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Tuesday, January 11

1 ‘ Tuesday, January 11

Remark 1.0.1: This course: solving Lf = g for L a linear operator, in analogy to solving Az =b
in matrices. References:

e Hutson-Pym-Cloud, Applications of Functional Analysis and Operator Theory
e Reed-Simon, Methods of Modern Mathematical Physics
e Brezis, Functional Analysis, Sobolev Spaces, and PDFEs

Remark 1.0.2: The issue when passing to infinite-dimensional vector spaces: the topology matters.
E.g. the closure of the unit ball is closed and bounded and thus compact in finite dimensions, but
this may no longer be true in R* or C*>. Recall that a Banach space is a complete normed space,
and is further a Hilbert space if the norm is induced by an inner product. See the textbook for a
review of vector spaces, metric spaces, norms, and inner products.

Example 1.0.3(?): Our first example of infinite dimensional vector spaces: sequence spaces ¢ with
elements f := (f1, f2,---) with each f; € R.

Remark 1.0.4: Linear subspaces are subspaces that contain zero, as opposed to affine subspaces.
An example is Cy([0, L];R) < C([0, L]; R), the subspace of bounded continuous functionals on [0, L]
which vanish at the endpoints. For any subset S C V', write [S] or span S for the linear span of S:
all finite linear combinations of elements in S.

Example 1.0.5(%): Let V = C(]—1,1]) and x; # z2 € [—1, 1], and set M; := {f eV ’ flzi) = O}.
Then M; < V is a linear subspace, and in fact V = M; + My but V # M; & M since the zero
function is in both subspaces.
1
Remark 1.0.6: Limits of finite operators are compact. The classical example: set (An)i; = —,
i
11 1 1
Z. Z.....—). Then Spec Ay = ¢ =
72737 ’N> €n Spec AN {n}n<N
0 € Spec(A) as an accumulation point. Exercise: what is ker A? Is it nontrivial?

so Ay = diag (1 , but A = li]{fn Ay is an operator with

Definition 1.0.7 (Convexity)
A subset S C V is convex iff

tf+(1—t)geS VYf,geS, Vte(0,1].

Equivalently,

af + bg
a-+b

€S Vf,geS, Va,b>0

where not both of a and b are zero. The convex hull of S is the smallest convex set containing

S.
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Tuesday, January 11

Remark 1.0.8: Recall Holder’s inequality:

IFglly < 171, - Nlgllg

Schwarz’s inequality

[(F ol < UMl (171 = (s )

and Minkowski’s inequality

1 +gll, < W1, + Mlgll,-

A nice proof of Cauchy-Schwarz:

0 < |If = (f, h)h|
=(f = (fi W), f = (£, h)h)
= (. ) = (£, R)(h, ) = (£, B)(F, B) + (£ R)(F, )
= 11> = (£, )%

aw e m mmaa s m ma wom R & e [——

0 h A B

Figure 1.4: In B2, OA,OC represent h, f respectively, while OB is (f, k).
The relation proved in 1.5.5, || f — (f,h)h"2 = ||f||2 — |(f, h)|?, is simply
Pythagoras’ theorem.
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Thursday, January 13

2 ‘ Thursday, January 13

Remark 2.0.1: My notes:

« K C#H is complete iff K+ = 0.
« Bessel: for f € H write fn == (f, en)en, then [[(fo)llpzc) < ||f||$_l

}f - chenH > Hf - anenH
« For {e,} orthonormal, (c,) € £*(C) <= chen converges. If the series converges, it can

be rearranged.
o Differentiating through an integral:

« Best estimate: for any other sequence (c,) € £*(C),

2.4.16 Theorem. Assume that f(-,y) is differentiable for eachy € Y, and
that f(x,-) is integrable for each x € X. Suppose that there is an integrable
function g: Y — R such that |8f/0z(z,y)| < gly) forallz € X,y €Y.
Then F defined by (2.4.1) s differentiable, and

%(;g) = fy %(ﬂh y) du(y).

e Parseval, Plancherel, and Fourier inversion:

Thursday, January 13 5



Thursday, January 13

e m g T S m mmm mm mm s mm mmmm —mm e mmm ms e == =g e =3 === ittt Tl Bl -

version of the well-known Fourier Integral Theorem i is given here.

2.6.1 Theorem. Suppose that f € Lo(IR™). Let 0 be a bounded cube centre
the origin, and set

A

fale) = (2m)2 fn ¢4 f(2) de, (2.6.1)

where £ denotes the scalar product in R™. Then as ) — R™, fn CONVETgeSs
n Lo R™) to a function f called the Fourier transform of f; also

1£ll2 = lI£1l, (Parseval’s formula),
and
(f,d)=(f,9) (Plancherel’s formula).

With the limat being taken in the same sense, the iversion formula 1s

) = Jim 2 [ e fe e

Q

Remark 2.0.2: Last time: any norm yields a metric: d(f,g) == ||f — ¢||-

- Open/closed balls: B,(f) = {x ] If =zl <r}.
o Bounded subsets: contained in some ball of finite radius.
o diamS = 1nf diamB,.(f) is the diameter of the smallest ball containing S.

« d(f,5) = lnf If — =]

o V=R" Wlth Hf“2 = Z f?, Bo(1) is a metric space but not a vector space.
k<n
 For L?, there are unique least squares projections, but uniqueness may fail for L.

— Counterexample: take a line M = {[a, a]} in R? of angle 7/4 with respect to the z-axis
and consider f :=[[]0,1]. Then for g == (a, ), ||f —gl| =1 —a|+|a| > |1l —a+a| =1,
and the minimizer occurs for any a € [0, 1].

— Similar issues may happen for L™ — but L', L> have sharper tails than L?, so this can
be useful e.g. in image problems.

o If limits of sequences (f,) exist, i.e. ||fn, — fm| — 0O, then the limiting function f,, — f is

unique by the triangle inequality.
1

. ,) — A a compact self-adjoint operator with
n

[\D\H

o Example from last time: d1ag<

SpecA:{l} .
) n>0

— What is ker A? Note that 0 € o(A), where o(A) is the set where (A — I\)™! is not
defined. It turns out ker A = {0}.
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I Tuesday, January 18

o Defining closures of subsets: for S C V, say f € S iff there exists a sequence of not necessarily
distinct points f,, € S with f,, = f.

— Say S1 C S5 C Vis closed in Sy iff S1 = C NSy for some C closed in V. The closure of
S1 in Sy is Clv(Sl) N Ss.

o A set that is neither open nor closed: X := [a,b] N Q, and 0X = [a,b] D X is actually larger.
1
o Recall the little ¢ norms: [|(f,)[, = (Z |fn\p>” and ||(fn)llo = sup |fnl-

Exercise 2.0.3 (?) « Prove Jensen’s inequality for concave functions.
e Prove Young’s inequality.
e Prove Holder’s inequality.

— Idea: consider a = f, = |ful/[| fall”;0 = Gn = |gnl/llgnll, and apply Young’s after
summing over n.

e Prove Minkowski’s inequality.

— Idea: use that (p — 1)g = p and apply the triangle inequality and then Holder to
Z | fn + gn|P. Also use that ¢' = 1 — p~!, and divide through this inequality at
the end. Be sure to check the cases | f + g||,, = 0, c0.

3 ‘ Tuesday, January 18

Remark 3.0.1: Last time:

o N Fllew = (1l
* [l = suplful-

Today:

o by={f= () | Ifllew < oo}.

o Example: set fF := (0,0,---,1,1,--+) with zeros for the first kK — 1 entires and ones for

all remaining entries. Then fik "2 () for each fixed component at index i. So f* — (0)
component-wise, but || x|/~ = 1 for every k, so this doesn’t converge in /n.

e Recall the e-¢ and limit definitions of continuity.
e Recall the definition of uniform continuity.

o For  CR", write C(Q) for the R-vector space of continuous bounded functionals f : Q@ — C
with the norm || f||; = sup|f(x)|.
e

Tuesday, January 18 7



Tuesday, January 18

« Define C*(Q,C™) to be functions with k continuous partial derivatives which are bounded,
and set C°°(Q,C™) = Ni>0C*(Q,C™). Define a norm || f[|on = Z sup )f(j) (x)’
- ]Sk z€Q
o Take g(z) = 2 — 2% and consider B (g) in C[0,1] with ||—|| e
2
e Show that convergent implies Cauchy-convergent using the triangle inequality.

o Lipschitz with |¢| < 1 implies Cauchy.

o Lemma 1.4.2: || fuik — full < (1 — @) f1 — fol for all k > 0. Use

k
<|lfr = foll D g™ =S 0.
j=1

”fn+k - fn” =

k
Z(fn-i—j - fn-l—j—l)
j=1

« Counterexample, not all normed spaces are complete: take V = C[—1,1] with |[f||;1 =

1
/ |f(z)| dx. Define a sequence of functions (f,):
-1

/-

D

{
m
Ny

Check that || fn+1 — fullpr < qllfn — fa-1llp1, and pointwise f, — X|_1,9) Which is discontinu-
ous and not in C[—1,1].

e Banach spaces: complete normed vector spaces.

e Series:

Tuesday, January 18 8



Tuesday, January 18

— Convergent: f := lim Z fmeV.
N
n<N
— Absolute convergence: Z | frll < o0
— In a Banach space, absolutely convergent series can be rearranged.

e Theorem: A normed space is complete iff absolute convergence = convergence. Proof:

— Step 1: show that every Cauchy sequence has a convergent subsequence.
— Set a,, == sup || fn, — fml||, then Cauchy implies a,, — 0 in R.
m>n

— Get a convergent subsequence an; < J -2,

— Set gj = fn; — fn,; ., then g == Zgj absolutely converges, say to g.

)

Note fn, = frin = Z gj, 80 the subsequence (fy;) is convergent.
j=1
Step 2: use this to show that the original sequence (f,,) converges.
Set f = lim f,, then || fr, — fI| < ||fu — fo;|l + || fns — fl|, using Cauchy for the first € and

the convergent subsequence for the second.

Remark 3.0.2(Some random mnotes): Some theorems that hold in Hilbert spaces but not
necessarily Banach spaces:

AllUWwELL.

1.5.18 Theorem. Suppose H is a separable Hilbert space, and assume that
K = {¢n} is an orthonormal set in H. Then the following conditions are
equivalent:

(i) K is complete, that is K+ = 0;
(ii) K] = H;
(iii) K is an orthonormal basis;

(iv) for any f € H
1712 =3 "1(f,8n)>  (Parseval’s formula). (1.5.9)

LIIE SULIL LWL LW ) 0S8 AeI0, WHeLOE § = W, L

1.5.19 Theorem. A separable Hilbert space has an orthonormal basis.

Danmnd T ot [T 1 ha a acrsmtabla dasiea ank ard armmlir tha Mlansas Qalhoead A
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Tuesday, January 18

2.4.12 Example. Consider the integrals
oK
I 2[ e 12 4,
0

We want to show that lim /[, = 0. With f.(z) = ¢™""2~/2, certainly
lim, fo(z) = 0 if & # 0, but the convergence is not uniform (because
limz—o fr(x) = oo), and using the Riemann integral it would be neces-
sary to invent a delicate argument based on a subdivision of the range of

4 4 11 1 a1 LF] T "o a1 [ . 1

Absolute continuity:

ob 4. LEBESGUL INTEGRATION AND Lp SPAUES

2.4.13 Definition. Let S be a finite interval. Then the real valued function
f is said to be absolutely continuous on S iff for each € > 0 there is a
& > 0 such that

Do) = flag)| <e

for any finite set {[a;,b;]} of disjoint intervals with total length less than
3. f is absolutely continuous on R iff it is absolutely continuous on every
finite subinterval.

2.4.14 Theorem. A real-valued function f defined on an interval in R is
an indefinite integral of a locally Lebesgue integrable function, g say, iff [ is
absolutely continuous, in which case f is differentiable almost everywhere

and f' =g (a.e.).

B e e e

2.5.2 Definition. L£°¢ is the set of functions which lie in £,(S) for every
S C X closed in R™ and bounded.

el 1 [ L r a1 - 1" 1 . s

ker L = 0 may not be sufficient to guarantee bijectivity in infinite dimensions:

Tuesday, January 18 10



More Banach Spaces (Thursday, January 20)

e g R e mme f s w e e AL AN A mET Am e e T e MR RS A A A RS R W - —  ——

3.3.13 Ezample. Let L: C([0,1]) — C([0, 1]] be the operator defined by

Lf(z) = fﬂ “pode (fec(o, ).

Obviously Lf(0) = 0 for every f € C([0,1]). Therefore R(L) is a proper
subset of C([0, 1]) and L is not surjective. However, N(L) = 0, for differen-
tiation shows that the only continuous solution of Lf = 01is f = 0. Thus
condition (ii) of Theorem 3.3.12 does not imply (iii) or (i).

Boundedness:

3.4.2 Definition. Suppose that L is a linear operator from B into C. L is
said to be bounded on D(L) iff there is a finite number m such that

1A <mlfl (f € DL)). (3.4.1)

Bounded iff continuous:

maximurm gradlent.

3.4.3 Theorem. Suppose that L is a linear operator from B into C. Then
L is bounded on D(L) if and only if it is continuous.

Proof. Tf L is bounded, from (3.4.1) f, - 0 = Lf, — 0. Thus L
is continuous at zero, and so by Lemma 3.4.1, L is continuous. On the
other hand, if L is not bounded there is a sequence (g,) such that a, =
ILgnll / llgnl] = oo. But if fu = gn/(an |lgal), then ||f.]| = a;;' — 0 and
|Lf.|| = 1. Since LO = 0, L is not continuous at zero, and therefore is not
continuous. O

4 More Banach Spaces (Thursday, January
20)

Remark 4.0.1: Last time: complete iff absolutely convergent implies convergent. Today: wrapping
up some results on Banach and Hilbert spaces, skipping a review of L” spaces, and starting on
operators next week.

Remark 4.0.2: Note that S := (0, 1] is open and not complete, but clg(S) = [0, 1] is both closed
and complete. Generalizing:

More Banach Spaces (Thursday, January 20) 11



I More Banach Spaces (Thursday, January 20)

Lemma 4.0.3(?).
A subset S C B of a Banach space is complete iff S is closed in B.

Proof (?).
<= If S is closed, a Cauchy sequence (f,) in S converges to some f € B. Since S is closed
in B, in fact f € S.
— : Suppose that for f € clp(9S), there is a Cauchy sequence f, — f with f, € S and
f € B. Since S is complete, f € S, so clg(S) C S making S closed.

|

Theorem 4.0.4(7).
For Q@ C R", the space X = (C(€;C),|—||..) is a Banach space.

AWarning 4.0.5
This is not complete with respect to any other LP norm with p < oo!

Proof (of theorem,).
Use the lemma — write B for the space of all bounded (not necessarily continuous) functions
on €2, which is clearly a normed vector space, so it suffice to show

e X C B is closed,
o B is a Banach space (i.e. complete).

Step 1: we’ll show clp(X) C X. Take f to be a limit point of X, then for every € > 0 there
isa g€ X with ||f — g|| < e. Apply the triangle inequality:

I <If—g+gll <If —gll+llgll =+ C < oo,

so f € clp(X) C B since it is bounded. It remains to show f is continuous. Use that
Il f — glloo < € and continuity of g to get |g(x) — g(xo)| < € for |z — zo| < . Now

|f(z) — f(zo)| = |f(z) — g(z) + g(x) — g(z0) + g(x0) — f(20)]
<|f(z) — g()| + lg9(z) — g(z0)| + [ f(x0) — g(x0)|

So X is closed in B.

Step 2: Let f,, be Cauchy in B, and note that we have a pointwise bound | f,,(z) — fn(z0)| <
| fn — fmll — 0. So pointwise, fy(z) is a Cauchy sequence in C which is complete, so f,(z) —
f(zx) for some f:Q — C. We now want to show f, — f in X. Using that f,, is Cauchy in X,

More Banach Spaces (Thursday, January 20) 12



I More Banach Spaces (Thursday, January 20)

produce an Ny such that n,m > Ng = |[|fn — fm|| < &. Now
If = full = sup [f () — fn(2)|
xeQ)

< sup sup |fm(z) = fu(2)]

zeQ m>Ny

= sup sup|fm(z) — fu(2)|
m>No TS

= sup ||fm *an
m>Nog

<e.

Now use the reverse triangle inequality to show f, is bounded

LAl = Ifnll < IIf = full <€ = [If]] < oo.

Now by problem 1.13, every Cauchy sequence is bounded, so f, — f € B.

|
Remark 4.0.6: Extending to vector-valued functions: for  C R", take x = [z1, -+ ,x,]| and
F={[f1, -, fm]: C" — C™. Then there is a Banach space
- o
X=09C"), ey = Y_suwlf(@)|+ > sup 5. )|
i<m 2€4 i<m,j<n €2 | 9T
Similarly define LP(€2), noting that || f|| e () is the essential supremum. s

Theorem 4.0.7(?).
For p € (1,00), the sequence space X = (¢, ||—||,») is a Banach space.

Definition 4.0.8 (Closed subspaces)
A closed subspace of a Banach space is a linear subspace M < B which is norm-closed in B.

Example 4.0.9(%):
Mi=kerV-={f € C(Q) | V-f =0} <C(9)

is closed, where V-f is the divergence of a function f.

For any S C B, one can also take the corresponding closed subspace [S] := clpspan {s € S}, i.e. all
C

linear combinations of elements in .S and their limits. This is called the closed linear span of S.

Exercise 4.0.10 (?)
Let B = (Cla,b], |||/~ and for ¢ € [a,b] define

M = {feC[a,b] ] f(a:o)zo}, N = {feC[a,b] ] f(xo)gc}.

More Banach Spaces (Thursday, January 20) 13



More Banach Spaces (Thursday, January 20)

Show that these are closed subspaces with no nontrivial open subsets of B, since any f € M
can be perturbed to be nonzero at xg with an arbitrarily small norm difference.

Remark 4.0.11: Recall that for S; C Sy C B, S; is dense in Sy iff clg,(S1) = S2. Recall

Weierstrass’ theorem: for Q@ C R" is closed and bounded and write O = R[zy,--- ,z,] for the
polynomials in n variables. Then O C C(9), and clg)O = C(£), i.e. O is a dense subspace in the
L™ norms. In fact, piecewise linear functions are dense. A~

Remark 4.0.12: Norms are equivalent iff ¢ f]|, < || fll, < 2l f]|, for some constants ¢;. All

norms on R" (resp. C") are equivalent. e

Example 4.0.13(?): For a > 0, f € C[0, 1], define
1F1l := sup e f(x)],
zel

which can be thought of as a weighting on the uniform norm which de-emphasizes the tails of

functions near the endpoints. This is equivalent to ||— since

||oo?

e*sup |f| < suple”*f| < 1-suplf].

Remark 4.0.14: Note that a basis for a norm can be used as a basis with respect to an equivalent
norm in finite dimensions. In infinite dimensions this may not hold — e.g. for Fourier series,
{ex(x)} ez is not a basis for C[0, 27| with the sup norm. -

Definition 4.0.15 (Separable Banach spaces)
An B € B is separable iff X contains a countable dense subset S = {fy};-, such that for
each f € B and € > 0, there is an f € S with ||f — fi]| <e.

Example 4.0.16(?): Show that

e O CR" abounded subset, C(Q), ||—]|
o (P is separable for p € (1,00).
o [ is not separable. P

sup 18 separable.

e 4.1 Random Notes ~

n=n n= B R BT PR TR -

Exercise 1.12. Recall (Example 3.12 in Prerequisite Material) that continuous function f on a X locs
compact and Hausdorff space X is invertible if 1/f is continuous on X. What is the spectrum of f(z) -
in C(T)?

Remark 4.1.1:

o o s o - ar

Definition 2.2. A nonzero homomorphism into the base field of an algebra is called a character. The
spectrum of a commutative Banach algebra A, denoted A, is the set of all nonzero characters from A into C.
Hence A is often called the character space for A.

4.1 Random Notes 14



I Tuesday, January 25

5 ‘ Tuesday, January 25

Remark 5.0.1: e Inner products:

—(f, f)z0and (f, f)=0 < f=0
—(fyg+h) ={f 9)+(f, h)
- (f, 9)=1(9, 1)
— (af, g) = alf, g)
o A pre-Hilbert space is an inner-product space.

o Example: (f, > = / w(x) f(z)g(zx) dx for f,g € C(R), where w is any weighting function.
Q
o Example: (f, Z figi for f,g € C™.
o Inner products induce norms: ||f|| = +/{f, f)
— Orthogonality: write f L g iff (f, g) =0 and S+ = {f eH ) flsVse S}

o Definition of a Hilbert space: a pre-Hilbert space complete with respect to the norm induced
by its inner product.

o Recall C'(Q) with (f, g) == / fg is not complete, thus not a Hilbert space.
Q

o Example: a common optimization problem, argmin||z|| such that Az = 0.

Theorem 5.0.2(Cauchy-Schwarz).

I(f, ) < ILfNlgll-

Proof (?).
Use (f, g) = |f||g|cosffqy where |cosf| < 1. - Assume g # 0, then STS < g H> < |Ifll- -
Use

<|f={f 9l

:<f_<f7 g>g7 f_<f7 g>g>

=(f, )=, aXg, )= {fs o) {fs o)+ (f, 9){f5 9)

= I£I> = I{f, 9)I%.

Theorem 5.0.3(Closest approrimations).
Let f € M < H be a closed (and thus complete) subspace of a Hilbert space H. Then there is
a unique element g in H closest to M in the norm.

Tuesday, January 25 15



Tuesday, January 25

Proof (?).
Let d := dist(f, M), choose a sequence g, € M such that ||f — g, || — d, which is possible since
d= in]\f4 IIf — gll. Apply the parallelogram law to write

g€

llgn _gmH2 = [|(gn — f) — (gm — f)H2
=2l — I+ 2gm — 11~ 4| 360+ )~ 1

< 2llgn — FI? + 2llgm — £I1* — 4d?
< 2d% + 2d% — 44>
p— 07

2

1
so the g, are Cauchy. Here we’ve used that §(gn + gm) =m € M since M is a subspace, and
|lm — f|| > d. Since M is complete, g, — g € M and moreover ||f — g|| = d. For uniqueness,
if |f — ¢'|| = d then

2
=& —|lg-g|*<a® ¢

I La+o

Theorem 5.0.4(Projection theorem).

Let M < H be a closed subspace of a Hilbert space. Then M+ < H is closed, and H = M @& M.
In the decomposition f = g+ h, in fact g € M is the closest approximation to f in M, making
this decomposition unique.

Proof (?).

STS H = M + M~ by the exercises. If f € M, take f = g+ h where g = f and h = 0, so
suppose f & M. Let g = argmindist(f, M) € M, and we claim f —g € M+, so (f —g, h) =0
for any h € M. For all h € M and « > 0, we have g + ah € M, so

If = gll”> < |f — (g +ah)|?
= |f — glI> — 2Ra(h, f—g) + |||,

SO
2Ralh, f—g) <?|h|> = 2R(h, f—g) <alh|? =0,

so ®(h, f—g)=0. Similarly (h, f—g)=0.

Exercise 5.0.5 (?)
Show S+ is closed for any S € H, and in fact St = span(cly(S))*, and if f € SN S+ then
C

f=o.

Tuesday, January 25 16



I Thursday, January 27

Exercise 5.0.6 (7)
Prove the parallelogram law

If = gll®> + 11f + gl = 211 £II” + 2]lg/1>.

6 ‘ Thursday, January 27

Remark 6.0.1: Notes:

o Bessel:

ST e S, IfIl= /().

n

— Prove using the fact that
2
0<

f_ Z <f7 @n)%pn

n<m

=717 = D2 Kf enl.

n<m

o Best fit:

>

)

f_ Z <fv Qpn>90n

n<m

=

n<m

so define projections Py (f) = Z (f, ¢n)pn for span{p,} = M.

— Prove using

=

n<m

=[£I = D2 KL o)+ D0 1Kfs o) — cal”

n<m n<m

> 1P = D2 [KF endl.

n<m

o Hilbert spaces are separable: have countable dense subsets.
— (>°(Z) is not separable.

o For {¢,} orthonormal and {c,} scalars, Z Cntpn is convergent iff {a,} € (*(7Z), so Z lea? <
oo. If it converges, it can be rearranged, and

I3 coeu]|” = IHen} ) = S leal?.

2

— To prove, use that

Z Cn¥n

i<n<j

2
= > |cnl”, so the sequence {Sy,},,~( where Sp, =
1<n<j
. . 2
Z cnpn is Cauchy since Z len|” converges.

n<m

Thursday, January 27 17



I Tuesday, February 01

—Ifg= chgon and f = Zcmncpmn is a rearrangement, if {¢,} € ¢2 then ||f||* = ||g|* =
D leal”. Then [|f = glI* = [If]* +llg]* = 2R(f, g), but {f, g) =3 leal?, s0[If — gl = 0.

o If K ={¢n} CH is a proper subset, so span {¢,} # H, write Px(f) = Z (f, ¢n)pn. Then
Pr(f) =0if f € l(K)*L, P(f) = fif f € cl(K), and if f ¢ K, since cl(K) < H is closed then
there exists a g € cl(K) where || f — g|| = dist(f, K). Write f = h+ (f — g) € cl(K) @ cl(K)*,
sof=Pxf+ (I —Pk)f.

e Recall complete subspaces of Banach spaces are closed.

o Next theorem: every separable Hilbert space admits an orthonormal basis.

Theorem 6.0.2(?).
If H is a separable Hilbert spaces and K = {(, } is an orthonormal set, then TFAE

« K is complete, i.e. K+ = 0 (taking the closure is not needed),
o clspan K = H,
e K is an orthonormal basis,

For all f € H, | fll =Y I(f. ©n)|? (Parseval).

n>0

Remark 6.0.3: Note (f, ¢,) is the nth Fourier coefficient f(£) = Z (f, on)en(§), and Parseval
12
says |£1* = | 7]|"

Proof (?).
1 = 2: Let f € H \ clspan(K) and project, so f = g + h with g, h # 0. But g € clspan(K)
and h € clspan(K)* = 0, forcing K+ = cl(K)* #0. ¢
2 = 3: Follows directly from previous lemma that f = Pxf + (I — Px)f.
3 = 4: Write fe H as f = Z (f, ¢n)pn by sending m — oo in the previous lemma.
4 = 1: Toward a contradiction, suppose f # 0 € K. Then ||f| # 0 but (f, ¢n) = 0 for
all n, contradicting Parseval. /
|

7 ‘ Tuesday, February 01

Remark 7.0.1: Notes:

+ Assume H is a separable Hilbert space: there exists a countable set of vectors {v;},., which
span a subspace that is dense in #, so cl(span {v;}) = H.

o Complete subspaces: M < H with M+ = 0.

o Show that for any S C H, S+ is closed in H, ST = (clspan S)J‘, and fe SNSt = f=o.

o If K = {¢k}}cz is an orthonormal set in H, then TFAE

— K < H is a complete subspace, so K- =0, i.e. (f, @) = 0 for all k implies f = 0.
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Tuesday, February 01

— clspan K = H, so every f € H is the limit of a sequence of vectors from span K.
— K is an orthonormal basis
— Parseval: equality in Bessel, i.e. || f|| = Z 1(f, ou)]?

e Lemma: if M, N < H with dim M < dim N, then M+ NN # 0.

— Without loss of generality assume dim N = n 4+ 1 where n := dim M, take a basis
{d)k}kgn—kl for N.

— Try to find f € N with f L M, i.e. coefficients {b;},., with Zbﬂpi L ¢y for every o
basis elements of M.

— This is a linear system of n equations in n + 1 unknowns, so it has a nontrivial solution.

o Theorem, orthonormal bases are stable: if {¢x} is an orthonormal basis and {vy} is an
orthonormal system, if Z llor — til|* < oo then {4y} is a basis.

— Assume note, then find a 1y € H with ||| =1 and (¢, ;) = 0 for all j.
Choose N > 1 so that Z |k — or|| < 1.

k>N
Use previous lemma to I;roduce w € span {to, Y1, -, YN} with w # 0 and w L ¢; for
all j < N.
— Note w L span {¢,}
— Apply Parseval:

n>N"

2
0 < [[wl]
= Z [(w, 90n>|2
n>1
= > lw, en)l?
n>N+1
= Z [(w, ¢n_¢n>‘2
n>N+1
2 2
<Jwll* D llen —nll
n>N—+1
2
< w1,

where we’ve used that (w, 1,) =0 for n > N. ¢
e 7H admits a countable orthonormal basis iff H is separable.

— = : clear, since the basis is countable, and every element is a limit of partial sums
against the basis.
— <= Gram-Schmidt.
O hi =1 and o1 = hy /|||
O hy =y — Z (Vr, wk)pr and normalize.

1<k<n—1

o Exercise: a closed subspace of a separable Hilbert space is separable.
e Linearly isometric inner product spaces: E ~ F' iff there is a map A : E — F with

— A(au + bv) = aAu + bAv
= [ Aullp = llullg
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I Tuesday, February 08

e Theorem: if H1,Hso are infinite dimensional separable Hilbert spaces, then Hq, ~ Ho. Thus
for any Hilbert space # over C, H ~ (*(C).

— Pick orthonormal bases {¢r} C Hi, {¢r} € Ho.
— For u € Hy, define Au = Z (u, @Ky, which converges — this will be the linear isometry,
and satisfies condition (i).
— Check [[Aull3, = > [(u, @&)|* = [[ully,, which is condition (ii).
E>1

— Check A is surjective: for y € Ha, write y = Z (y, Vi) = Av for v == Z (y, Yr)pr €
k k
Hi.
e Non-separable spaces: look at almost-periodic functions.

— E.g. Z cr exp(iAgt) for A\ € R.

k<n

8 ‘ Tuesday, February 08

Remark 8.0.1: Motivating question: when is an operator equation solvable? Today: relation
between boundedness and continuity for linear operators. Nonlinear operators next week.

o A map of vector spaces V — W is a linear map defined on some domain D(A) C V, where
D(A) need not equal V.
— Notation: A(f) = Af =g.
— Af C W is the image of f, and R(A) = {Af ‘ fe D(A)} C W is the range. Preimages

of S CW: ATN(S) = {f | f € D(A) and Af € S}.

« We distinguish operators with different domains, e.g. Af := f’ can be the formula for distinct
operators Ap, Ay where D(A;) = C*°[0,1] € C°[0,1] or D(4) = C1[0,1] € €°[0,1], so
Ay # Ag.

—le. A=Ay — D(Al) = D(A2) and A1 f = AQf for all f € D(Al) = D(AQ)
— If A1 f = Aof with D(A;) C D(A3), say Ay is an extension of A;. The extension is
proper iff D(A;) # D(As).

« Example operator: the Laplace equation Af = g where A = 0., + 0,y. We can take domains
g € C0,1], L[0,1), H*[0,1] = { f € L*(0,1) | 8y f, 0y f € L*(0,1) }.
— Why domains matter: boundary conditions affect what eigenfunctions you get. Examples

where Ay # As:
— Dirichlet boundary conditions: Af = g, flso = 0. The relevant solution spaces is

D(A4y) = {go e C?0,1)? ’ ©laq = O} for Ajp = Ap.

Tuesday, February 08 20



Tuesday, February 15

— Neumann boundary conditions: Af = g, g“rfl = 0, i.e. there is no flux across the
onN
boundary. The relevant solution space is D(As) = {w € C?0,1)? gﬁ = 0} for
o

AQQ/) = Al/)

o Injectivity: for A:V — W, for every g € R(A) there is exactly one f € D(A) with Af = g.
Equivalently for linear operators, Af =0 = f =0.

o Surjectivity: R(A) = W.

o Example: A := 1z — sin(x) regarded as a function A : R — R is neither surjective nor injective:
R(A) =[-1,1] C R, and sin(7Z) = 0.

o Linearity: for Lf = g, L is linear if L(af + bg) = aLf + bLg.

Exercise 8.0.2 (7)

Show that the following are equivalent conditions for continuity of A:V — W at fy € D(A):

o ||Af = Afolly <eforall fe D(A) with || f — foll,, < ¢
o For every sequence {fr} — fo, Afx — Afo.
o Preimages of open sets in W are again open in V.

9 ‘ Tuesday, February 15

Remark 9.0.1: Last time:

o Continuous operators are bounded:

— If ||Lfn]] =1 and ||fn|| — 0, check lim(Lf,) = L(lim f,) = LO = 0.
— Take norms to contract || Lf,|| = 1.

Theorem 9.0.2(3.4.4).
If L : B — C with dense image (so clg(D(L)) = B), if L is continuous on D(L) then it has a
unique extension L to all of B, so D(L) = B, with ||L| = HEH

Proof (of theorem).
In steps:

e Defining the extension:

— For f € B, pick f,, — f with f,, € D(L) using density.
— Convergent implies Cauchy, so estimate:

[Lfn = Lfmll = | L(fn = fm) | < LI fo = fmll = 0.

— Thus Lf, is Cauchy, by completeness L f, — g for some g.
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I Tuesday, February 15

e Preservation of norm:

— Define the extension as Lf := g, by continuity it is independent of the sequence

{fit = f
— Check that L is a bounded operator:

|21 = llg = Iim L]l = tim | Lol < Bm L] £all = 1LN1£]
= ||| < 1z

— Since ||Al|op is defined in terms of sups over test functions in D(A) for any operator
A and here D(L) D D(L) is a larger set, we have HEH > ||L|| by definition, yielding

|Z] = 1zl
e Uniqueness of the extension:

— Take L1, Ly extending L, then
Lif =lim Ly f, = lim Lf,, = lim Lo f,, = Lo f.
— Use linearity:

Elf—igf:(il—ig)f:() — I~J1—I~/2:0.

Example 9.0.3(?): Let £L € L(C",C") be defined in coordinates by (Lf); = Z aj f; for
1<j<n
1 <i<n. Take |||, and check

L7 = sup [ a6
< <supz |Oéij|> sup | £
1 J

= | f oo

So ||L]| < m, where m is the largest row sum. Is there an f for which equality holds? In this case,
we’d need

1L fllgoe = £l goe-

Identify the row k so that m = Z lag;|. Set f to be a unit vector with coefficients (f); =
1<5<n
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I Tuesday, February 15

%5/ |k - Then

ILflo = sup
K2

E:amﬁ
J

> > oujfi
J

= > g /o]
7

= > o]
j

= [l

So the answer is yes in this case. Does this also work for ||—||,, with p € (1,00)? Recall Holder’s
inequality:

1 1

‘Zaijfj‘ < (Z\Oéij\q>q (Z |fj|p)p
1
= (X lawl) " £l

Check that

I = LAY
p

R

E:awﬁ
J

<§:(§:M@0 11
i\

where we’ve applied Holder in the last line. Thus

Qs
B =

L] < }:(E:Wwo

( J

Exercise 9.0.4(?)
Is there an f that attains this bound in the ¥ case?

Remark 9.0.5: For £ € L(C>,C*) defined by (Lf); = Z aj; f; for j > 1, one needs a notion
Jj=11
of convergence of the coordinates «a;; in order for £ to be bounded. A sufficient condition is
m = supz laj| < o0.
Lo
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I ToDos

Definition 9.0.6 (7)
Some notation:

eIl = sup ) |evij]
J
P

E:@:WW)QP

¢ J

el
Mellllo = sup Y _ lovl.
T

Remark 9.0.7: Note that if £: 7 — (7, then [|L| < [|[[«[[||,, for p € [1,00) and for p = oo this is
an equality. v

Example 9.0.8 (Kernels): Consider Cla,b] with |||, and k € C°([a, b)**,C). Define
K : Cla,b] — Cla,]
b
wa/kmwﬂw@.

What is ||K||? Estimate

171 < swp @) s [ kGl

y€la,b] x€|a,b]

< N lloolEll oo

so [|K| <[kl
Define

Il = sup [ K] de

. 1wy )

11 = sup [ k] dy.

ToDos

List of Todos
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