# Tuesday, February 15 :::{.remark} Last time: - Continuous operators are bounded: - If $\norm{Lf_n} = 1$ and $\norm{f_n} \to 0$, check $\lim (Lf_n) = L(\lim f_n) = L0 = 0$. - Take norms to contract $\norm{Lf_n} = 1$. ::: :::{.theorem title="3.4.4"} If $L: B\to C$ with dense image (so $\cl_B(D(L)) = B$), if $L$ is continuous on $D(L)$ then it has a unique extension $\tilde L$ to all of $B$, so $D(\tilde L) = B$, with $\norm{L} = \norm{\tilde L}$. ::: :::{.proof title="of theorem"} In steps: - Defining the extension: - For $f\in B$, pick $f_n \to f$ with $f_n \in D(L)$ using density. - Convergent implies Cauchy, so estimate: \[ \norm{Lf_n - Lf_m} = \norm{L(f_n - f_m)} \leq \norm{L} \norm{f_n - f_m} \to 0 .\] - Thus $Lf_n$ is Cauchy, by completeness $Lf_n \to g$ for some $g$. - Preservation of norm: - Define the extension as $\tilde L f \da g$, by continuity it is independent of the sequence $\ts{f_k}\to f$. - Check that $\tilde L$ is a bounded operator: \[ \norm{\tilde L f} \da \norm{g} = \norm{\lim L f_n} = \lim \norm{Lf_n} \leq \lim \norm{L} \norm{f_n} = \norm{L} \norm{f} \\ \implies \norm{\tilde L} \leq \norm{L} .\] - Since $\norm{A}_{\op}$ is defined in terms of sups over test functions in $D(A)$ for any operator $A$ and here $D(\tilde L) \contains D(L)$ is a larger set, we have $\norm{\tilde L} \geq \norm{L}$ by definition, yielding $\norm{\tilde L} = \norm{L}$. - Uniqueness of the extension: - Take $\tilde L_1, \tilde L_2$ extending $L$, then \[ \tilde L_1 f = \lim \tilde L_1 f_n = \lim L f_n = \lim \tilde L_2 f_n = \tilde L_2 f .\] - Use linearity: \[ \tilde L_1 f - \tilde L_2 f = (\tilde L_1 - \tilde L_2)f = 0 \implies \tilde L_1 - \tilde L_2 = 0 .\] ::: :::{.example title="?"} Let $\mcl \in L(\CC^n, \CC^n)$ be defined in coordinates by $(\mcl f)_i \da \sum_{1\leq j\leq n} \alpha_{ij} f_j$ for $1\leq i\leq n$. Take $\norm{\wait}_{\ell^\infty}$ and check \[ \norm{Lf}_\infty &\da \sup_i \abs{\sum \alpha_{ij} f_j} \\ &\leq \qty{ \sup_i \sum \abs{\alpha_{ij} } } \sup_j \abs{f_j} \\ &\da m \norm{f}_{\ell^\infty} .\] So $\norm{L} \leq m$, where $m$ is the largest row sum. Is there an $f$ for which equality holds? In this case, we'd need \[ \norm{Lf}_{\ell^\infty} \geq m \norm{f}_{\ell^\infty} .\] Identify the row $k$ so that $m = \sum_{1\leq j\leq n} \abs{\alpha_{kj}}$. Set $f$ to be a unit vector with coefficients $(f)_j = \bar{\alpha_{kj}} / \abs{\alpha_{kj}}$. Then \[ \norm{Lf}_\infty &= \sup_i \abs{ \sum_j \alpha_{ij} f_j } \\ &\geq \abs{\sum_j \alpha_{kj} f_j } \\ &= \abs{\sum_j \alpha_{kj} {\bar \alpha_{kj} / \abs{\alpha_{k j}} } } \\ &= \sum_j \abs{\alpha_{kj}} \\ &= m \norm{f}_{\ell^\infty} .\] So the answer is yes in this case. Does this also work for $\norm{\wait}_{\ell^p}$ with $p\in (1, \infty)$? Recall Holder's inequality: \[ \abs{\sum \alpha_{ij} f_j } &\leq \qty{ \sum \abs{\alpha_{ij}}^q }^{1\over q} \qty{\sum \abs{f_j}^p }^{1\over p} \\ &= \qty{ \sum \abs{\alpha_{ij}}^q }^{1\over q} \norm{f}_{\ell^p} .\] Check that \[ \norm{Lf}_{\ell^p}^p &= \sum_i \abs{(Lf)_i }^p \\ &= \sum_i \abs{\sum_j \alpha_{ij} f_j }^p \\ &\leq \sum_i \qty{ \sum_j \abs{\alpha_{ij} } }^{p\over q} \norm{f}_{\ell^p}^p ,\] where we've applied Holder in the last line. Thus \[ \norm{L} \leq \qty{ \sum_i \qty{ \sum_j \abs{ \alpha_{ij}} }^{p\over q} }^{1\over p} .\] :::{.exercise title="?"} Is there an $f$ that attains this bound in the $\ell^p$ case? ::: ::: :::{.remark} For $\mcl \in L(\CC^\infty, \CC^\infty)$ defined by $(Lf)_i = \sum_{j\geq 11} \alpha_{ij} f_j$ for $j\geq 1$, one needs a notion of convergence of the coordinates $\alpha_{ij}$ in order for $\mcl$ to be bounded. A sufficient condition is $m\da \sup_i \sum_{j\geq 1} \abs{\alpha_{ij}} < \infty$. ::: :::{.definition title="?"} Some notation: \[ \normm{\alpha}_1 &\da \sup_j \sum_i \abs{ \alpha_{ij}} \\ \normm{\alpha}_p &\da \qty{ \sum_i \qty{ \sum_j \abs{\alpha_{ij} }^{q} }^{p\over q} }^{1\over p} \\ \normm{\alpha}_\infty &\da \sup_i \sum_j \abs{ \alpha_{ij}} .\] ::: :::{.remark} Note that if $\mcl: \ell^p\to \ell^p$, then $\norm{L} \leq \normm{\alpha}_p$ for $p\in [1, \infty)$ and for $p=\infty$ this is an equality. ::: :::{.example title="Kernels"} Consider $C[a, b]$ with $\norm{\wait}_\infty$ and $k\in C^0( [a,b]\cartpower{2}, \CC)$. Define \[ K: C[a, b] &\to C[a, b] \\ f &\mapsto \int_a^b k(x, y) f(y) \dy .\] What is $\norm{K}$? Estimate \[ \norm{Kf} &\leq \sup_{y\in [a, b]}\abs{f(y)} \sup_{x\in [a, b]} \int_a^b \abs{k(x, y)} \dy \\ &\leq \norm{f}_\infty \norm{k}_\infty ,\] so $\norm{K} \leq \norm{k}_\infty$. Define \[ \normm{k}_1 &\da \sup_y \int \abs{k} \dx \\ \normm{k}_p &\da \qty{\int \qty{ \int \abs{k}^q \dy }^{p\over q} \dx }^{1\over p} \\ \normm{k}_\infty &\da \sup_x \int \abs{k} \dy .\] :::