_n \to \chi_{[-1, 0]}$ which is discontinuous and not in $C[-1, 1]$. - Banach spaces: complete normed vector spaces. - Series: - Convergent: $f \da \lim_N \sum_{n\leq N} f_n \in V$. - Absolute convergence: $\sum \norm{f_n} < \infty$. - In a Banach space, absolutely convergent series can be rearranged. - Theorem: A normed space is complete iff absolute convergence $\implies$ convergence. Proof: - Step 1: show that every Cauchy sequence has a convergent subsequence. - Set $a_n \da \sup_{m > n} \norm{f_n - f_m}$, then Cauchy implies $a_n\to 0$ in $\RR$. - Get a convergent subsequence $a_{n_j} \leq j^{-2}$. - Set $g_j \da f_{n_j} - f_{n_{j+1}}$, then $g\da \sum g_j$ absolutely converges, say to $g$. - Note $f_{n_i} - f_{n_{i+1}} = \sum_{j=1}^i g_j$, so the subsequence $(f_{n_j})$ is convergent. - Step 2: use this to show that the original sequence $(f_n)$ converges. - Set $f = \lim f_n$, then $\norm{f_n - f} \leq \norm{f_n - f_{n_i}} + \norm{f_{n_i} - f}$, using Cauchy for the first $\eps$ and the convergent subsequence for the second. ::: --- :::{.remark title="Some random notes"} Some theorems that hold in Hilbert spaces but not necessarily Banach spaces: ![](figures/2022-01-18_14-48-04.png) ![](figures/2022-01-18_14-48-13.png) ![](figures/2022-01-18_14-54-38.png) Absolute continuity: ![](figures/2022-01-18_14-55-21.png) ![](figures/2022-01-18_14-56-04.png) $L_p^\loc$: ![](figures/2022-01-18_14-57-54.png) $\ker L = 0$ may not be sufficient to guarantee bijectivity in infinite dimensions: ![](figures/2022-01-18_15-27-21.png) Boundedness: ![](figures/2022-01-18_15-28-55.png) Bounded iff continuous: ![](figures/2022-01-18_15-29-25.png) :::