Notes: These are notes live-tex’d from a graduate
course in Sheaf Cohomology taught by Valery Alezeev
at the University of Georgia in Spring 2022. As such,
any errors or inaccuracies are almost certainly my

own.

Sheaf Cohomology

Lectures by Valery Alexeev. University of Georgia, Spring 2022

D. Zack Garza
University of Georgia
dzackgarza@gmail.com

Last updated: 2022-05-29


mailto: dzackgarza@gmail.com

Contents

Table of Contents

Contents

Table of Contents

1

2

9

Intro, Motivations (Monday, January 10)
Topological Notions (Wednesday, January 12)

Friday, January 14
3.1 Posets, Zariski Topologies . . . . . . . . .. L
3.2 Sheaves . . . . . .

Wednesday, January 19
Friday, January 21
Monday, January 24
Wednesday, January 26
Friday, January 28

Monday, January 31

10 Wednesday, February 02

11 Friday, February 04

12 Monday, February 07

13 Wednesday, February 09

14 Friday, February 11

15 Monday, February 14

16 Wednesday, February 16

17 Friday, February 18

18 Monday, February 21

19 Wednesday, February 23

20 Friday, February 25

20.1 Adjoint Functors, Exactness . . . . . . . . . . . ..

Table of Contents

12
14
17
20
21
22
24
26
27
29
31
32
34
36
39
41

44



21 Monday, February 28

21.1 Tensors . . . . . . . e
21.2 Cohomology . . . . . . . . . L

22 Wednesday, March 02
23 Friday, March 04
24 Monday, March 14

25 Wednesday, March 16

25.1 Grothendieck’s Universal Theorem . . . . ... ... ... ....
25.1.1 Proof of Universality . . . . . ... ... ... ... ....

26 Friday, March 18
27 Monday, March 21
28 Wednesday, March 23

29 Friday, March 25

29.1 Flasque Sheaves . . . . . . . . . . ... .. .. ... .
29.2 Fine Sheaves . . . . . . . . . .. . ..
29.3 de Rham and Dolbeaut cohomology . . .. .. .. ... ... ..

30 Computing Cohomology (Monday, March 28)

30.1 Vanishing Theorems . . . . . .. .. .. .. .. ... . ......
30.2 Cech Cohomology . . . . . . . v v i

31 Wednesday, March 30

31.1 Cech Cohomology . . . . . . . . .

32 Friday, April 01

33 Monday, April 04

33.1 Riemann-Roch and Serre Duality . . . . ... ... .. ... ...

34 Friday, April 08

34.1 Vanishing theorems . . . . . . . . .. .. ... . L 0.

35 Monday, April 11

35.1 Spectral sequences . . . . . . . . ...

36 Wednesday, April 13

36.1 Spectral sequences continued . . . . .. ...

37 Friday, April 15

37.1 Filtrations and Gradings . . . . . . . . ... ... .. L.

38 Monday, April 18

38.1 Spectral Sequences . . . . . . .. .. L Lo oo

Contents

47
47
49

50
51
52

54
54
55

57
59
62

64
64
66
67

67
67
69

69
70

71

76
76

79
79

80
80

82
82

84
84

85



38.2 Applications . . . . . . ... 86
39 Wednesday, April 20 88
39.1 Derived Categories . . . . . . . . . . 0 88
40 Friday, April 22 920
41 Monday, April 25 92
41.1 Triangulated categories . . . . . . . . . Lo 92
42 Wednesday, April 27 94
42.1 Cohomological Functors . . . . . . . . . . . .. 94
42.2 Exceptional Collections . . . . . . . . . . . . e 96
43 Friday, April 29 97
43.1 Applications of derived categories . . . . . . . . . ... 97
43.2 Well-known classical results . . . . . . . . .. . . .. 99
44 Monday, May 02 99
44.1 Calabi-Yau Categories . . . . . . . . . . e 99
44.2 T-Structures and Hearts . . . . . . . . . . . . . . . ... ... 101
44.3 Bridgeland stability . . . . . . . . . 101
45 Useful Facts 102
45.1 Category Theory . . . . . . . . . e 102
45.2 Torand Ext . . . . . . . . e e e 103
46 Problem Set 1 103
46.1 Problem 1 . . . . . . . . e 104
46.2 Problem 2 . . . . .. e e 105
46.3 Problem 3 . . . . L e 107
46.4 Problem 4 . . . . . . L e 110
47 Problem Set 2 111
47.1 Problem 1 . . . . . . . L e 112
47.2 Problem 2 . . . . L e e 115
47.3 Problem 3 . . . . . L e e e e 116
48 Problem Set 3 118
48.1 Problem 1 . . . . . . . . e 119
48.2 Problem 2 . . . . . . e e e 121
48.3 Problem 3 . . . . L 122
48.4 Problem 4 . . . . . . L e 124
48.5 Problem 5 . . . . .. e 126
ToDos 132
Definitions 133
Theorems 134

Contents 4



Exercises 136

Figures 137

Contents 5



Intro, Motivations (Monday, January 10)

1 ‘ Intro, Motivations (Monday, January 10)

Remark 1.0.1: Topic: cohomology of sheaves and derived categories. The plan:

 Sheaves (see ELC notes)
o Derived functors and coherent sheaves (see ELC notes)
o Derived categories (Gelfand-Manin, Tohoku)

References:

o Valery’s notes (see ELC)
o Gelfand-Manin, Methods of Homological Algebra.

Remark 1.0.2: Compare (genus ¢g) Riemann surfaces in the classical topology to (genus g, projec-
tive) algebraic curves over C in the Zariski topology. Recall that

Z *=0,2
H*(S4;Z) = 7% x=1
0 else.

Note that this is a linear invariant in the sense that the constituents are free abelian groups, and
we can extract a numerical invariant. For surfaces up to homeomorphism, this distinguishes them
completely.

For algebraic curves, note that the topology is very different: the only closed sets are finite. In this
topology,

Z x=0

H*(X;Z) =

0 else,
which doesn’t see the genus at all. In fact all such curves are homeomorphic in this topology,
witnessed by picking any bijection and noting that it sends closed sets to closed sets. The linear
replacement: H*(X;Ox) for Ox the structure sheaf, which yields

C *=0
H*(X;0x)=4CY x=1
0 else.

These surfaces can be parameterized by the moduli space Mg, which is dimension 3g — 3 for g > 2.

Remark 1.0.3: The POV in classical topology is to fix the coefficients: Z, R, C,Z/n, or R a general
ring. A minor variation is to consider a local system L, which are locally constant but may have
nontrivial monodromy around loops. For example, one might have R locally, but traversing a loop
induces an automorphism f € Aut(R) = R*. In this setting, we have a functor F(—) = H(—; R).

Intro, Motivations (Monday, January 10) 6



Topological Notions (Wednesday, January 12)

For sheaf cohomology, instead fix X and take G(—) = H(X;—). In general, one can take sheaves
of abelian groups, Ox-modules, quasicoherent sheaves, or coherent sheaves:

Sh(X, AbGrp) < Ox-Mod — QCoh(X) — Coh(X).

Remark 1.0.4: We'll be looking at three kinds of topologies:

o The order topology: start with a poset and define the open sets to be the decreasing/lower
sets, i.e. subsets Uy, that contain every element below a point zy. In other words, if x € U
and y < z, then y € U.

o The Zariski topology: let R be a DVR, so Spec R = {(0),m}. E.g. for R := C[t], m = (t),
and the open sets are {(0)} , Spec R, corresponding to the poset pt — pt.

e The classical topology, usually paracompact and Hausdorff.

One can define sheaves in all three cases, which have different properties. For posets, e.g. one can
take C°(—, R) for R = R,C,Z.

Remark 1.0.5: Some computational tools:

e Vanishing theorems
e Riemann-Roch

2 Topological Notions (Wednesday, January
12)

Remark 2.0.1: Some topological notions to recall:

o Tj, Kolmogorov spaces: distinct points don’t have the exact same neighborhoods, i.e. there
exists a neighborhood of x not containing y or a neighborhood of y not containing x.

e 17, Frechet spaces: points are separated, so replace “or” with “and” above.

e 15, Hausdorff spaces: points are separated by disjoint neighborhoods.

¢ Alexandrov spaces: arbitrary intersections of opens are open.

o Metrizability

e Paracompactness

Remark 2.0.2: Recall that a topology 7 on X satisfies

e 0, X eT

e ABeT — ANBerT

. UAjGTifAjETforallj.
Jj€J

Topological Notions (Wednesday, January 12) 7



Topological Notions (Wednesday, January 12)

Equivalently one can specify the closed sets and require closure under finite unions and arbitrary
intersections.

Example 2.0.3 (of topologies): Running examples:

e Any subset S C R" is Hausdorff and paracompact.

e Order topologies on posets

e Zariski topologies on varieties over k = k, e.g. mSpec A for A € Algﬁgk or affine schemes Spec A.
o The discrete/initial topology 7 = 2X.

o The indiscrete topology 7 = {0, X }.

Remark 2.0.4: Recall the separation axioms:

e Tpy: points can be topologically distinguished. Note that the indiscrete topology s not Tj if
1xX > 2.

o Ti: points can be separated by (not necessarily disjoint) neighborhoods. Equivalently, points
are closed.

o Ty/Hausdorff: points can be separated by disjoint neighborhoods.
o T35/ Tychonoff:?

. T@Z?

Exercise 2.0.5 (7)
Show that points are closed in X iff X is 77.

Definition 2.0.6 (Paracompactness)
A space X is paracompact iff every open cover Y = X admits a locally finite refinement
Y = X, ie. any z € X is in only finitely many V.

Exercise 2.0.7 (Euclidean space is paracompact)
Show that any S C R" is paracompact, and indeed any metric space is paracompact.

Solution:
Let Y = X := R? be an open cover and define a proposed locally open refinement in the
following way:

o Write U := {Ua ‘ o € A} for some index set.

o Use that W, := clx(B,(0)) is compact, and since Y = W,, there is a finite subcover
Vo ={Un1, -, Upm} = clx(B"(0))".

o Show that V = {V} is an open refinement of U.

nEZZO

Topological Notions (Wednesday, January 12) 8



I Friday, January 14

— Why: it is a subcollection, and every = € X is in a ball of radius R ~ N := [||z]|].
So x € By(0), thus € Uy, for some k.

e Show that V is locally finite.

— Why: each V,, misses the By, (0), so each = ¢ U V,, if N is defined as above. So
k>N
x is in only finitely many V,.

Fact 2.0.8
Paracompact spaces admit a POU — for Y = X, a collection A of function f, : X — R where for
all a € supp fo = cl({f # 0}), for all z € X, there exists a V' 5 x such that for only finitely many

«, fa’v # 0, and Z fa(z) =1.

acA

Remark 2.0.9: Recall the order topology: for (P, <) a poset, so

s TSYYysT = T =1y,
e 2 <{y<z = x<z
e <z

Define

e Open sets to be increasing sets, sox e U,z <y = y € U,
e Closed sets to be decreasing sets, sox e U,z >y — y €U

Note that this is a free choice!

Exercise 2.0.10 (?)
Show that the order topology is closed under arbitrary unions and intersections of opens.

Exercise 2.0.11 (?)
Show that the order topology is not 77 by showing clp ({z}) = Z<(z) := {y epP ‘ y < x}

Fact 2.0.12
For k an infinite field, A}k is the cofinite topology and thus not Hausdorff.

3 ‘ Friday, January 14

— 3.1 Posets, Zariski Topologies ~

Friday, January 14 9



Friday, January 14

Remark 3.1.1: Recall the definition of a poset.

Example 3.1.2(?): Given a polytope, one can take its face poset FP(P) = {F < P} where I} < F3
iff F1 C F5 for the faces F;. More generally, one can take a complex of polytopes, i.e. a collection
of polytopes that only intersect at faces. An example of a complex is the fan of a toric variety.

Similarly, one can take cones Z civi € R? for some positive coefficients.

Remark 3.1.3: Conversely, given a poset I, one can associate a simplicial complex |I], the geometric
realization. Any chain i,, <---i,, is sent to a face and glued.

Example 3.1.4(?): Consider a polytope P, taking the face poset FP(P), and its geometric real-
ization |FP(P)|. A square has

.ﬁPz:l
. 1P =4

Note that one can take the geometric realization of a category by using the nerve to first produce a
poset.

Remark 3.1.5: With the right choices, there exists a continuous map |I| — I where I is given the
order topology. Pulling back sheaves on the latter yields constructible sheaves on convex objects,
which are locally constant on the interior components.

Remark 3.1.6: A first version of the Zariski topology: let k = k € Field and let R € Algigk be of the

form R = k[z1,- -+, xs]/ (fa). We can consider X := mSpec R C A7 as the points x € E*" such that
fa(x) = 0. Recall Noether’s theorem — the f, can be replaced with a finite collection. The closed
subsets are of the form V(gp). Note that this is 73 since points are closed: given p = [po,- -, Pnl,

3.1 Posets, Zariski Topologies 10



Friday, January 14

take f(p) = H(:E — p;) so that V(f) = {p}. These points biject with maximal ideals in R.

i<n

Remark 3.1.7: An improved version of the Zariski topology: X = Spec R, including prime ideals.
The points are as before, and additionally for every irreducible subvariety Z C X, there is a generic
point 7z. This adds new points which can’t be described in coordinates.

Remark 3.1.8: Note that this generalizes to arbitrary (associative, commutative) rings. For rings
that aren’t finitely generated, one loses the coordinate interpretation. These generally won’t embed
into A’/"”k for any n, but can be embedded into (say) A} r- Use that a closed embedding X — Y
corresponds precisely to a surjection of associated rings Ry — Rx.

" 3.2 Sheaves ~

Example 3.2.1(?): Let U C Q C C and consider C°(Q,C) == Hrom(Q,C) — this forms a sheaf of
op

abelian groups, C-algebras, rings, sets, etc.

e CO\ ,(T,) J
- L KL N (!
=1 \\\
L — \\.\ ><\ I~
N
\HEEp= % ~ 7
N~ [N > (
[S¥e) C \
\ \
== /
\ L+
N~ | =T

We'll refer to this as O%.
Remark 3.2.2: Some properties:

o Forevery t: V CU = there is a restriction ma

FQ): FU)—= F(V)
fe fly

o F(0*) =, so e.g. for rings ; = {0} is the zero ring.

3.2 Sheaves 11



I Wednesday, January 19

o (Sheaf 1, uniqueness): if Y = U and s1,s2 € F(U), then s1|y;, = saf;, = s1.= s2.

o (Sheaf 2, existence): if s; € F(Uj;) and Sl‘Uij = SQ‘UU, then there is a global section s €
./—"(Ul U UQ). o

Example 3.2.3(%): Other examples of sheaves:

o OS. One can check the sheaf properties directly.

o O%! = 0% the holomorphic (complex differentiable) and thus analytic (locally equal to a
convergent power series) functions on X.

o Given a fixed continuous map f:Y — X, setting F(U) = {s: U — Y} the set of continuous
sections of f. P

4 ‘ Wednesday, January 19

Example 4.0.1 (of sheaves): Some examples of sheaves:

e For X C C open, consider pr; : X x C — X and consider the space of continuous sections
OB (U) = Hl_om(U, U x C).
op

X xC

pfﬂU

e Analytic functions O

o OF® where C is given the discrete topology instead of the Euclidean topology. The opens in
U x C are of the form U x V for V C C any set at all:

Wednesday, January 19 12



I Wednesday, January 19

U x C

[ X

« Constant sheaves C(U) defined as the locally constant continuous C-valued functions on U.

Remark 4.0.2: Recall the sheaf properties:

e U— F(U) and gy — Res F(V), F(U).
o 0t F(0Y) =
e Sheaf conditions:

— Unique gluing: & = X with Ress = Rest — s=t € F(X)

X,U; X,U;
— Existence of gluing: {s; € F(U;)} with UReUs si = UReUs s; implies J!s € F(X) with
iHYig 7-YVig
Res s = s; for all 7.
X,U; )

Example 4.0.3(?): Recall that a basis of a topology is a collection B; where every U € 7x can
be written as U B, for some index set I = I(X). Some examples:
i€l
o« For X € AlgVar ;, the distinguished opens D(f) = {f # 0} and Z(f) = {f = 0}.
» For X = Spec I € AffSchy, take D(f) = {p € Spec R \ f#0€R/p}={pcSpech ‘ f v}

— Note that OSpeCR(D(f)) =R [f_l]' i

Wednesday, January 19 13



Friday, January 21

Exercise 4.0.4 (7)
Formulate the sheaf condition with a basis instead of arbitrary opens.
Hint: keep all of the same conditions, but since

intersections may mot be basic opens, write By N
Bg = U By,.

Remark 4.0.5: Some upcoming standard notions:

e Stalks F,
o Sheafification F — FT

A less standard topic:

o The espace etale or “flat space” of F.

Definition 4.0.6 (Stalks)
Recall that

F,=colim F(U)={(U,se F(U))}/ ~ (U,s)~ (V,t) <= IW D U,V, Ress = Rest.
Usz Uw A%
Example: O, = { flz) = Z cx(z —p)* ‘ f has a positive radius of convergence}. Note that

(’)g}?p doesn’t have such a nice description, since continuous functions can be distinct while
agreeing on a small neighborhood. Similarly, C,, = C, since locally constant is actually constant
on a small enough neighborhood.

Remark 4.0.7: Recall that morphisms of (pre)sheaves are natural transformations of functors.
There is a forgetful functor Forget : Sh(X) — %rQ(X), which has a left adjoint (—)7 : %rQ(X) — Sh(X).

There is a description of F7(U) as collections of local compatible sections of F' modulo equivalence
— compatibility here means that if / = X, then writing U;; = UV}, we have )f({e/s S = )f({e/s s; for all
Vk ik

i j.

5 ‘ Friday, January 21

Remark 5.0.1: Last time: definitions of presheaves and sheaves. There is an adjunction

)t

Sh(X) T Sh(X).

pre Forget

Recall that constant sheaves for A € D are defined as A(—) = HTom(—,A) where A is equipped
op

with the discrete topology.

Friday, January 21 14



Friday, January 21

Exercise 5.0.2 (7)
What is I'(4, X) for X = {1/n},c;  CR? So A(U) # AU in general, since there may not
be a notion of connected components for an arbitrary topological space.

Exercise 5.0.3 (7)
Is it true that for any X € Top there is a unique decomposition X = [[;.;U; into connected
components?

Hint: form a poset of such decompositions ordered
by refinement and apply Zorn’s lemma.

Example 5.0.4(?): Consider the following poset with a prescribed topology, and applying some

functor F"
L1 T
™ & F
/ \ 7 A
A /Ty 2 \ 4 / L
OV Y, Osen(-) Lo U () T =
\ / ~ AN —_ [N A
T INT 7 -,
\\ \V/ [ L r
/
‘\\ ’4/ d u‘ 123

For this to be a sheaf, this forces

o I (@) =1
e Fi9 = F) @ F5 by the universal property of @ if this is to be a sheaf.
e F3 can be anything mapping to Fis.

What are the stalks?

o F,=F(X) for z = 3, since X is the smallest open set containing 3.
o I, =F, forx;=1,2.

k3

Example 5.0.5(%): Consider now a poset in the order topology:

Friday, January 21 15



Friday, January 21

A4 Fa.
Al Open () /LN FO) /N
/1N S N - h
/ \ (A Ugs F =9
// \\\ N L/ K\ )l
. N L/ S L4
l

™
+
iy

™~

Now F'is a sheaf iff Fi94 & F7 X Fy is the fiber product.
Fy

Definition 5.0.6 (Sheaf space)

A map m:Y — X € Top is a sheaf space if it is a local homeomorphism, so every y € Y
admits a neighborhood Uy, > y where 7| o, Uy — 7(Uy) is a homeomorphism onto its image.

Example 5.0.7(%): Some examples:

e X x A — X for A discrete.

y/‘

7N

Example 5.0.8(?): One possibility: “jumping”. Take ¥V = X H X for X C R, which is a
X\{0}

version of the line with two zeros. Then Y — X is a sheaf space, since it is a local homeomorphism.

Friday, January 21
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n Monday, January 24

The other possibility is “skipping”:

< i

Y\.

A
Remark 5.0.9: These two definitions of sheaf coincide: for new to old, given ¥ 5 X apply
ContSec, C H_I_om(X ,Y). In the other direction, define Y := H F, and prove it is a local homeo-
op zeX
morphism. A~
Remark 5.0.10: Next time: direct/inverse image, shriek functors, sheaves of modules. A

6 ‘ Monday, January 24

Remark 6.0.1: Recall the definitions of presheaves and sheaves, and sheafification as an adjoint
to Forget : Sh(X) — %rQ(X ). For F € grlg(X ) we concretely construct its sheafification £+ using the

sheaf space m: Y = H F, - X.

zeX

What are the sections of 7? For a basic open U C X 3 z, the fiber is 7~ (z) = F, := colim F(V),
Vaz
which receives a map Res : F(U) — F,. Writing s € F(U), define s, := Res(s), and set W,y :=

T U,x
{sx T € U} to be 77 1(U). Then define F* to be the continuous sections of ¥ =+ X. What does

such a section look like? For ¢ : U — 7 !(U) and = € U, the vertical fiber is F,. For a basic open
V' 5 X in the base, there is a basic open Wy in Y for s € F(V):

Monday, January 24 17



Monday, January 24

‘.l:'

Fa

\. \ Y P

.

N

\‘."lﬁ-—_

—

There are maps s;; : Ujj — ﬂ_l(Uij), but note that Res(U;,U;j)s; does not necessarily equal
Res(Uj,U;j)sj in F(U;;) — instead, there is an open cover U;; = UVQ with Res(U;, Va)si =
Res(Uj, Vi)s; for each a.

Todo

Remark 6.0.2: For f € Top(X,Y) we have the following constructions:

o The direct image f, : Sh(X) — Sh(Y'), which is easy with the sheaf definition, and
o The inverse image f~* : Sh(Y') — Sh(X) which is easier with the sheaf space definition.

Recall the definition of a morphism of sheaves as a natural transformation.

For sheaves of abelian groups and ¢ : F' — G a morphism of sheaves, there are notions of
ker ¢, coker o, im ¢, and extension of a sheaf by zero.

Monday, January 24 18



I Monday, January 24

To show these exist as presheaves, one only has to show existence of the following blue morphisms
of abelian groups:

00— s kerpy —— F(U) GU) ——— cokerpy —————— 0

N |

1

1

1
v 3 v

!

1

1

1

1

1

!

v

00— s kerpy —— F(V) G(V) ———» cokerpy ———— 0

Link to Diagram

Write (coker ¢)~ and (im @)~ for these presheaves. #

Proposition 6.0.3(?).
ker ¢ is a sheaf.

Proof (?).
Axiom 1: use that F' is a sheaf and ker oy C F(U) can be viewed as an inclusion. Axiom

2: write s; € ker (F(UZ) o, F(Uj)>, then there exists a unique s € F'(U). Then check that

s € ker (F(U) — G(U)) by noting that if s — ¢ then t[; = 0 for all 4, making ¢t = 0 by the
sheaf property of G.
|

Definition 6.0.4 (Cokernel and image sheaves)
Define

coker ¢ := ((coker p)7)*
im ¢ = ((imp)7)*.

Example 6.0.5 (of necessity of sheafifying): Take X = C and consider exp : Hol(X) — G the
sheaf of nowhere zero holomorphic functions. Then on U; € C\ {0}, take z € G. Then z = exp(f;)
in each U; with f; € Hol(X), so f; = log(z) locally and z = exp(log z), but there is no global
f € Hol(X) with exp(f) = z. So z € ker p;(Hol(U;) — G(U;)) but z ¢ ker exp. For the same reason,
z = 0 in coker p; since it’s locally in the image. but z # 0 € coker exp since it’s not globally in the
image. e

Monday, January 24 19
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I Wednesday, January 26

7 ‘ Wednesday, January 26

Remark 7.0.1: Recall last time: presheaf vs sheaf properties, images, kernel, cokernel. We can
state the uniqueness sheaf axiom as the following: if s € F'(U) with s|;; =0 for i/ = U, then s =0
in F(U).

F = (im )~ satisfies uniqueness.

G = (coker ¢)~ satisfies existence.

o F fails existence <= @ fails uniqueness
o F fails uniqueness iff G fails existence.

The presheaf image and cokernel can sometimes fail to be a sheaf: use Hol(X) =2 Hol(X)*. The
kernel presheaf (ker )~ is already a sheaf.

Exercise 7.0.2 (7)
Show the following:

o A sheaf F is the zero sheaf iff 7, = 0 for all p.
ker(y), = ker(p,), which is ker(F, LN Gp) the kernel of the induced map.

coker(y), = coker(ip,) = coker(F, 22 G,).
o ¢:F — G is injective iff ¢, : F, = G, is injective for all p.
o p:F — G is surjective iff ¢, : F, = G, is surjective for all p.

Remark 7.0.3: Hints:

« Suppose s # 0 in F'(U), does there exist a p with s, = 07
o Use that s, € (ker ¢), can be regarded as s € ker(F (V) — G(V)) mod equivalence.

Definition 7.0.4 (7)
If there exists an injective morphism ¢ : F — G, we regard F < G as a subsheaf and define
the quotient sheaf F/G = coker(F % G).

Exercise 7.0.5 (7)
Show by example that (¥/G)™ need not be a sheaf.

Remark 7.0.6: Note that for ¢ : F — G, the image im ¢ is a secondary notion in additive
categories, and can instead be defined as either

 coker(kerp — F)
o ker(G — coker ¢)

These need not coincide in general.

Wednesday, January 26 20



I Friday, January 28

Remark 7.0.7: Defining the direct image: easier using the sheaf axioms. For f € Top(X,Y), define
f« :Sh(X) — Sh(Y) by

fFU) = F(fYU)), € Sh(Y) for F € Sh(X).

Remark 7.0.8: For the preimage: easier to use the espace étalé. As a special case, consider
t:S <Y where S is a subspace of Y (with the subspace topology). Then for F € Sh(Y'), we can
now define sections not only on open subsets U but arbitrary subsets S as

F(S) = (L7LF)(9).

8 ‘ Friday, January 28

Remark 8.0.1: Last time:

e Morphisms of sheaves ¢,
o kerp (already a sheaf),
o (im¢p)~, (coker p)~ (need to sheafify),

— All defined to commute with taking stalks: (ker ¢), = ker(p,), etc

o (im¢)~ may fail the existence axioms for sheaves, using exp : O™ — (O*")* for X a complex
analytic space,

o (coker )™ may fail the uniqueness axioms for sheaves,

o (im )~ satisfies existence <= (coker )~ satisfies uniqueness,

o For F — G injective, the presheaf quotient (G/F)~ may fail to be a sheaf.

Example 8.0.2(of the last claim): For X € AlgVar , for k = k, let Ox be its regular algebraic
functions. Take X = P! and U := A\ {pt} C A’ CP'\ {ay, - ,ax}. Then Ox(U) = k[z][r~] for
flx) = H(m —ag), Ox(X) =k, Kx(U) = k(z), and K3 (U) = k(z)\ {0} if U # 0. Define Cartier
divisors as global sections of the sheaf Cart Div := K /O%. Recall that Weil divisors are finite
sums of codimension 1 subvarieties, and these notions coincide for nonsingular varieties.

For p € A C P!, we have
_ Kxp _ k(x)
Oxo {f/g]| f) #0,9(p) # 0}

using that any element in the quotient can be written as h(z) = (x — p)"g(x) for some g € (’))X(,p.

Here Cart Div(X) = Z n, P are all finite sums with n, € Z. The claim is that sheaf existence fails
for this quotient — there are local sections that do not glue. Here

o KX(PY) = k(z)*
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I Monday, January 31

R OX(Pl) — kX
N KX(Pl)/OX(Pl) — k‘(SL')

kX

For any s in the quotient, we can associated ($)o—($)oo = Z n, P, but not every Cartier divisor is of

this form — these are the principal divisors. This form a group Pic(X) = Cart Div(X)/ Prin Cart Div(X),

which may not be trivial. This proof generalizes to locally Noetherian schemes, not necessarily
reducible, with no embedded components.

Remark 8.0.3: Note that Pic(X) is also the group of invertible sheaves on X, and for irreducible
algebraic varieties these coincide. Use the SES 0 — O* — K* — K*/O* — 0 to obtain

1 — H°(0*) - H(K*) — Prin Cart Div(X) — H'(O*) 2 invertible sheaves/ ~— 0,,

where H 1(K ") vanishes since it’s a constant sheaf on an irreducible scheme in the Zariski topology.

Proposition 8.0.4(?).
(im )~ satisfies existence <= (coker @)~ satisfies uniqueness.

Proof (?).
= : Let s € coker(F(U) — G(U)) and write U = UU;. We want to show that sy,
implies s € coker(F(U;) — G(U;)) for all i. Note that s = 0 in coker(F(U) — G(U)) iff
s €im(F(U) — G(U))
|

9 ‘ Monday, January 31

Remark 9.0.1: Direct image sheaf: for F € Sh(X),G € Sh(Y),f € Top(X,Y), the f. €
[Sh(X), Sh(Y)] is defined by f.F(U) :== F(f~'U). The inverse image functor f~* € [Sh(Y), Sh(X)]
is slightly more complicated. An easy case: if ¢ : § < Y is a subspace, then it is just restriction:

(t7L1G)(S) = G(8S).
Idea for sheaf space: there are strictly horizontal neighborhoods as the homeomorphic preimages of
small opens in the base. So for Etg = Y the sheaf space of G, define the inverse image as

Etflg = 7T_1(S) - Etg,

and define a basis of sections in the following way: for s € G(U), set t(U) == s(U) N7 1(S) € Etg
to be sections of Et,—15. Declare these to be a basis of opens, i.e. take the subspace topology for
77 1(S) C Etg in the sheaf topology on the total space. More generally, for f € Top(X,Y), set

Etf—1g = Etg >)EX

The fibers are identical:

Monday, January 31 22
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Monday, January 31

i Etfflg ; Etg
i * i ™
1 / X . - y
\1/ Fom o) > ;

Link to Diagram

The topology on Et s-1g is the coarsest topology for which 7* and f* are continuous. This is
generated by (f_l(s)(f_lU)> N (7)Y (W) for W C X open. Define f~1(s) € f1G(f1(U)) =
(f~'U)xs(U). This makes the pullback continuous both vertically and horizontally.

U

P
Corollary 9.0.2(?).
(f7'G)y = G-
Definition 9.0.3 (Inverse image sheaf)
+
f7ig = (V —  colim Q(U)) :
UvCf-1(U)
Remark 9.0.4: How to prove this coincides with the previous definition:
e Show the stalks are isomorphic,
« Show that there is a map of presheaves (f1G) — f1G,
e Show that the map induces an isomorphism on stalks, and lift using the universal property of
sheafification. e
Exercise 9.0.5 (?)
Try to prove this by commuting limits.
Remark 9.0.6: Recall that K*/O* = @(L*)*L:IZ which had stalks Z but was not constant —
reX
check that the local sections differ. e
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Wednesday, February 02

Question 9.0.7
For S — Y, does every section of G over S extend to Y7

]_O ‘ Wednesday, February 02

Remark 10.0.1: Extending by zero: for i : U < X an open subspace and F € Sh(U), define
iWF € Sh(X). If the target category has a zero object, define this in the sheaf space by extending
the zero section:

[
\ )
(Y [ N
N/ N )
. 0
4 \\ U N \
) J L J
\ — /)
(A
4\

Thus Eti! F=Etr]] {so} for sp the zero section.

Proposition 10.0.2(?).
Define a presheaf are given by

FWV) VCU

0 else.

(F)~ (V) = {

Sheafifying produces an equivalent sheaf, i.e. (iyF) ™" = 4, F.

Proof (?).
Idea: produce a map (41 F)~ — @F and show it is an isomorphism on stalks. What are the
stalks? By the sheaf space definition,

JFp pelU

0 else.

(i!}—)p = {
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Wednesday, February 02

On the other hand, (i1F), = colim F(V), but this limit can be taken over the system of open
Vop

sets V C U, so it yields F,.
|

Remark 10.0.3: Consider X = U][Z with U open and Z closed. Let U <y X and Z <i> X, and
consider i, F|; and j, F|;;. There is a SES

0—iFly —=F—=j«Fly; —0.

o
Example 10.0.4(?): The sheaf 4, F|;; is a subsheaf of F, and j. F|, is a quotient.
N\
< 7\
h N\
uri
/ "7 L
X L £ 2
T= =7 ul ¥\ M=
SR iz
Here Etgz = H X, and Etj* 21, X glued along X'\ Z. So i1 F|;; = F. It’s important that Z is closed
neZ
here to get a surjection, since then any point in its complement has a neighborhood V missing Z
entirely and (¢yF)” (V) = 0. Checking the stalks:
pelU Fp Fp 0
peEZ Fp 0 Fp
g
Example 10.0.5(?): Let X € AlgVary, eg. X = P!, let Z C X be closed, and let F := Ox.
There is a SES0— I; - Ox — Oz — 0. e
Remark 10.0.6: Note that we have adjunctions
-1
ShX T Shy
f
Sh? T Sh?
_|U
LN
Sh? I Sh?.
—lz
-
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]_ 1 ‘ Friday, February 04

Remark 11.0.1: Last time: extension by zero, inverse image, pushforward on closed sets and
adjunctions.

s -1 = .
J € Hom(X,Y) g?g(f G,F) g?%(g,f*F)

AWarning 11.0.2
Pushing forward open sets is not generally a good idea! Take X = R*™ 7 = {pt}, U = X \ Z.
Then (ixZy)p = 7% if p = pt, since any neighborhood of p pulls back to two connected components.

Remark 11.0.3: Consider U é X with U open and Z 4 X with Z closed, then for F €
Sh(X),H € Sh(U),G € Sh(Z2),

Hom(F|,6) = Hom(Fj.9)

h(Z)
H ™, Hom(i .
Sh(()[IJI)I(H7 Fly) = Sh%rg;(u%f)

Remark 11.0.4: We'll consider (X, Ox) € LocRingSp /cging With sheaves of reduced commutative
rings — note that noncommutative rings are also important, e.g. GL,, or gl,.

Example 11.0.5(?): Common examples of locally ringed spaces:

e (X, R) any space with a constant sheaf.

(X, F) for F = O = Hl%m(—,R).

o« (X,0%") for X € /—\ffAlgVa? /& and OF" the sheaf of Zariski-regular functions. In this case, for
k = k, these are of the form mSpec R C Ay for R = k[z1,- -+ ,2,]/ (f). Recall distinguished
opens are D(g) = {g # 0} for g € k[x1,---,x,], and sections are Ox(D(g)) = Rg'] are
functions p : X — k of the form p = h/g" for some regular function h. It’s a theorem that
these assemble to a sheaf.

Remark 11.0.6: Define algebraic varieties as locally ringed spaces (X, Ox) that

1. X is covered by finitely affine algebraic varieties, so X = UU; with (U;, O,) affine algebraic,
and

2
X
2. X is separated, i.e. X 2X, XX s closed.

Note that affine and even quasiprojective schemes are automatically separated. We require the
separated condition here to rule out things like A! with two origins, i.e. X = Al H Al
AN\{o}

Example 11.0.7(?): Affine schemes: for R € CRing, take X = Spec R with a basis D(g) and
define a presheaf by Ox(D(g)) = R [¢7!]. It’s a theorem that this yields a sheaf.
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I Monday, February 07

Definition 11.0.8 (Ox-modules)
For (X,0x) € LocRingSp, F is a sheaf of Ox-modules iff every section F(U) is an
Ox (U)-module and restriction is compatible with the module structures in the sense that

(Tm)’V = 7'|Vm|v:

Link to Diagram

Example 11.0.9(?): Any constant sheaf M for M € R-Mod.

Definition 11.0.10 (Quasicoherent and coherent sheaves)
An Ox-module is

* Quasicoherent if locally 7 = M (there exists an open cover X = UU; with F|; = My,),
« Coherent iff F is quasicoherent and M € R-Mod® and X is locally Noetherian.

Example 11.0.11(%): Of an Ox-module for a constant sheaf: M = R/p for Ox = R.

Example 11.0.12(?): For complex analytic varieties, take (X, O%') so Ox(U) are locally mero-
morphic functions regular on U, i.e. whose denominator does not vanish on U. This is the setting
where Cartan, Serre, etc defined original notions of coherence, and e.g. Serre vanishing, and scheme
theory is developed by analogy to this situation. Here, F is a coherent sheaf iff F is a sheaf of
O%'-modules and admits a presentation

Q3e™ 03" 5 F 0.

Remark 11.0.13: Next time: locally free, invertible, tensor, and hom.

12 ‘ Monday, February 07

Remark 12.0.1: Examples of sheaves:

. (’)Cts for X 6 Top, where O$%(—) = Top(—, R)

M(—) = C%(— R).

. ohol( ) = Hol(—, C)

o OF(—) C Top(—,R) the sheaf of analytic functions, those locally equal to power series.
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Monday, February 07

e For X € AlgVar;,, Ox(—) = Top((—)**, k) the Zariski-regular k-valued functions.

In all cases, Ox can be regarded as sheaves of regular sections to X x A}k I, X. Note that this

doesn’t necessarily coincide wdith sections of the espace etale, since e.g. the fibers are A' and not
necessarily the stalks. For O%" | one instead takes X x Ac/lk — X.

Definition 12.0.2 (Locally free and invertible sheaves)

A sheaf F € Sh(X) is locally free iff there exists an open cover U = X with F|; = Op,®".
The quantity n is the rank of F. If rank F = 1, then F is invertible.

A vector bundle over X is V 5 X with 7 1(U;) 2 U; x A”. For r = 1, this is a line bundle.

Remark 12.0.3: Maps between bundles are linear in the second coordinate.

Note that there is a correspondence between vector bundles and locally free sheaves. Consider the
rank 1 case, matching invertible sheaves and line bundles. The necessary data:

« An open cover U = X, where U = {Ui},;
e For all 4,5 € I, transition functions ¢;; € O*(U;;) = OAll\l/lt d(U,-j).
X~ VIO

e A cocycle condition: ¢;; =id, ¢ = cpj_il, and p;j@jrpr = id € O™ (Uijk)

Note that any morphism of sheaves Oy — Oy induces a morphism of Oy -modules on global sections

Ov(V) = Ov(V) € Oy-Mod
1=,

and this being an isomorphism manes ¢ is invertible. Note that these are not isomorphic as rings.

Write Z1(U; 0%) = {apij e O*(Uij) ’ } for those ¢;; satisfying the conditions above, and
Bi(U;0) = {goij e O*(Uyj) ’ ij ~ (pij:j})j} for any ZZ € GL1(0) = O*. More generally, we
lt 13 = il o i, € GL(O) ]

Remark 12.0.4: Recall that for a given space X, the open covers of X form a poset under

refinement, where ¢/ > V iff for every U; € U there is some V; € V with U; D V. This yields a
system of maps Z 1(1/{ ;0°) = Z 1(V; O™) compatible with transition maps, so we define

FII(X; 0%) = colimf]l(u; 0>).
U=X

Exercise 12.0.5 (?)

.1
Compute H (IP’I; (9];1) using an open cover by two sets.
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13 ‘ Wednesday, February 09

Remark 13.0.1: Plan:

o)
. Oljpl\glrgd(—,—)
® (_) ®ox (_)

Remark 13.0.2: For (X,Ox) € LocRingSp and F,G € Sh(X; AbGrp), define Hé)m(]-", G) to be nat-
X

ural transformations which are Ox-linear. This forms an abelian group under pointwise operations,
and more generally an O x-module since one can act on morphisms by global sections. There is a
sheaf version, the local hom Homg  (F,G)(U) = H(g)m(}'U, Gu) where we write Fyy = F|;.

U

Proposition 13.0.3(?).
This forms a sheaf of Ox-modules.

Proof (?).
Let

fl' c HOIIl(.FUi, QUZ)
Oy,

f; € Hom(Fy;, Gu;)-
Ou,

If fi|Uij = fjl Uiy then the claim is that there exists a unique ' € Hom(Fy,;,Gu,;). For V C X,

Usj

decompose as V = U U;.
i

Proposition 13.0.4(%).
If F € Ox-Mod"™™=" and G € Ox-Mod'""™™%=* then Hom,, (F,G) € Ox-Mod'rank=rs,

Proof (?). ‘ ‘
Choose trivializations F;, — Op,®" and Gy, = Op,®". The claim is that Hom, (Ov,Ov) =
Oy for any Oy . Given this, Hé)m((’)X@T, Ox®") = Mat,s(Ox) split out as matrices. To prove
X
this, just check on global sections that Homy, (Ox,Ox) = I%Il(\)/lrré(R, R)= R for R =T(R).
S\ (o]
|

Remark 13.0.5: Recall that Sh(X)frank=1 o~ gynik=1j o we identify rank 1 locally free sheaves
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I Wednesday, February 09

with line bundles. We can write H%m(]-" ,G) = {2(;” vi; € O%(Usj) satisfies the cocycle condition}.
ij

What are the transition functions?

We also define H(%m(]:, 0) := FY, and there is a relation to Pic(X).

o
Remark 13.0.6: Note also that Homy (O, F) = F, so global sections coincide with homs. This
will be useful later when defining H* in terms of derived functors. Vs
Definition 13.0.7 (Tensor product)
Define the tensor product of F,G € Ox-Mod as the sheafification of
(F®oy G)” =Uw~ F(U)®o, G(U).
Note that there is a formula for stalks:
(F ®0x Gz = Fz ®0, Ga-
Moreover F ®o, G € Ox-Mod#1k="s  Thig endows Ox-Mod with a symmetric monoidal
structure with duals, so
o« F Rox FV~>0 X
e Ox ®oy FEF
Remark 13.0.8: Recall that f € Top(X,Y) for X,Y € AffSch induces f~! € Sh(X)(f 10y, Ox).
For varieties, this is just given by pullback of regular functions. More generally, for X,Y €
LocRingSp, define the full pullback f* as
f*f = f_lf ®f71(9Y OX
o
Lemma 13.0.9(7).
For the full pullback,
f Oy = Ox,
which is not true for f~!. This essentially follows from R ®p S = S.
Remark 13.0.10: Consider f € Alg /k(S, R) for k = k where we only consider reduced algebra
(no nonzero nilpotents). This induces maps f : Spec R — Spec S and f' : mSpec R — mSpec S.
If A € Sh(X;0Ox-Alg), there are induced maps Ox(U) — A(U) and thus affine morphism = :
Spec A(U) — U covering the affine open U. A

Example 13.0.11(?):
o A= 0Oxlz1, - ,z,] yields a trivial vector bundle Spec A = X x A" — X.
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« For F € Sh(X, Ox-Mod!"rank=m) gt
A =Sym}h(F) = O0x & F S Sym*(F) @ -,

which yields a nontrivial vector bundle Spec A — X.
e For F rank 1, F¥ox = Ox(=D), set

A=Tp(A) =00 FoF%x ...

then Spec A — X is a cyclic Galois cover for G = .

14 ‘ Friday, February 11

Remark 14.0.1: Recall the definitions of:

e Cochain complexes,

e Boundaries,

e Cycles,

e Homology as cycles mod boundaries,

e Morphisms of chain complexes

e Chain homotopies

e Nullhomotopic morphisms

e Homotopic morphisms of chain complexes
e Short exact sequences of complexes:

0 0 0
RN An+1 A Anfl
Cm B" anl - .
N Cn—l Cn Cn—l -
0 0 0

Link to Diagram

Friday, February 11 31
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e Small categories
— Sets of objects, sets of morphisms, a pairing Mor(A, B) x Mor(B,C) — Mor(A, C).

e Universes

Exercise 14.0.2 (?)
Show that a morphism of chain complexes induces a morphism on homology.

Exercise 14.0.3 (7)
Show that f ~ ¢ — H,(f) = H,.(g), i.e. homotopic chain morphisms induce equal maps on
homology.

Hint: reduce to showing that f nullhomotopic im-
plies H,(f) = 0.

Exercise 14.0.4 (Show a SES induces a LES in homology)
Show that a SES of complexes induces a LES in homology. Write a formula for the connecting
morphism, and do the check that everything is well-defined! Use the grid diagram from above.

Example 14.0.5(%): Examples of categories:

o Set

e R-Mod

e Mod-R

e Top

e CRing, assumed to be unital
° SCh/k

o AlgVar, for k = k
o Sh(X;Z-Mod)

] Ox—MOd

e TopAbGrp

e G ~R-Mod

Note that many of these are not abelian, since they are not even additive, or e.g. are not closed

under kernels.

]_5 ‘ Monday, February 14

Remark 15.0.1: Recall the definitions of:

o Categories
e Functors
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o Diagram/index categories

— e — 0<— 0

— ei— 90— e

— o= e

- N:e—se—...
— e =e

e Sets and posets as categories
o Collections of objects C as functors F' € [I, C] for | an index category
o Products and coproducts (via their universal properties). Useful mnemonic diagram:

) R - ] A
Vrp
A;
Vio
]’_’[ P =R » VC

Link to Diagram

o Algebraic cats over sets (concrete categories) will be closed under products, i.e. HAi will
admit the same algebraic structure by taking pointwise operations.
o Examples of (co)products in common categories:

— Set: direct cartesian product and disjoint union.
— AbGrp: direct cartesian product and direct sum .
— Ring: H and ®z
— Top: H whose underlying set is the cartesian product with the product topology and
H as the disjoint union with the union of topologies Note the difference between the
box and product topologies.
e A diagram in C defined as a functor.
o (co)filtered diagram categories |: for any pair i, j, ijlor(z', j) < 1 and there exists a k with
1,7 — k. Reverse arrows for cofiltered.

— This allows for distinct but isomorphic objects, useful e.g. in Vect, where abstractly
V = VY but it’s useful to distinguish.

o Limits (injective, cones that live above) and colimits (projective, cocones that live below):
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I Wednesday, February 16

e 37 > lim A;
VTI'P
Ai
Yie
colim A; -------- ER— s VO

Link to Diagram

o Fiber products/pullbacks and pushouts

» Equalizers/difference kernels K and coequalizers/difference cokernels C' fitting into K —
Al = Ay — C.

o Computing cofiltered colimits in AbGrp: for the cofiltered set {A;,pi; : A; — A;}
construct as colim A; = [[A;/ ~ here a; ~ @ix(a;) for any k with 7 — k.

;o can

— For filtered limits, one generally gets lim A; = @ A;/ ~ where a; ~ @;r(a;)

o Example: J[[A; € AbGrp is not a cofiltered colimit, since the diagram category is discrete.
— Claim: the underlying set is not [[A;.

o For fixed objects A € C, the functors Mcor(A, —) : C — Set and Mcor(—, A): C — SetP.

— More generally the target can be AbGrp, CRing, etc.

Remark 15.0.2: Next time: additive and abelian categories, why Sh(X;AbGrp) is an abelian
category.

16 ‘ Wednesday, February 16

Definition 16.0.1 (Equalizer and coequalizer)
The definition of equalizers and coequalizers:
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I Wednesday, February 16

Y
T
Bl
K =cq(f.g) ——— A~ B C = coea(f9)
N
'3
X
Link to Diagram
Remark 16.0.2: Notes:
. kerf—)A:;éB—)cokerf.
« B i) X is injective iff A :;5 B—-X
o X I Ais surjective iff X LNy :;g B
e Iso = mono and epi P

Exercise 16.0.3 (?)
Show that if eq(f,g) — A exists then eq(f, g) < A is mono.

AWarning 16.0.4
Iso implies bijective on underlying sets, but not conversely.

Take the subcategory of TopAbGrp whose objects are R with various topologies, then take id :
RYsC 5 RFU Note that kerid = cokerid = 0 but this is not an isomorphism. The issue: this is an
additive category that isn’t abelian. v

Definition 16.0.5 (Additive categories)
For C € Cat,

. H%m(A,B) € AbGrp
« Composition is distributive, so f(g + h) = fg+gh and (g +h)f =gf + hf.

Definition 16.0.6 (Abelian categories)
For C € Cat,

e Closed under all kernels and cokernels
e Closed under products HAi

— Equivalently, closed under coproducts @ A;, and in fact Ax B=A® B in C.

o There exists a zero object 0 = * =, with Hom(0, X) = Hom(X, 0) = 0.
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I Friday, February 18

o Images are uniquely isomorphic to coimages:

0——— kerf A B coker f 0

Link to Diagram

Remark 16.0.7: For C = AbGrp, H(gm form abelian groups under pointwise operations. For

morphisms C = Sh(X;AbGrp) and f,g € C(F,G), writing f = {fu},9 = {gv} in components, one
can set f 4+ g = {fu + gu} to make H(ém an abelian group. Images will be isomorphic to coimages
in C since the induced maps will be isomorphisms on stalks, using that AbGrp is abelian. A

Remark 16.0.8: If A € AbCat, then Sh(X;.A) € AbCat. #

Exercise 16.0.9 (7)
Show that A; x As = Ay @ As in an abelian category using the universal properties.

Solution:
See course notes.

17 ‘ Friday, February 18

Remark 17.0.1: Last time: abelian categories C.

1. Existence of kernels, cokernels, and biproducts: 3A x B <— dA ® B.
2. Existence of isomorphisms coim ¢ — im ¢ for all ¢ € C(A4, B) s

Corollary 17.0.2(?).
For A € AbCat, every morphism has a mono-epi factorization:
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Link to Diagram

Remark 17.0.3: The main technical tool: every SES induces a LES in cohomology. The proof
used for C = AbGrp works nearly identically in an arbitrary abelian category using either

o generalized elements, c/o MacLane, or
e the full Freyd-Mitchell embedding.

MacLane’s idea: define a functor
F:A— Setpt
A'—>{X€A‘X<—>A}/~,

sending A to the set of its subobjects (equivalence classes of monomorphisms), and on morphisms

AL B sending X — A to its image f(X) — B, so F(f)(X) =imp(X). The point in the pointed
set is the subobject 04 — A. One then proves

e [=0 << F(f)=0,
o fis mono/epi <= F(f) is mono/epi,
o Thus F is exact.

So one can reduce checking exactness of f (where A may not have sets of elements) to checking
exactness of F'(f), where the source/target are sets.

Theorem 17.0.4(Freyd-Mitchell).

For A € AbCat, there is a fully faithful embedding C <£> R-Mod for some ring R. Here full
means that homa (4, B) = homg-mod(F'A, FB).

Proof (Idea).
o Use the Yoneda/functor of points embedding, which is fully faithful:
A — [A, Set]
X — ¥ (-) = Mor (X, —).

o Identify [A,Set] ~ R-Mod where R = MAor(I ,I) for I an injective generator of this

category, so every object comes from a subobject or quotient of I. Then every M =
MAor(I , M) becomes an R-module.
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Observation 17.0.5
Some observations about abelian categories:

o AbCat is closed under (—)°P, i.e. A € AbCat —= A°® € AbCat
e A e AbCat = ChA € AbCat.
o If I is any index category, Al = [, A] € AbCat.

— BE.g. Z withi — j <= i < j yields A? the category of sequences of elements of A,
ie. - — A1 — Ay — A1 — -

— E.g. for ] = e — e < e, Al is the category of pushouts in A whose morphisms are
commuting diagrams:

A1\4>A2\

o By

Link to Diagram

Remark 17.0.6: Some additional axioms that hold in AbGrp which we could ask A € AbCat to
have:

o AB3: existence of arbitrary sums @ A;.

(2

e« AB4: AB3 and if A; — B; for all ¢, then @Ai — @ B; is again injective.
i i

The dual of AB4, with products replaced by coproducts and injectives replaced by surjections.
o AB5: AB3 and for all filtered system of subobjects A; C A and a subobject B C A,
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I Monday, February 21

o ABG6: AB3 and for all filtered systems Bg C BJ C A,

Njes (Z B{) = Y (njesBl).

i€l el 1
« AB: AB6 and AB4", the dual conditions for AB4.

The categories Shy (AbGrp) and Shy (Ox-Mod) satisfy AB5 and AB3" v

18 ‘ Monday, February 21

Remark 18.0.1: Recall the definitions of lim F and colim F for F' € [I,C] = C' with | a small index
category. Note that if N := Open(X)°?, the functor category cN = %rQ(X ; C) consists of presheaves

on X. e

Lemma 18.0.2(%).
If any of the following exist in C:

o JT4
. HAZ»

. anF
e colim F

Then the same is true in CN.

claim: 3

VG(V)
Link to Diagram
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|
Lemma 18.0.3(?).
If C has coproducts or colimits, then so does Sh(X; C).
Proof (?).
Factor through the sheafification:
F;
—————————————————————————————————————— : G
s .
F; (colim )~
Link to Diagram
|
Remark 18.0.4: In AbGrp, we have H, H = @,colim,@.
A;
liﬂl Az c H Az H Al = @ Al colim Az
fij
{(a) ’ fii(@) = a;} D Ai/ (ai — 1
Aj
Link to Diagram
Note that the inner diamond doesn’t necessarily commute. The same diagram holds in R-Mod. ~
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Corollary 18.0.5(?).
In Sh(X, AbGrp) and Sh(X, Ox-Mod), both @& and colim exist.

Lemma 18.0.6(7).
In Sh(X, AbGrp) and Sh(X, Ox-Mod), both ] and lim exist.

Proof (?).
In g’rE(X,AbGrp), there exist H, lim where (H F)(U) = HFZ-(U), but this already forms a
sheaf. Check that if U = U U, then a collection of sections F;(U,) agreeing on intersections

is the same as an element of the product.
|

AWarning 18.0.7
Luckily we don’t need to sheafify here, since the arrow for sheafification goes the wrong way. However,
the presheaf U — @;F;(U) is not necessarily a sheaf. Take X = 7Z with the discrete topology, then
any global section has infinitely many nonzero components. Note that (©F;)~" C HFl is the
subsheaf of the product where every local section has all but finitely many entries zero.

Question 18.0.8

(BF), = e,

i.e. is the stalk given as {(ai) € (Fi)p ’ all but finitely many entries are zero}. Idea: each a, might

only lift to a disc of radius 1/n, which intersect to {p}. For example, take F = C* and take smooth
compactly supported functions on [—1/n,1/n] converging to xz—o.

19 ‘ Wednesday, February 23

Remark 19.0.1: Recall the definition of an additive category:

. Mcor(—7 —) are abelian groups,

o Compositions distribute

e A zero object

¢ Finite products A x B <= finite coproducts A ® B <= finite biproducts:

i1 12
A 5 Ae B — B
1 2
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Link to Diagram

where we require
e pji; =id
o pjir, =0 fori#j
o i1p1 +igp2 = 1daeB.

o Abelian cats: additive, plus existence of kernels, cokernels, images.

Definition 19.0.2 (Additive Functors)
A functor F' € [A, B] is additive iff the induced map F; : MAor(A, B) — MBor(FA, FB) € AbGrp

is a morphism of groups.

Slogan 19.0.3
Additive functors preserve

e polynomial identities in morphisms,

o biproducts, so F(A® B) = FA® FB,

e complexes, so dp41d, = 0,

e chain homotopy equivalences of complexes, which is a polynomial identity of the form ds+sd =
h.

Example 19.0.4(of additive functors):
e For A € A € AddCat, the functors MAor(A, —) : A — AbGrp and l\/gor(—, A) : A — AbGrp°P.
o For A € R-Mod, Fy(—) = A®g (—) : R-Mod — AbGrp.

— If R € CRing, is commutative F4(—) : R-Mod — R-Mod.

o For | and index category, recalling A = [I,A], the functors !iLnA' — A and colim : Al — A
when they exist.
o For Sh(X; AbGrp), the global sections functor I" (X; —) : Sh(X, AbGrp) — AbGrp.

— For f € Top(X,Y), pushforward f, : Sh(X) — Sh(Y") (which includes inclusion of a point,
i.e. taking stalks at a point) and f~1 : Sh(Y) = Sh(X) (which includes restriction).

o Local homs Hom(F, —) : Sh(X; Ox-Mod) — Sh(X; Ox-Mod).
. ] : Sh(X; AbGrp) — AbGrp where F > Fy.

Remark 19.0.5: Recall the definition of exactness for chain complexes over abelian categories:
imd" ! = ker d". Note that one can use epi-mono factorization to splice:
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dr—? Cn+1 dnti

\/\/
NN

Link to Diagram

This yields collections of SESs,

02"t 50"— 2" —o.

Recall the definition of right/left/middle exactness: for 0 - A — B — C' — 0 and covariant
functors F":

o Right exact: FA — FB — FC — 0,
e Longexact: 0 > FA — FB — FC,
e Middle exact: FA — FB — FC.

For contravariant functors, e.g. left exactness means 0 — FC' — FB — FA, so injectivity is
preserved. Equivalently, F' : A — B is left exact iff the covariant F': A°® — B is left-exact.

Example 19.0.6(?): Of exactness:

o I'(—) is left-exact,
’ is fully exact,

e fi mis left exact,
o f1is fully exact, since this preserves stalks,
o A®p (—) is right exact,

o Hom(A,—), Hom(—, A) are both left exact, which we’ll prove.
R-Mod R-Mod

Proposition 19.0.7(?).

Hom (A, —), Hom (—, A) are both left exact.
R-Mod R-Mod

Proof (?).
Use that kernels are monomorphisms:
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NS Hom(A,—)

? ————— Hom(A4, B') ————— Hom(A, B) ———— Hom(A4, B")

Link to Diagram
Then show if =0 = f =0, using that B’ — B is mono. Similarly pf =0 = f = ig for
some g.
|

Remark 19.0.8: A nice proof that I' (—) is left-exact: realize I' (X;—) = g?%(z, —), which is

left-exact for free. Use that the map Z — F(X) is determined by 1 — s and extend using n =n - 1.

20 ‘ Friday, February 25

— 20.1 Adjoint Functors, Exactness ~

Remark 20.1.1: Consider the setup:

We say F is a left adjoint and G is a right adjoint, so F' has a right adjoint and G has a left
adjoint, if there are natural isomorphisms

[FA, Blg = [A, GB]a,

i.e. there is a natural isomorphism of functors [A, G(—)] = [F A, (=)]. For a fixed object B, there is
a natural transformation eg : FG — idg which we call the counit and 74 : ida — GF called the
unit:

Jdep

GB FGB —— B

Link to Diagram
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Theorem 20.1.2(?).
If A, B € AbCat, then

o If F'is a right adjoint, F' is left exact.
o If G is a left adjoint, G is right exact.

Proof (?).
Note that the following lift exists iff ker(A — A”) = (A" — A):

0 A

o

A 0

Link to Diagram

Given 0 =+ B' — B — B”, we want to show 0 - GB' — GB — GB" is exact. Given A — B”
factoring through zero, we can use adjointness to flip diagrams:

0 GB’ GB GB" 0
XL
3 0
T A
F(-)
0 B B B” 0
x.
3 0
FA

Link to Diagram

Example 20.1.3(?): There is an adjunction between global sections and constant sheaves:

rex)
Sh(X; AbGrp) I— AbGrp.

~—

(=)

One can define the map explicitly:

[A, T (X5 F)]abGrp — [A, Flsh(x;AbGrp)
(@ sq) = (ay — saly)-
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It suffices to check this locally. Use that I' (X; A) contains a copy of A to define the reverse map,
and check they are mutually inverse. Vs

Example 20.1.4(?): For f € [X,Y]1op, there is an induced adjunction

N
Sh(X; AbGrp) = Sh(Y’; AbGrp).
f—l
Thus f, is left exact. o

Exercise 20.1.5 (7)
Define the map

G, feFlshy = [f "G, Flsny-

Remark 20.1.6: Note that f, is fully exact, as we knew before by checking on stalks. Also note
that | for F € Sh(X)is f~'F for f: {z} = X.

o
Example 20.1.7(?):
)t
Sh(X;AbGrp) I Sh(X;AbGrp),
pre Forget
so sheafification is right exact and the forgetful functor is left exact. In fact, (—)" is fully exact
since it preserves stalks. e
Example 20.1.8(%): For j € [U, X|top with U open in X,
Jt
Sh(U; AbGrp) I Sh(X; AbGrp).
j—l
In general there is a SES
0= i1 Fly = F = ixFlx\pg = 0.
o
Example 20.1.9 (from algebra):
(—)®R(-)
R-Mod _T= R-Mod,
[7’7}R'Mod
so tensoring is right exact when an object is fixed. Note the isomorphism
[A @R Blr-Mod — [4, [B, C]R-Mod]R-Mod-
o
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21 ‘ Monday, February 28
— 21.1 Tensors ~

Remark 21.1.1: Recall R-Mod = Mod-R = (R, R)-biMod for R € CRing associative, but for

noncommutative rings these may differ.

The tensor product is a bifunctor

(=) ®r (=) : Mod-R x R-Mod — AbGrp

F(M x N
Mr xXgr N — Mrp®gr rN = ( s )

(my+mo)@n—m;@n—ma@n,ma®@n—mean, -

satisfying the usual universal property.

e This generalizes:

(=) ®g (=) : (R, R)-biMod x R-Mod — R-Mod.

« If ¢ € CRing(R,S), then
(=) ®r S : Mod-R — S-Mod.

e This extends to algebras:
(=) ®g (=) : AlgR x AlgR — AlgR,

with multiplication given by (s1 ® s2) - (t1 ® t2) = (s1t1) ® (s2t2).

e There is an adjunction:

[A®Rr C, Blr-Mod — [A, B¢|R-Mod-

Corollary 21.1.2(?).
Since A ®p (—) is a left adjoint, it is right exact. Thus presentations R’ R M =0
yield presentations M7 — M — M @ N — 0.

Example 21.1.3(%):
CeorRC=CaC,
writing C = R[z]/ <x2 + 1>, S0

Rlz] o Clz] . Cla] Clz]
COR T T T @D = @A)
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Geometrically, this corresponds to colim(Spec C — SpecR - SpecC) = X := Spec C ®g C, where
point <:c2 + 1> splits geometrically and X — SpecR is a 2-to-1 cover over this point.

X x Speck = Spec(S ®g k) X AT
Spec k » Y < » A" D [ag, -, ay)
Speck

Link to Diagram

Conclusion:
k[mlv e axm]

SQprk =
(gj(a,x))
In the previous example, the fiber over a is Spec k[x]/ <$2 — a> and the covering map looks like the

following:

\
4

/N

~
< x4
t

Question 21.1.4
Is direct sum exact as a functor A<* — A? Regard A<* = Al where I = {e, o} is the discrete 2-object

diagram category. The map (A1, A2) — A; @ Aj is exact by just summing SESs.
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— 21.2 Cohomology ~

Remark 21.2.1: Recall that one can compute H,(S% Z) in several ways.

Method 1: triangulation.

|
Pa

Z'-\Z Y \--—-—--')J’ / // L/—____\
AV TIET [N
2 &N
!'))z 0 \\{ L / T>//</>-<\>
. . ‘N T L=
L, \| =

This yields

0<—ZX4<—ZX6<—ZX4<—0w0<—Z<—0<—Z<—O.

Method 2: cell complexes.

/ L \></“‘_“"'--m\ T~
[ ¢\ L N\
o S N A e )
\ o / //}
Vv
\\"‘--.._—-/
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This directly yields

0+ Z<+ 0+ Z <+ 0.

Question 21.2.2
Why are simplices A,, or discs D" the right things?

Answer 21.2.3
They are contractible, but more importantly do not themselves have higher homology and are thus
acyclic.

Remark 21.2.4: More generally, for F' € AbCat(A,B), we’ll want to resolve by acyclic objects.
Injectives and projectives will be universal such objects, but are often hard to work with, so we’ll
work on finding more economical acyclic resolutions. Next time: injectives/projectives and derived
functors.

22 ‘ Wednesday, March 02

Remark 22.0.1: For F' € AbCat(A, B) left exact, assuming A has enough injectives, there is a right
derived functor RF so that a SES0 - A — B — C' — 0 admits a LES with a connecting morphism
d:

0 RFA—RFB—RFC S SIRFA - --- .

Note that § depends on the triple appearing in the SES.

Theorem 22.0.2 (Grothendieck).
RF and § are universal among é-functors.

Remark 22.0.3: Injectives will be acyclic and homology will measure how things are glued. Anal-
ogy: simplicial or cellular homology uses contractible objects (with trivial homology) to measure
how spaces are glued from simplices or spheres.

Remark 22.0.4: Recall the definitions of projective and injective objects, which require existence
(but not uniqueness) of certain lifts. In R-Mod, free implies projective, so free resolutions usually
suffice and one can study generators, relations, syzygies, etc.

We'll show that A := Sh(X; AbGrp) has enough injectives, but usually won’t have enough projectives.
Recall that this means that every A € A admits a monomorphism A < [ for I an injective object. If
there are enough injectives, every object admits an injective resolution, and any two such resolutions
are homotopy equivalent.
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Remark 22.0.5: Recall that
RF(X)=H,(F(X &1I%)

and RZ1F(I) = 0 if I is itself injective.

Remark 22.0.6: Recall the Horseshoe lemma:

Link to Diagram

Note that the complex in the middle is not the direct sum of the two outer complexes, just the
terms — the differential dg on I°p will be of the form

_|da ¥
weltr 2]

Exercise 22.0.7 (?)
Prove this, using that additive functors preserve direct sums. Conclude using that this con-
struction yields a SES of complexes 0 — FI*4 — FI*g — FI°c — 0.

Exercise 22.0.8 (?)

Prove that if I is injective then 0 — I — B — C' — 0 splits by explicitly constructing a left
and right splitting to show that B satisfies the universal property of the biproduct. Show also
that the same conclusion holds for 0 - A - B — P — 0 with P projective.

23 ‘ Friday, March 04

Remark 23.0.1: Idea: regard A as a chain complex supported in degree zero and Anl*® an injective
=

resolution, then the induced map n* : H*(A) — H*(I*) is an isomorphism, so A and I* are quasi-
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isomorphic. v

Exercise 23.0.2 (7)
Show that if A & I°, J°*, then there exists a chain homotopy f: [ ~ J.

Remark 23.0.3: Hints:

A

X0 10 X! It X2 s oo
J \ |3 since J is injective

Yo JO vl J! y? .
B

Link to Diagram

Given

frml gl prgnel _ gr=2pn—1.
construct h""1d? such that

(F" — g} = (WA} + )y

and extend arbitrarily to A" : ["T1 — g7, &

Exercise 23.0.4 (?)
Prove the Horseshoe lemma.

24‘ Monday, March 14

Remark 24.0.1: Call the definition of the derived functor RF for a left-exact functor F €
AbCat(C,D) where A has enough injectives. These satisfy R°F = F, and for a SES 0 — A —
B — C — 0 there is an induced LES RFA — RFB — RFC — RF A[1] which is functorial in the
triple (A4, B, (). Next: Grothendieck’s universality theorem. Vs

Definition 24.0.2 (J-functor)
A Jd-functor is a sequence of functors {Si A — B} - such that for all SESs 0 —+ A —+ B —

1>
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C — 0 there is a (not necessarily exact) complex:

:

sta~— s ¢8'p—, Slo

S2AS . e§?2B_ ...

Link to Diagram
A morphism of d-functors is a collection { fi:8t =T ’} - such that for all such SESs, there

i>
is a commutative diagram:

SiA S'B Sic %, gitly

T°A— . T'B TiC i Ti+14

Link to Diagram
Note that the first 2 square are commutative by functoriality, and the content here is that the
map commutes with the connecting morphisms.

Definition 24.0.3 (Effaceable functors)

An additive functor G : A — B is effaceable iff for all A € A there is a monomorphism A i> M
such that GA ZL5 GM is the zero map.

Slogan 24.0.4
Effaceable functors are those which erase some monomorphism.

Definition 24.0.5 (Universal delta functors)

A delta functor (S;, pg) is exact iff the induced complex is a LES, and is universal iff for any
other delta functor (T;,¢7) and any natural transformation 7 : SY — T there is a unique
morphism (5;, vs) = (Ti, pr) extending 7.
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I Wednesday, March 16

Theorem 24.0.6 (Grothendieck, Tohoku: exact fully effaceable functors are univer-

sal).

Suppose {SiF , go} 0 is an exact delta functor and that the S* are effaceable for all i. Then it
(2

is a universal § functor.

Corollary 24.0.7(?). '
When F' € AbCat(A,B) where A has enough injectives, (R'F, ) is universal and there is a
unique such delta functor with R'F = F.

Proof (of corollary).

Embed A < I into an injective object, which is F-acyclic, and thus R'F A S RiFT=0.
|

Proof (of theorem,).
Proceed by induction. Let 0 -+ A — M — @ — 0 be arbitrary, and use a diagram chase to
define a map f*(¢):

TM — s TiQg— % ,qitig_ pitip

Link to Diagram
One needs to show:

1. f%(¢) does not depend on ¢
2. Itisa? forall A - B
3. This map commutes with g, ©7.

25 ‘ Wednesday, March 16
" 25.1 Grothendieck’s Universal Theorem ~

Remark 25.1.1: Setup from last time: F' € AddCat(A, B) left-exact, {(S™, ¥5)},,> exact J-functors
where for n > 0 the S™ are effaceable. Then it is universal: for all J-functors {(T", ¢77)},,5¢ With
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Wednesday, March 16

a natural transformation S® — TV there exist unique morphisms (S™, %) — (T™, %), i.e. natural
transformations S™ — T commuting with the ¢". e

25.1.1 Proof of Universality

Remark 25.1.2: Take an effacement 0 — A < M for S"™! and extend to a SES 0 — A — M —
@ — 0. We'll define the ladder of morphisms inductively using the following commutative diagram:

SnQ L Sn+1A Sn—l—lM
m 3= (L)
TnQ YT Tn_\‘:lA
Link to Diagram
We need to show
o f"1(A,i) only depends on A
o f"is functorial in A
. f”+1 commutes with g, 7. y

Lemma 25.1.3(?).
Assume that given two effacements of two delta functors, there exist morphisms:

0 J A, gl M,

0 Ay e M,

Link to Diagram
Then there is a commuting square

n+1
sntlg, 57 (g) Sl g,

T+ (g)

Tn+1A1 TTL+1 AQ

Link to Diagram
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Proof (?).
There is a cube:

SnQ1 — SnQQ

e

?QS f" ‘Ps f”+1
Sn+1A1 — Sntl(g) — Sn+1A2 Tan E— TnQQ

Tn+1A1 — Tt (g) — Tn+1A

Link to Diagram
Here all faces but the front form commuting squares.

Exercise (?)
Show that one can move the red path to the blue through the other commuting faces.

Corollary 25.1.5(7).
f"+1(A, i) only depends on A. Take two effacements, and assume there is a commuting

diagram:
0 A it M,
J ;
(— |
0 A 2 My

Link to Diagram
By the lemma:

S"A ——= 5"'4
fr(in) fr(i2)
Tn—i-lA Tn—i-lA

Link to Diagram
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Friday, March 18

0 A i1Pia . M,
(idazy ,0)
0 A 2 s Mi® M,
(0,idaz,)
0 A s Mo

Link to Diagram

See notes for finished proof.

26 ‘ Friday, March 18

Remark 26.0.1: Given effacements:

0 Ay My
g
0 Aa My

Link to Diagram

There exists an effacement extending g. Use

0 Aq (i.9%2) My & M,
g (0,id)
0 Ay 2 M,

Link to Diagram

There is a factorization:
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S A,
7( ~

S A, S M,

Link to Diagram

22 Concludes theorem from last time.z

Remark 26.0.2: Recall that Hom(C, —) is left exact covariant and Hom(—, C) is left exact con-
travariant. For left exact functors,

o Right derived functors are computed with injective resolutions.
¢ C needs enough injectives

For right exact functors,

e Left derived functors are computed with projective resolutions.
e C needs enough projectives

Remark 26.0.3: Projective sheaves are locally free.

Exercise 26.0.4 (?)
Show:

e Injectives are closed under H,

e Projectives are closed under @

/ -
LS \t\ I
Proof (?). I3 Y/

117

Link to Diagram
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I Monday, March 21

Exercise 26.0.5 (7)
Show that in R-Mod, M is projective <= M is a direct summand of a free module iff M is
locally free.

Solution:
Some hints:

Link to Diagram
Exercise 26.0.6 (?)
Show
» R Hom (Cy, M) = M[n] & Y (M /nM) using 0 — Z = 7 — Z/nZ — 0.
~IVIO!
— Conclude that divisible module has vanishing Ext!(C),, —).

o If Ris a PID, then M € R-Mod is injective <= M is divisible.

e For all rings R, R is injective iff

0 N

R
1

Link to Diagram

27 ‘ Monday, March 21

Remark 27.0.1: Recall free = projective and R-Mod has enough projectives and enough
injectives. A

Exercise 27.0.2 (7)
Show [ is injective iff

Monday, March 21 59


https://q.uiver.app/?q=WzAsNCxbMCwyLCJGIl0sWzIsMiwiUCJdLFs0LDIsIjAiXSxbMiwwLCJQIl0sWzAsMSwiIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV0sWzEsMl0sWzMsMSwiIiwwLHsibGV2ZWwiOjIsInN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMywwLCIiLDEseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=
https://q.uiver.app/?q=WzAsNCxbMCwwLCIwIl0sWzIsMCwiTiJdLFs0LDAsIlIiXSxbNCwyLCJJIl0sWzAsMV0sWzEsMl0sWzEsM10sWzIsMywiIiwxLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV1d

Monday, March 21

0 - R

AN

Link to Diagram

3

Il
I

Hint:

\

~
"~
~

T~

[T
[
B

)
Ra
/et

NI A

1]

—_—

\ |
N .
Y

Extend to A" + Ra using 1 — a ++ i € I under R — Ra — I. Take a poset of all B C A with
g: B — I extending A’ — I and apply Zorn’s lemma.

Exercise 27.0.3 (?)
Show that for R a PID, M € R-Mod is injective iff divisible.
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Exercise 27.0.4 (7)
Show that Z-Mod has enough innjectives.

Hint: write A = @Z/K — @Q/K

Remark 27.0.5: On adjoint functors:
. ~
AT B = B(FX,Y)—=A(X,GY).
G

Here F' is a left adjoint hence right exact, and G is a right adjoint and is left exact.

Exercise 27.0.6 (?)
Show that if F' is left exact then GG preserves in injectives, and if F' is right exact then G
preserves projectives.

Hint:
0 A 4
0 FA FA 5[
\ 3 /
7

Link to Diagram

Remark 27.0.7: For f € CRing(S — R), there is an adjunction

Mr2 s
R-Mod I S-Mod

—

S-Mod(R,—)

where S-Mod(R, N) € R-Mod via the action (rf)(x) = f(rz), sometimes called the induced
R-module. Note that R-Mod(R, N) = N by 1 + n, and there is an iso

S-Mod(Mg, N) = R-Mod(Mp,S-Mod(R, N))

(m = (m)(1)) <4
p = (m= P(m) (i) = ¢(im) = @(im)).

Remark 27.0.8: Proving R-Mod has enough injectives if S-Mod has enough injectives: use Mp =
R-Mod(R, M) < S-Mod(R, Mg) < S-Mod(R, I) where Mg — I embeds into some injective. Take
R arbitrary and S = Z to conclude any R-Mod has enough injectives.
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Wednesday, March 23

Exercise 27.0.9 (7)
This is a theoretical tool and not particularly practical. Consider S — R = Q — C and
M = C. Then Q-Mod(C, Cg) = GCq.

Remark 27.0.10: Any M € R-Mod admits a minimal injective hull M — I.

Theorem 27.0.11(?).
Sh(X — AbGrp) and Ox-Mod have enough injectives.

Proof (?).
Take

F = ] (a)sFe = ] L-

zeX zeX

The claim is that the last term is an injective sheaf. Using that products of injective are
injective, it STS I, is injective. For ¢y : {x} < X, use that modules on a point are Z-Mod
and obtain an adjunction

(tz)

Z-Mod _— Sh(X — AbGrp).

—

(ez) ™

Finally use that Z-Mod has enough injectives.

28 ‘ Wednesday, March 23

Remark 28.0.1: Induced and coinduced modules:

Forget

R-Mod S-Mod

=y

Link to Diagram
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Note that coinduction sends injective to injectives, and induction sends projectives to projectives.
Recall that Sh(X; AbGrp) and Ox-Mod have enough injectives, so left exact covariant functors F
admit right-derived functors RF, and similarly right exact contravariant functors F' admit left-
derived functors LF'. e

Example 28.0.2(%): Important functors:

o Global sections I' (=) : Sh(X;C) — C where F — F(X), e.g. for C = AbGrp. RI'(F) =
H'(X; F) is sheaf cohomology.

« For f € Top(X,Y), the pushforwards f, : Sh(X;C) — Sh(Y;C) where F — (U — F(f~1U)).
Rf.F are derived pushforwards.

o Inverse image, which is exact.

o (5)®ox F

o Hom(—,F).
Ox

Theorem 28.0.3(?).
If F € [A,B] is left exact covariant and A has enough injectives, then for every A € A there
exists an acyclic resolution 0 — A & J* whose homology computes RR.

Proof (Sketch).
Why this homology computes the derived functors: let A = A° and take an injective resolution
A & J*. Break this into SESs, letting Z; denote images:

e 0205 0571 50
e 02t 5 gt 52250

Note that Z" & X"J* = (J" — J""1 — ...) is an injective resolution. Splice to obtain

05 FA—FJ"— FZ' S R'FA -0, RPFZ S RYLEA
0 — ker(FJ° —» FJY) = FJ° = ker(FJ' — FJ?) - R'FA — 0.

Proceed by induction.
|

Remark 28.0.4: Consider F' = A(A, —) (covariant) or A(—, A) (contravariant), so F' € Cat(A, AbGrp).
Note that acyclic objects for F' are exactly injectives: take 0 - A — B — C — 0 to obtain
0 — [C, 1] = [B,I] — [A,I] — Ext'(C,I) = 0 by acyclicity of I, meaning that [B, I] — [A, I] and
thus there exist lifts:
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Link to Diagram e

Definition 28.0.5 (Flasque and soft sheaves)
A sheaf F € Sh(X;Z-Mod) is flasque iff for all U C X open, F(X) — F(U). It is soft iff the
same holds for all closed sets instead, and fine if F has a partition of unity property.

Remark 28.0.6: Note that fine = soft and flasque = soft. Fine sheaves are best for
paracompact Hausdorff spaces, and flasque are better for e.g. the order topology. A

29 ‘ Friday, March 25

— 29.1 Flasque Sheaves ~

Remark 29.1.1: Important classes of sheaves:

e Universal: flasque or flabby.
 Classical topologies (Hausdorff, paracompact): fine = soft.
e AG: quasicoherent sheaves on affine sets and covers. P

Theorem 29.1.2 (Sufficient conditions for acyclicity).
Suppose A € AbCat has enough injectives and F € Cat(A, B) is left exact. Suppose C C ObA
satisfies

e Any A € A admits an embedding A < C' for some C' € C.

o IfAl@AQECthenAl,AQGC.

e GivenaSESO A —+B - C —-0withA,Be(C,Ce€Cand0— FA— FB — FC — 0
is exact.

Then every C' € C is F-acyclic.

Exercise 29.1.3 (?)
Use this to show that flasque implies F-acyclic for F(—) =T (—).

Solution:
Recall U C X open = F(X) —» F(U).

o Take an embedding 0 — F' — H (1)« Fy where vy : {z} — X. Use that for any group

reX
A, G = (15)+A satisfies G(X) — G(S) for any S C X since G is flasque and soft and this

is preserved under products.
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e Apply the lifting property to direct sums.

e Use that restrictions of flasque sheaves to opens are again flasque to prove that there is
a surjection:

Link to Diagram

Proof (of theorem).

Any injective is in C by assumption: since J < C splits for any injective .J, one has C = J @ J’,
making J a direct summand and thus in C by the 2nd property.

Since there are enough injectives, form 0 — C — I — C” — 0. Take the LES, using that
R>°FI = 0 to obtain

0 —— FC FI FC" —— 0

0 —— R'FC — > R'FI=0 —— R'FC”
e

R?’FC ~—— R?FI =0 —— R2FC"

~

. / )

Link to Diagram

Remark 29.1.4: There is a canonical flasque resolution:

Link to Diagram
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Friday, March 25

This is useful e.g. for finite sets with the order topology, but less useful if | X| is infinite and there
are non-closed points. A

Exercise 29.1.5 (?)
Show that if X is Hausdorff paracompact, flasque implies soft. As a corollary, soft sheaves are
acyclic for such spaces.

Solution:
See notes.

e 29.2 Fine Sheaves ~

Remark 29.2.1: Recall that a sheaf is fine iff it satisfies the POU property.

e C(lassically: there is an open cover Y = X and ; : U; — R with supp ¢; C U; where Z pi=1
and locally there are only finitely many nonzero .

o For sheaves: there is an open cover Y = X and ¢; : F — F with supp ¢ a closed set Z; where
Z ¢; = idr and locally there are only finitely many i with ¢(F) # 0.

S A 4

\

Zia

D

e
Example 29.2.2(?): Suppose X is Hausdorff paracompact, set F := O". Thus Ox has a POU
property, as does any Ox-module. Take a usual POU {f;} and define
p: F—>F
S = fZ'S.
So any F € O%5-Mod is soft. e
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Remark 29.2.3: In this case, fine implies soft.

— 29.3 de Rham and Dolbeaut cohomology ~

Remark 29.3.1: Let X be a smooth manifold over R. Note that R is not fine and not soft, and
not even an Ox-module. However it admits a resolution 0 < R £ Qx* where Q% := O, and this
resolution computes the sheaf cohomology H*(X;R).

Similarly, 0 — C =5 Q”* where 0 =) aa dz;.
Zq

30 ‘ Computing Cohomology (Monday, March
28)

Remark 30.0.1: Upcoming topics related to H*(X; F):

e General vanishing theorems
« Cech cohomology
e Riemann-Roch

— 30.1 Vanishing Theorems ~

Theorem 30.1.1(Grothendieck).
If X is a Noetherian space, then 75,11 H*(X;F) =0 for n := dim X.

Remark 30.1.2:

e Note that the theorem statement uses the Zariski topology, and so doesn’t contradict that
H% (X;7Z) # 0 for (say) X a compact complex manifold.

sing

— The theorem uses algebraic dimension d := dim¢ X, which is generally twice the real
dimension.

e Recall that X is Noetherian iff X satisfies the DCC on closed sets.

e Algebraic varieties with the Zariski topology are Noetherian, since dimension strictly decreases
on proper closed subsets.

e Affine schemes over Noetherian rings are Noetherian, since closed subsets corresponds to
radical ideals, which satisfy the ACC.

e dim X is defined as sup {d ‘ ZoC Z1C--- C Zd}.

o Noetherian spaces can have infinite dimension (see examples by Nagata)
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e Schemes are nonsingular if the completions of local rings are formal power series.
e Smallest class of nice rings in AG: referred to as “Japanese rings” in the literature, finitely
generated rings over DVRs, plus localizations, completions, direct sums, etc.

Definition 30.1.3 (Quasicoherent sheaves)
A sheaf F € Sh(X,Ox-Mod) is quasicoherent if for all U = Spec R C X, the restrictions

Fly = M for M € R-Mod. Recall that Ox (D(f)) = R[], and we define N(D(f)) :== M|[4],
so e.g. R=0Ox.

Theorem 30.1.4(Serre).
A sheaf F € Sh(X, Ox-Mod) is quasicoherent iff

Ox® = 0x® = F = 0.

Remark 30.1.5: Analogy:

e (Quasicoherent: arbitrary modules M
e Coherent: finitely presented modules M.

Example 30.1.6 (Coherent sheaves): Examples of coherent sheaves

e For X C PV projective (or quasiprojective, i.e. open in a projective), the twisting sheaves
Ox (d) whose local sections are p(x)/q(x) for p,q homogeneous where degp — degq = d.

o For any Z C X as above, the ideal sheaf 7; C Oz and their twists Zz(d) =1, ®0, O(d).

o Tangent sheaves Tx and cotangent sheaves TY, and their tensor powers, e.g. Q%.

Theorem 30.1.7 (Serre Vanishing 1).
F € QCoh(X), X € AffSch ), = 7>1H*(X;F) =0.
Theorem 30.1.8(Serre Vanishing 2).
F € Coh(X), X € ProjSch), = 7>1H*(X;F(n)) =0 for some n > 0.

Remark 30.1.9: Affine schemes correspond to general rings, and projective schemes correspond
to graded rings. In the second statement, coherence is used as a kind of finiteness.

e 30.2 Cech Cohomology ~
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Definition 30.2.1 (The Cech complex an differential)
For open covers, write Y = X iff X = U;U;. Define Ui 4, ... 5, == U;; NU; N---NU;,. Define a
complex

0= CUF) = DT (F;Uip) 2 P T (FiUipi) 2.
g€l 11 <ig

where we specify where elements land componentwise:

ai’z‘1<-~~<ip+1: @ ‘F(Uiof”yip)

i<+ <ip

k
Fo 5 D e i |y

0<k<p+1 05" vipt1

Remark 30.2.2: Why 0% = 0: if k < ¢, forget ¢ first and then k to get a sign (—1)5(—1)1167 or forget
k first then £ to get (—1)¥(—=1)*"! due to the shift. So these contributions cancel. e

Theorem 30.2.3(7).
Suppose that for all inclusions ji, ... 4, : Uig,... i, — X, the pushforwards of F

(jio,“' ,ip)*]:

Uigser sip
have vanishing cohomology in degrees p > 1. Then
HY(X;F) S H (U; F).

This is true for all affine schemes if F € QCoh(X), e.g. for algebraic varieties or separated
schemes.

31 ‘ Wednesday, March 30

Remark 31.0.1: Topics:

General vanishing (Serre 1 and 2)

Cech cohomology

Riemann-Roch and Serre duality

Advanced vanishing (e.g. Kodaira vanishing) s

— 31.1 Cech Cohomology ~

30.2 Cech Cohomology 69
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Remark 31.1.1: Setup: X and F € Sh(X;AbGrp), an open cover U = X. We defined the Cech
complex:

C'UF) = P FUi ),

1< <ip

which had certain differentials. y

Theorem 31.1.2(?).
Suppose X € AlgVar or X € Sch is separated (e.g. a quasiprojective scheme), F' € QCoh(X)
an Ox-module, and let & = X be an affine open cover. Then

v

H(U; F) = RT(X; F).

Remark 31.1.3: More generally, we can just assume that all intersections of affines are affine, and
instead there is a spectral sequence. This can fail if X is not separated, e.g. X = A? H A? where
A2\{0}
A x2
the intersection A2\ {0} is not affine. Recall that X is separated iff X < XX is closed. e

Example 31.1.4(%): Consider X = P! and F = ED Ox(d), we can compute H(X;O(d)) for all d.

deZ
Take a cover U; = {z; # 0} where Uy has coordinate x := z1/x¢ and U; has coordinate y = xo/x1

which intersect at Up; = {x,y # 0} and are glued by y = 1/2. The Cech resolution is
0— F(Ug) D F(U1> i> F(U()l) — 0,

so HY = ker f and H! = coker f. Recall that sections of O(d) are locally ratios of polynomials
with valuation d. We have Opi(d)|,, = 230p1 by rewriting p/q = zdp’/¢'. We can thus write this
sequence as

0— @ :ng‘[x:%} = @ <degree d monomials in x(j)d, ZL'1> P @ <degree d monomials in z, :U1ﬂ> — @ <degr‘
dez d d d

Claim:

1
H(X; F) = Klzo,m],  H'=——Fk[%.L].

ZoT1

Being in the kernel means vy, (f) > 0 and vy, (f) > 0, which yields monomials z{z|* where d = n+m.
For the cokernel, note (p,1) — p — ¢, what’s missing? Monomials where both powers are negative. #~

Example 31.1.5(?): Similar computations work for X = P" and yield

H° (X,@Opn(d)> = k[$1a"' aan H" (X,@O]pn(d)) - Hlxik[zlo’m’lln}'

deZ dez
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Note that both sides are graded by degree. This can be done in affine opens U; = {z; # 0} = A",
Ox (d)|_z?Oy, and similarly

0— @ <degree d monomials in x(jfl, T1,- - ,xn> @ @ <degree d monomials inz, x{cl, e ,xn> D=

d d

The kernel is again spanned by monomials f with vg, (f) > 0 for all . Which monomials don’t
come from the middle step? Those where v, (f) < 0 for all 4. e

Remark 31.1.6: A combinatorial device to keep track of monomials: let X = P?, and build
simplices which track which monomials are allowed to be negative.

See Hartshorne for a description of how to encode this as a simplicial set:

=
o

®

2 [ (/L, LL\MM u-1

o
Remark 31.1.7: As a result, we can compute
d d
dim H°(P"; Opn (d)) = <”+ ) = <”+ )
n d
by counting monomials using a stars and bars argument. Moreover
dim H"(P"; O(d)) = dim H(P"; O(n — 1 — d)) = dim H°(P"; O(K) @ O(d)™})
where the canonical class of P" is given by O(Kpn) = O(—n — 1). v

32 ‘ Friday, April 01

Reference for toric geometry: Fulton’s Toric Varieties,
Oda’s Convex bodies in algebraic geometry.
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Proposition 32.0.1(7).
Claim from last time:

H*(P"; O(d)) == RT(P"; Opn (d)) = H(U; Opn(d)),
where this isomorphism is of graded vector spaces. We also saw

D HOE" O(d) = Ky, ) = @ K[ 2%,

dez d>0

and in top degree,

P H (P 0(d) = [ 27 kleg ' an],

deZ

with all intermediate degrees vanishing. There is a nondegenerate pairing
HY(P";0(d)) x H*(P";0(-n—1—d)) = k- [[2;' =k

which is concretely realized by multiplying monomials and projecting onto the span of H x; !
(so setting all other monomials to zero). This is an instance of Serre duality, but this example
is in fact used in the proof.

Proof (?).
Compute @qH (U; O(d)) by first writing P" = A7 o U A7, and look at global sections:
0= kgt 1, -, 2n] ® k[zo, 2T, 22, , 20 ® - = K[zl 2l 29, @ = - oo k[T 2F

where we choose 1 coordinate to invert at the 1st stage, 2 coordinate to invert at the 2nd stage,
n+1
and so on. Note that this is not only Z-graded, but Z* T graded by monomials. The claim
is that the contribution of a monomial H x?i to cohomology will only depend on the pattern
of signs, i.e. [ := {k ‘ di, < 0} C [n].
|

Example 32.0.2(?): Consider I = (), and the contribution of fol’ with d; > 0 for all . Form a
simplicial complex X:
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v

o =X0

1+
|+
[+

The cohomology computes H*A(X;Z) = 7Z since X is contractible.

Example 32.0.3(?): For I = [n], so all d; < 0, one obtains just the faces of the complex with the
boundaries deleted.
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A X

/

//

e r/r
A/ A
/

This computes H*A (X, X;Z) = H*A(X) by the LES of a pair:

Remark 32.0.4: Recall that this LES arises from

0— C"(X) = C"(X) = C™"(X,X) —0.

Example 32.0.5(%): For I = {0}, so I = {0} with dp <0 and d; > 0 for i > 1.

Friday, April 01
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/
\\

This computes H*A (X, X;7) =2 H*A(X) = 0.

Remark 32.0.6: When does this trick work? For any pair (X, L) with L € PicX where the
sections are Z""!-graded where each graded piece is dimension at most 1. These are referred to as
multiplicity-free. Examples: toric varieties:
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33 Monday, April 04
— 33.1 Riemann-Roch and Serre Duality ~
Remark 33.1.1: Let X € ProjVary, and F' € Coh(Ox-Mod). By Grothendieck, H*(X; F) is
supported in degrees 0 < d < dim X and A’ = dimj, H4(X; F) < oo for all d. ~

Proposition 33.1.2(Riemann-Roch).
If X € smProjVary,

X:F) = —1)'AY(F)= | ch(F)Td(Tx).
MXF)= S0 () = [ () T(Tx)
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Remark 33.1.3: What this formula means: for X smooth projective, there is a Chow ring A*(X) =
@ A'(X) where A’ is analogous to Hs2i’i’1g(X ;C). These are often different, but sometimes

0<i<dim X

coincide (which can only happen if odd cohomology vanishes). For curves, these differ, and A*(X) =

Pic(X) which breaks up as a discrete part (degree) and continuous part (Jacobian). Define A*(X) :=

Z|C;] ~ where C; are codimension i algebraic cycles (subvarieties) and we quotient by linear

equivalence. Recall that for divisors, Dy ~ Dy if D1 — Dy is the divisor of zeros/poles of a rational

functions. More generally, for Z of codimension ¢ and Z EN'e , consider f,D1 ~ fyDs in order to
define linear equivalence. e

Example 33.1.4(?): Consider X4 C P? a quartic, the easiest example of a K3 surface. Then
A%[X] = Z[X], AY(X) = Pic(X), so what is A%(X)? These are linear equivalence classes of points,
and any two points are equivalent if they are equivalent in the image of a curve. It’s a fact that
K3s are not covered by rational curves — instead these form a countable discrete set, with finitely
many in each degree. There is a formula which says that the generating function of curve counts is
modular, and

S g = 1
d = - )
T [T1cpcoo(l —2m)?

where ng is the number of rational curves of degree 2d. So A%(X) is not obvious! A theorem of
Mumford says that it’s torsionfree and infinitely generated. Note that ng = pos(d + 1) where py(—)
is the numbered of colored integer partitions v

Remark 33.1.5: The integration map:
/ LAY (X)) - Z
X

Z n;p; — Zn,

There are two non-homogeneous polynomials ch(F') and Td(Tx) in A*(X) ®z Q, and the formula
for Riemann-Roch says to multiply and extract only the top-dimensional component, i.e. take
deg(ch(F) Td(Tx))dim x- This is very computable! il

Example 33.1.6(%): A Chern class: if F' = Ox(D), then

ch(F) =eP = Z D' /4!

1<i<n
where
Ox(D)(U) = {f € Ox(U) | () + D >0}
and D" =D — D — --- — D is the n-fold self-intersection of D. Note that ¢;(F) = D. A

Remark 33.1.7: The Chern character of F' is additive on SESs, i.e. 0 - A — B — C — 0 yields
ch(B) = ch(A) + ch(C). A
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Proposition 33.1.8(RR for curves).
If X is a smooth projective curve,

RO(X) — hY(X) =deg D — g(X) + 1.

In this case, ch(F) =1+ D and Td(Tx) = 1 + (1 — g)[pt] where [pt] is a certain well-defined
divisor in A'(X). One can rewrite this as Tdx = 1+ 501 = 1— iKX (the canonical class,
where deg Kx = 2g — 2). This uses that

Ccl = Cl(Tx) = —Cl(Qx) = —Kx.
Example 33.1.9(?): For X a smooth surface,

D
. ch(F):1+D+§

1 1
» Td(Tx) =1- a1+ E(cf + ),

thus

D(D -2)

X(X;0x(D)) = —

+ x(X; Ox).

Example 33.1.10: If X is a K3 surface, then Kx = 0 and h°(Ox) = h1(Ox) =0, s0 x(X; Ox) = 2
and

x(xsox(o) =2 12

Example 33.1.11(%): For X = P? with F' = O(d), note

o Kx=0(-3)
o W(0x) =1, (0x) =1*Ox) =0

So

X(X;(’)(d)):d(d;g)JrI: (d*f).

As a corollary, for d > 0,

n

1O(Opn (d)) = (d * ") .
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34 ‘ Friday, April 08

— 34.1 Vanishing theorems ~

Remark 34.1.1: Setup: X € ProjVar,, F € Sh(X;AbGrp). What is H°(X; F)? Note that if

X(XGF) =Y (-1)FF (X F),
k

if 7>1H*(X;F) = 0 then this x(X;F) = h%(X;F). By Serre duality, " (X;F) = h®(wx ® F~1)
which holds if X is Gorenstein, e.g. a locally complete intersection.

Recall that Ox(D)(U) = {¢ | (¢) + D > 0}. Note that if F = O(D) then h°(X;F) # 0 =
D ~ D' where D’ > 0 is effective. s

Remark 34.1.2: If D ~ D' where —D’ > 0 is effective, then h°(X;O(D)) = 0. Note that
if D C X C PV is projective, take H C PV and Opny(1) = Opn(H) and intersect to obtain
D-H" ! =degD. ~

Example 34.1.3(%): If X is a smooth projective curve and F = Ox (D) is a line bundle. Riemann-
Roch yields

X, F)—h'(X;F)=degD —g+1
and

deg D = h°(D) — h°(Kx — D) = deg(Kx — D) =2g — 2 — deg D.

Vs
Example 34.1.4(?): If X is a smooth projective curve,

e Ox(D) is ample <= D > 0 (some large multiple is a hyperplane section).

e Ox(D) is very ample <= degD > 2g — 2 + 3 (very ample: some multiple is ample).
There exists an embedding X < PV, and Ox (D) = Ox(1) = Opn (1) ‘X. One can show h%(D —
pt) < h%(D). #
Example 34.1.5(?): An effective but not ample divisor: take two lines in P* x P! which do not
intersect. ~~

Theorem 34.1.6 (Kodaira).
Suppose X € sm ProjVar;, where k = C or chk = 0 with k¥ = k and let 7 = wx (L) with L
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ample. Then
>1h*(X; F) = 0.

Remark 34.1.7: A note on the proof: uses Deligne-Illusie and liftability from Witt vectors. This
liftability holds for all curves, all K3s, and some Calabi-Yau threefolds.

Remark 34.1.8: For curves, h'(X;wx (L)) = h°(—L).

Theorem 34.1.9 (Kawamata- Viehweg vanishing (generalized Kodaira vanishing)).
Let X € smProjVar,c with D = Uy Dk normal crossing union of smooth divisors and write

its formal boundary as A := Z a; D; with 0 < a; <1 and a; € Q. Suppose F = Kx + A+ A
for A ample, then

>1h*(X; F) =0.

Remark 34.1.10: Say X has klt singularities (Kawamata log terminal) iff there exists a projective

morphism Y i> X with Y D U; D; with each D; snc, and f*Kx = Ky + A. Generally Y is smooth
and f is a resolution.

Remark 34.1.11: A note on the MMP: take Xy a variety, produce a variety X with Kx nice,
e.g. —Kx > 0 or Ky > 0 numerically. At each stage, contract a curve (the result is a —1 curve)
are perform a flip. So if C' € Xy, produce Xy — X; with CKx < 0.

35 ‘ Monday, April 11

— 35.1 Spectral sequences ~

Proposition 35.1.1(Leray spectral sequence).
If f € Top(X,Y) and F € Sh(X;AbGrp), there is a spectral sequence

EPY = HP(X;RIfF) = HPY(X; F).
Example 35.1.2(?2): If 0 — A = J* is an injective resolution of a sheaf A, then E"? = HP(J?) =
HP*9(A). More generally, for any functor F € Cat(A, B),

EP9 = RPF(J9) = RPTIF(A).

So if J9 are F-acyclic, then 7>1R*F'(J?) = 0 and thus R"F(A) is the homology of the complex F'.J*.
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Proposition 35.1.3 (Grothendieck).
If

« AL B S C are left-exact functors between abelian categories
e A, B have enough injectives, and
o F(I) for I injective in A yields a G-acyclic object in B,

then there is a first-quadrant spectral sequence

EP? = RPG(RIG(A)) = RPHI(F o G)(A).

Remark 35.1.4: This recovers the Leray spectral sequence via Sh(X'; AbGrp) ELN Sh(Y'; AbGrp) ;)

AbGrp, where the composition is I' (X; —). Note that injective sheaves are flasque, and pushforwards
of flasque sheaves are again flasque. Why flasque implies injective:

0 —— HO0x|y —— Ox

Link to Diagram e

Remark 35.1.5: Recall that cohomology vanishes above the dimension of a Noetherian space. The
analog for pushforward involves the relative dimension. e

Remark 35.1.6: General setup:
o d,: EP? — EPTT4" (down and to the right) moves between diagonals.
— For a fixed p, g, all differentials out of £, ; land on the same diagonal.
o E.y1=H(E,d,).
o Letting E, = @ ER, there is a descending filtration Fil,E, such that gr Fil,F, =
Fil, E,/ FilpHE:Jri:Z?&”’p .

o Extension problem: Z O 27Z O 0 where gr; = Cy and gry; = Z, but another group and
filtration may have the same associated graded, e.g. Z® C2 D Z 2 0.

e Double complexes naturally arise by taking an injective resolution A &= J* and individually
resolving the pieces by J" &= C™°*. Writing Tot(C"?),, = ®prq=nC"?, there are maps
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Wednesday, April 13

A— 0% o (C’O’1 @ Cl’o) — -+ by summing horizontal and vertical differentials. Using the
sign trick makes this a differential (multiply the vertical differentials in every even column by
—1).

e There are spectral sequences

Erp,q = H"(C*,dy) = H""(Tot(C**))
Eip,q = H(C"*,dy) = HP"(Tot(C**)).

— Why this is useful: resolve A by J which are not necessarily injective, and resolve each
J" by injectives, then Tot is now an injective resolution.

36 ‘ Wednesday, April 13

— 36.1 Spectral sequences continued ~

Remark 36.1.1: Recall that for spectral sequences, the diagonal entries p4 ¢ = n are the successive
quotients in a filtration on E" := Tot(E%’),. Kodaira vanishing: for the original argument, go to
characteristic p and look at liftability. v

Example 36.1.2(Deligne-Illusie’s proof of Kodaira vanishing): We’ll have some spectral
sequence which we’ll want to degenerate at Fo. It STS that d, = 0 for » > 1, which in fact forces
(E,d) to degenerate at Ej. Strategy: find another spectral sequence (E’,d’) with the same E] = E;
and a differential d # d’ which converges to the same thing and more patently stabilizes at E7. It
then follows that F stabilizes at Eq. Note the dimy EP? < dimy E'% since we're taking kernels
mod images. A~

Lemma 36.1.3(A 5-term sequence).
Suppose EY? = E™ for n = p + ¢ is first quadrant. Then

« Ey° =E$ and E)° = EXD.
0,1 _ 770,1 2,0 _ 172,0
o B3 =FE and B3 = EQ
e There is a 5-term exact sequence

0— E,° - E' - EJ' - B30 — E2.

Example 36.1.4(%): The Leray spectral sequence: for f € Top(X,Y) and F € Sh(X; Vect ),

EYY = HP(Y;RIf.F) = HPY(X; F).
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This yields

0— HYX; f.F) = H(X;F) - H(X;R'f.F) —» H*(X; f,F) - H*(F).

Consider the filtration on F:

V4
s

This yields exact sequences

« 0 EX - FE' - E2 >0
e« 0 FEX 5?7 5 EL —0
¢ 07— E> = E%? 0.

Remark 36.1.5: Recall the definition of a double complex: (C**®,dj,d,) where each row is a
complex for dp, and each column for d,, and each square skew-commutes. Note that the sign trick

does not change the cohomology. The totalized complex is is (Tot(C'), d) where C" := @ cra 9,

pt+q=n
cntl = @ CP9 and the differential is constructed from CP¢ M CPH1a g P9t There is
pt+g=n+1
a descending filtration Fil, Tot(C) where Fil, Tot(C) = 7>, ¢Tot(C) = @ CP4, which is the double

p=n
complex obtained by truncating all columns to the left of column n.
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37 | Friday, April 15

— 37.1 Filtrations and Gradings ~

Remark 37.1.1: Given FilA a descending filtration, define gr;A := Fil;A/Fil;;1A. Convention:
everywhere we’ll set p 4+ q :=n,p =n — g, etc.

This results in a collection of short exact sequences:

0 — Fil;;1 A — Fil;A — gr; A — 0.

Remark 37.1.2: Our main example: a double complex C** with A* = Tot*C** with A" =
Bptq=nCP? and differentials 0 = (d,, dj,) producing skew-commuting squares. The main question
is computing H*(A).

Each A" is a filtration FilA™ where OFil’A™ C Fil“*'A™. The filtration is defined by
FilbA" = @ P9,

p+q=n,p=po
taking everything to the right of column py. The claim is that this induces a filtrations on
Z"(A),B"(A),H"(A) (cycles, boundaries, and homology). One can restrict the differential on
A*® to FilA®; note that cycles Z,, — 0 and boundaries are the image and we're taking cycles
mod boundaries. Writing Fil?Z" := FilPA™ N Z,, and similarly for B" H", one gets a filtration
FilH (Fil’A) on H(Fil?A). This yields

ERY =gr H" =FilPH"/FiPT H",

If all of the SESs split, then H" = @ EPA.
ptg=n

Remark 37.1.3: Set

. Eg,q = P
. EPY= H"(CP*,d,).
o« EDY= H"(EP9 d,) = H*(--- — H"\CP® = H™(CP*) — H"Hortle o5,

What are the cycles in Ey? To map to zero under the total differential 0, things emanating from
column p must go to zero, and for the columns p + k, images under dffk’e must cancel with images

dp+k+1,€fl
h

under . Define the approzimate homology

e OTN(FIPT A
Fil ptr = P I
o(Fil An—1)

Note that this increases the number of allowed cycles and decreases the number of allowed boundaries.

Then EY? =gr Hp.,.

Friday, April 15 84



I Monday, April 18

Remark 37.1.4: Note that the statement is not the E, is computed as H*(E,_1); instead there is

a formula for EP'? for all r, p, ¢ a priori, and it is a property that taking homology of pages computes
this.

e
Remark 37.1.5: Claim: gr,H , = C"?. Check that
FilPoH”, | — @p+Q=n7p2p0 cra
px0 — .
d <@p+q=nfl,p2po+1 Cp’q)
=

38 ‘ Monday, April 18

— 38.1 Spectral Sequences ~

Remark 38.1.1: A filtered complex:

n—1 m
RN Anfl d A" d An+1 .
’ m—1 v m ’
- FﬂpAnil d—> FilPA™ d—> FilpAn+1 —_—
m—1 m
- Fﬂp+1An_1 d4> Fﬂp+1An d4> Fﬂp+1An+1 —_—

Link to Diagram
This yields

W AT dT(FiPTT AR
PECT An  d(FilP T AR

n AT NndH0)
pEoo T An A d(An+1)’
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Notation: write
FilPA" N d~t (FilPt" A1)

"EP = EPT=grPH},, = .
FilPHL An 0 =1 (il An1) 4 Fil An 0 d= (FilP— 41 An1)

The main properties:

e dy: BP9 — pptrarl
o H(E.** d,)=E.1""

Note that "EP r, LR o

Fil?PA™ N dfl (Filp+rAn+1) J FilPtr An+1 ) d—l (Fﬂp+2rAn+2)
H’r 9
FilPt! An O @1 (FilPH" Antl) 4+ FilP An 1 -1 (Fﬂp—THAn—l) FilPTrH An+1 0 g=1(FilPT2" An+2) 4 ...

and dg = 0 since the first denominator above appears as the next numerator. A

— 38.2 Applications ~

Remark 38.2.1: An application: consider a 2-step resolution 0 — A — J° — J!, and take injective
resolutions of each J* to form an Ejy:

[ ]

% o1 i1 0

% 790 710 0

D A s A EL .
0 A J° J!

Link to Diagram

Then 0 — A — Tot*(A**) is exact, i.e. this is an injective resolution of A. Take vertical cohomology
to get Ei:
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Link to Diagram

Since no functor has been applied, we obtain the follow Fo after taking horizontal cohomology:

.
0 0 0
A 0 0
O .
Link to Diagram
So H"(TotI) = A0]. Vs

Remark 38.2.2: Let I' € Cat(A, B) be additive left-exact, then R"FA = H"(FTotI**) for 0 —
A — I a biresolution as above. Define Ey = FI, then EV'? = RIFJP. e

Corollary 38.2.3(7).
If J? are F-acyclic, then F; has the form
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Link to Diagram
So E¥? = HY(FJP), i.e. RFA can be compute using the resolution 0 — A — J** — ---. For
example, for F'(—) =T (X;—), we can resolve by flasque, soft, or fine sheaves.

Remark 38.2.4: Using two spectral sequences for a single bicomplex: given Cj ,,

Eg,q _ H}Il)Hng,- = H"(Tot,C,,)
B = HIH[C* = H"(Tot.C...).

Remark 38.2.5: Grothendieck spectral sequences: for A LN RN C, form the composite A Groc
to obtain

EYY =RPGRIFA = RPTIGFA,

provided F' sends injectives to G-acyclics. This comes from running the two spectral sequences
above, where one collapses onto a single row.

39 ‘ Wednesday, April 20

— 39.1 Derived Categories ~

Remark 39.1.1: Recall how to construct derived functors. It is advantageous to embed C —
ChC and resolve by nicer objects. A complex contains strictly more information than homology:

. 7
eg. 0 =7 27 -0and0 = Z 7o 7 — 0 have isomorphic homology but aren’t isomorphic

as complexes.
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Definition 39.1.2 (Quasi-isomorphism)
A morphism f € ChC(A, B) is a quasi-isomorphism iff the induced map f* € ChC(H* A, H*B)
is an isomorphism.

Definition 39.1.3 (The derived category)

There is a category DC and a functor ChC — DC with the following universal property: if
ChC — B is any functor sending quasi-isomorphisms to isomorphisms, there is a unique functor
DC — B factoring it. We call DC the derived category of C.

Remark 39.1.4: The basic morphisms in DC are given by usual chain maps f : A — B, and if f
is a quasi-isomorphism we formally add inverses Xy : B — A. A general morphism is a sequence of
morphisms e — e — --- — e where we quotient by

. 0L0i>0~0£>0

AL BX a4 4
X f id
e B—A—-B~B—=B.

One would like a calculus of fractions, so define:

Definition 39.1.5 (Localizing morphisms)
Given C € Cat, and subset S C Mor(C) of morphisms is localizing iff

e idy € S for all objects A
e S is closed under compositions
e For every roof with f arbitrary and s € S, there exist arrows:

W M
[ ] [ ]
[ ] [ ] [ ]
Link to Diagram
As a corollary, arrows in C[1] are roofs modulo equivalence.

Remark 39.1.6: The set S of quasi-isomorphisms in ChA is localizing.

Note that we can take

e ChC: all complexes,
e Ch*C: complexes bounded from below,

39.1 Derived Categories 89


https://q.uiver.app/?q=WzAsNixbMSwyLCJcXGJ1bGxldCJdLFswLDQsIlxcYnVsbGV0Il0sWzIsNCwiXFxidWxsZXQiXSxbMywyLCJcXGJ1bGxldCJdLFs0LDQsIlxcYnVsbGV0Il0sWzIsMCwiXFxidWxsZXQiXSxbMCwxXSxbMCwyLCJmIiwyXSxbMywyLCJzXFxpbiBTIl0sWzMsNF0sWzUsMCwiXFxleGlzdHMiLDEseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbNSwzLCJcXGV4aXN0cyIsMSx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==

I Friday, April 22

e Ch™C: complexes from above,
e Ch®C : complexes from above and below.

These yield derived categories DC, DTC,D~C,D’C. Note: frequently DC actually means DT C in the
literature. When D°C is used: if F € Coh(X) and X is projective, which corresponds to a graded
module which (by Hilbert) has a finite resolution.

One can similarly define homotopy categories hoChC, hoCh™C, hoCh~C, hoCh’C with Ob(hoChC) =
Ob(ChC) and Mor(hoChC) := Mor(hoCatC')/ ~ where ~ denotes chain homotopy equivalence.

Theorem 39.1.7(?).
DA = hoChTla where |5 is the homotopy category of complexes of injective objects in ChA.

Remark 39.1.8: Generally there is a functor hoChA — DA since chain homotopy equivalences
induce isomorphisms on homology (where we apply the universal property of DA) There is also a
functor DA — hoChA where A — Tot(I**) is a quasi-isomorphism.

40 ‘ Friday, April 22

Remark 40.0.1: Recall that for S C Mor(C), there is a localized category C[s—!] whose morphisms
are chains s, Lo foo 51_1 o --- modulo an equivalence, and if S is localizing then

o Morphisms are single roofs (i.e. we can collect the product fraction involving s;, f; into a single
fraction).

— Note that roofs can be multiplied, and roofs are equivalent when they admit a common
roof:

Link to Diagram
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e Morphisms are equivalent when they admit a common roof:

S
sy

Link to Diagram

o If C € AddCat then C[s-!] € AddCat, where the calculus of fractions behaves as in ring

localization: h + 2 = St f2.
s s s
o If I < Cis a full subcategorya nd S is compatible, i.e. S N Mor(I) is localizing, then I [s-1] <
C[s1] is a full subcategory. P
Remark 40.0.2: ChC with S quasi-isomorphisms yields DA := C[s-1]. &

Theorem 40.0.3(?).
The collection S of quasi-isomorphisms is localizing.

Corollary 40.0.4(?).
DA is additive and morphisms are roofs in ChA.

I defined as hoChC™ the homotopy category of complexes of injective objects, is compatible
with S.

Theorem 40.0.6(?).
I'[s-1] < A[s~'] = DA, with an equivalence if A has enough injectives.

‘ Theorem 40.0.5(?).

AWarning 40.0.7 .
These last two theorems do not hold just for I = ChC™., e

Remark 40.0.8: An application: for F' € AbCat(A,B) additive (with no left/right exactness
conditions), there is a derived functor DF € DTA DTB if A has enough injectives. Note that DA is
never abelian but admits a triangulated structure. A

Example 40.0.9(?): For X € smProjVar/,, the usual notation is D(X) := D°Coh(X). Global
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sections T' € Cat(CohX — AbGrp) induce a derived functor RT' € Cat(DX — D’AbGrp). Note that
CohX — D(X) by F — F[0].

Remark 40.0.10: For X Proj Var ;, recall Ko X := KoCoh X where [b] = [a] +[c] for 0 = a — b — ¢,
and KOX = KOSh'°cfree(X) If X is smooth, these are isomorphic, but generally they are not if X
is singular. In general, DX := D" CohX replaces Ko(X), and DFSh'°¢fe¢( X)) replaces K°X.

Theorem 40.0.11(?).
DA € triangCat.

Remark 40.0.12: Although these do not have SESs, there are distinguished triangles for which
any morphism X — Y can be completed to X - Y — Z — »MX. This can be accomplished using
mapping cylinders/cones:

D

Remark 40.0.13: See tilting of complexes, exceptional sequences.

41 ‘ Monday, April 25

— 41.1 Triangulated categories ~

Definition 41.1.1 (Triangulated categories)
A triangulated category is an additive category C € AddCat with an additive autoequivalence
T : C— C and a set of distinguished triangles X — Y — Z — T'X satisfying

o TRI1:
X4 X 507X s distinguished,
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— Any triangle isomorphic to a distinguished triangle is again distinguished,
— For every X % Y there is a distinguished triangle X % Y — Z — X[1]. Idea:

Z~Y/X.
« TR2:
— For every X — Y — Z — X][1], there is a triangle Y — Z — X[1] EAN Y[1].
o TR3:
— Given 3 triangles
X—>Y—=Z =Y -Z-X -X—-Z-=Y =

there is a triangle Z' — Y’ — X’ making the relevant octahedral diagram commute.
Y/

-
< / \

’ k // \\ \\
X - - Z
/ \
/ \
/ \
/ \
/ Y \
/ \
/ \
/ \
/ \
// / \ \AI
!
VA X

Link to Diagram
This can equivalently be expressed as a braid lemma:

X Z X’ Z'[1]
Y Y Y1)
Z! X[1]

Link to Diagram
Equivalently, a 3x3 lemma holds:

X Y z X[1]
X' Vel 7 Y'[1]
X" S 4 — N 2]
X[1] — Y1 20 X[2]
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Link to Diagram

Theorem 41.1.2(?).
For A € AbCat, DA € triangCat.

Definition 41.1.3 (?)
For f € ChA(X,Y), there is a cone complex Cone(f) = TX © Y with differential dggne(s) =

lﬁlf)f {1]] d?/] and a cylinder complex Cyl(f):
Cyl ) Cone (F)
1
> \
27N\ JAA
{/ '/ ) \Q /7_’-' = -
AR d === D) R EeEd === W\
~— N\ \ "/ /’// — ;// /’//
/ T T
X\ Y _4\-/
! r
Note that dcone(f) [Tit1, %] = [—dxTi+1, f(zir1) + dy ()], and one can check d* = 0.

|

Remark 41.1.4: Any distinguished triangle X Ly s z5x [1] in DA is isomorphic to a triangle
of the form X — Cyl(f) — Cone(f) — X|[1]. For ChA, define T"A := A[n], so (T"A);, = A[n];, =
An+k7 and 8TA = (—1)”8,4. ~

42 ‘ Wednesday, April 27

— 42.1 Cohomological Functors ~

Remark 42.1.1: Recall that for X & Y, cone(f) =~ X[1] @Y and Cyl(f) ~ X & X[1] ® Y with
differential

dx -1

dCyl(f) = dx 1] ~ [T, 2441, 9 € Cyl(f)i-
1] dy
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Note: I use ~ above because these formulas hold level-
wise, but the SESs they fit into may not be split exact,
so cone(f), Cyl(f) may not such direct sums.

There are related exact triples, here the first and second rows:

Y ——— Cone(f) ——— X[1]

X —— Cyl(f) ——— Cone()

X ——Y

Link to Diagram

Here fa = idy and af ~ idgy(y)-

Definition 42.1.2 (Cohomological functors)

A functor H € [C,A] with C € triangCat, A € AbCat (where A is not necessarily related to C)
is a cohomological functor iff every distinguished triangle A —+ B — C' € C is sent to an
exact sequence HA — HB — HC € A.

Corollary 42.1.3(?).
If H is cohomological, there is an associated LES

--+—>HA—HB — HC — H(A[l]) - H(B[1]) = --- .

The functor H : DA — A where X — H°(X) is cohomological, noting that H*(X) can be
written as H(X[i]).

Definition 42.1.5 (Ext for triangulated categories)

Ext!(X,Y) = Hom (X, Y [1]).

‘ Lemma 42.1.4(?).

Lemma 42.1.6(?). ]
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Exth (X,Y) = Extpa(:X, 1Y)

where ¢ : A — ChA is given by ¢(4) =--- —+0— A — 0 — --- supported in degree zero.

Theorem 42.1.7(?).
For all C € triangCat, for all X,Y € C the (co)representable hom functors are cohomological:

hy = Hgm(—, Y) covariant

()% == Hom(X, —) contravariant.
€

Proof (?).
The proof uses the octahedral axiom TR3. To show that applying homs yields a complex,
show that the maps on homs square to zero using the following:

X X 0 X[1]
f fu 30
A L B v C All]

Link to Diagram

— 42.2 Exceptional Collections ~
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Definition 42.2.1 (Exceptional collections)
For C € triangCat, an exceptional collection/sequence is a chain of morphisms

&L —>&E — - =&, €C
such that

1. Self-Exts are supported only in degree zero, i.e. Hom(&;, &[k]) = 0 for k # 0.
2. There are no homs in the opposite direction, i.e. Hom(&;, &[m]) = 0 for j > ¢ and for
any m.

Example 42.2.2(?): From a paper of Valery’s: let X be a smooth projective surface with
H'(Ox) = H*(Ox) = 0, which cohomologically look like rational surfaces. Examples: X ra-
tional with [nK x| = 0 (so “negative” canonical class), or X of general type with ¢ = p; = 0 and
|nK x| big for n > 0. In these cases, there are line bundles £ with Ext'(£,£) = H (O, 0) = H(Ox)
and one can use that Ext(&;,&;) = H'(& ® 5;1).

Theorem 42.2.3 (Beilinson, Bondal, Kapranov).
If C' < C is the full subcategory generated by &1, - - , &, then C' ~ D¥(Q) for Q a quiver. In
particular, if {&;} is a full exceptional collection, C = C'.

Q3 | Friday, April 29

— 43.1 Applications of derived categories ~

Remark 43.1.1: Some major work in this area:

o Beilinson-Gelfand-Gelfand (BGG)

e Bendel-Kapranov

o Mukai

e Bendal-Orlov

e Orlov

o Kutznatsov

o Kontsevich, Fukaya (homological mirror symmetry)

« Beilinson-Bernstein-Gabber-Deligne on perverse sheaves
o Bridgeland

Remark 43.1.2: Results:

« BGG: D’(CohP") = D?(R-Mod) for R a certain ring.
e BK, K: same for quadrics and grassmannians.
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Recall that given T € triangCat with an exceptional collection {&;}, they generate a triangulated
subcategory (&;) < T. It turns out that (£;) = R-Mod for R = @End ;. Beilinson produces a

collection {0, Q.. ,Qn_l}, but an easier alternative is {O, O(1),--- ,O(n — 1)}. If the collection

is full, then T = (&;). As an alternative to R, one can take the corresponding quiver: make a
directed graph & — & — --- where each node has End &; attached and each edge & — &; is
assigned @, Hom(&;, Ej[n]). So the derived category corresponds to representations of this quiver.

Example: for P!, one obtains the following quiver:

CeC

Link to Diagram

Proposition 43.1.3(%).
If X € AlgVar), admits a full exceptional collection, then the following also admit a full
exceptional collection:

e Any P"-bundle Y =P(V) — X, and
e Any blowup Y = Blz X for Z a smooth subvariety.

Any rational smooth projective surface admits a full exceptional collection, by running the
MMP.

Conjecture 43.1.5.
Given a smooth surface admitting a full exceptional collection, is it rational? For a threefold,
is it a blowup of something rational?

‘ Corollary 43.1.4(?).

Definition 43.1.6 (Semiorthogonal decompositions)
Given T € triangCat and A < T a full triangulated subcategory, one can define two subcategories
LA and A*:

At={r ] Hom(F, 4) =1} .

Remark 43.1.7: For C € triangCat, one can take HHC. For C = D(X), the HHyD(X) = Z" &
A as a group, for A some finite torsion group. If one has a full exceptional collection, then
A = HHy((&1, -+ ,E)7T). As a corollary, the length m of an exceptional collection satisfies m <
rankz HHyD(X).
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Conjecture 43.1.8 (Kaznutsov).
If {&1,---,&,} is an exceptional collection and n = rankz HHyD(X), then this is a full
exceptional collection.

Remark 43.1.9: For surfaces of general type, a special Godeaux surface produces a counterexample.
There is a much easier counterexample coming from a Burnist (?) surface — generally fake P?, fake
Fanos, etc. See A-Orlov, Orlov-Gorheaise, Katgerov-7, 77

Remark 43.1.10: Phantoms: categories with zero HH, so no full exceptional collections.

s 43.2 Well-known classical results ~

Theorem 43.2.1(Bondal-Orlov (very important!)).
If X € smprojVar where either Kx or —Kx is ample, then X can be recovered from D(X).

Remark 43.2.2: Having — K x ample yields Fano varieties, and Kx ample yields general-type
surfaces.

Theorem 43.2.3 (Mukasi).
If A € AbVar, then D(A) =2 D(AY). Such pairs are referred to as Mukai partners.

Remark 43.2.4: How to construct the equivalence D(A) — D(AY): take the Fourier-Mukai
transform. Use the Poincare bundle P4 — A x AV, and construct the functor as a push-pull over
the span (A <, A x AV —,, AY), so

F = (p2)« ((p1)"F @ Pa)).

Remark 43.2.5: The next in line: K3 surfaces. An easy example: take Kummer surfaces, so
A — A/ £ 1 and then blow up the 16 nodes.

44 ‘ Monday, May 02

— 44.1 Calabi-Yau Categories ~

Remark 44.1.1: Recall that a collection &; is exceptional iff [€;,&[n]] =0if n > 0 and j > 4. If
there exists a full exceptional collection, DX = D(R-Mod) for some R. Recall that a variety is
Fano if —Kx is ample.
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Question 44.1.2
Do full exceptional collections exist for Fano n-folds for n = 3 or 47

Answer 44.1.3
Typically no.

Remark 44.1.4: Let
X3 = V(f3($07 te ,J)5)) g P5a

then which X3 are rational? Note that Kx, = O(—6 + 3) = O(—3). Kuznatsov shows that
H'(Ox) = C[0] and Ext’(L,£) = H'(Ox). One could look for exceptional collections of line
bundles, so Ext'(£;,£;) = H™(L; ® £;') = 0 for all m. On P", take O(—k) for 1 < k < n
since Kpn = O(—n — 1). For X3, there is enough vanishing that O, O(1),O(2) are exceptional
(everything below the index 3 from above). Kuznatsov shows that the “Kuznatsov component”
K =(0,0(1),0(2))" is a Calabi-Yau category of dimension 2.

Remark 44.1.5: If Y is a Calabi-Yau variety of dimension n, so Ky = 0, there is a Serre functor
S: DY) — Db(Y)
F — F ®uwy|n].
Then (probably) S = T", a shift by n. A category is a Calabi-Yau category of dimension n iff

e It has a Serre functor
« §S=T"

One can also define fractional dimension using SY.

Conjecture 44.1.6.
X is rational iff K = Db(Y) for Y e K3.

Remark 44.1.7: A technique due to Clemens-Griffith for cubic threefolds. Let X C P* be a
smooth non-nodal curve. Consider the intermediate Jacobian J3(X), which is a PPAV for any
smooth 3-fold. Basic operations: blowing up a point p or a curve C, since blowing up a surface
is the identity. Blowing up a point: J3(Bl, X) = J3(X), so it doesn’t change. For a curve,
J3(Ble X) = J(C) @& J3(X). As a corollary, if X is rational then J3(X) = @ J(C;) for some curves
C;. For non-rationality, show it’s not the Jacobian of a curve by considering the theta divisor.

Remark 44.1.8: For 4-folds X, one can now also blow up surfaces. The intermediate cohomology
carries a Hodge structure. Conjecture: X is rational iff its Hodge structure looks like a K3.

Remark 44.1.9: Older techniques for checking rationality: see log thresholds, generally birational
geometry e.g. due to Manin. E.g. groups of birational automorphism for quartic 4-folds are small.
See another approach due to Mumford using torsion in cohomology.
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s 44.2 T-Structures and Hearts ™~

Remark 44.2.1: Note that it’s possible for A, B € AbCat to satisfy DA = DB. A~
Example 44.2.2(?): Some examples:

« In the presence of a full exceptional collection D?(CohX) = D?(R-Mod).
« Fourier-Mukai: D’(CohA) = D?(CohAY) for dual AVs. L

Example 44.2.3 (Perverse sheaves (BBD)): Start with X € Var ¢ Hausdorff paracompact and
constructible sheaves which come with stratifications into closed subsets on which they restrict
to locally constant sheaves. Note that one can realize these sheaves as pullbacks from a poset
associated to the stratification. There are categories Const and Perv with D?(Const) = D®(Perv) —
here perverse sheaves are complexes of constructible sheaves with support conditions A’ (F*) < —j
and b/ (DF*) < —j for D the Verdier dual; this is a category closed under duality. e

Remark 44.2.4: On T-structures: write D = DA, then there are subcategories

o D=" = D=%[n], complexes such that H>" = 0.
« D=" = DZ%pn], complexes such that H<" = 0.

Then D= N D= = A is a category equivalent to complexes supported in degree zero, since any
such bounded complex is quasi-isomorphic to such a complex. Some properties:

e Ay e DY and A; € D! satisfy [Ag, A1] = 0.
e Forall C e Db(A), there exists Ag — C' — A; — Ap[l1].

Note that there is a canonical truncation

T<o(---— C™! Lo Lot s Y= (- O S kerd =5 0).
s 44.3 Bridgeland stability ~

Remark 44.3.1: Take X a smooth projective curve, let D = D(CohX) = D’Bun (GL,). There
is a notion of a semistable sheaf (all subsheaves have smaller slopes p(F) := deg F/rank F) and
an HN filtration where the quotients are semistable and the slopes decrease. Bridgeland observed
there is a central charge

Z :CohX — C
F — —deg F +irank F,
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which can be used to recovered the heart A = CohX. Idea: vary Z to get different hearts, and {Z;}
form a complex analytic variety, and one can form a new category of tilted complexes (complexes
sitting in two degrees).

4 5 ‘ Useful Facts

" 45.1 Category Theory ~

Remark 45.1.1:
¢ Products: a collection of maps into factors Y — X; is the same as a map Y — H X;. Products
are easy to map into. Products have projections HXZ' - X;.

— Products are limits.

e Coproducts: a collection of out of factors X; — Y is the same as a map ]_[Xz — Y.
Coproducts are easy to map out of. Coproducts have injections X; — HXi'

— Coproducts are colimits.

e If C has a zero object, there is a canonical map H X, — H X given by assembling maps d;;.
icl jel

o colim(—) is generally not exact, but is exact if the colimit is filtered.
icl

— In any case, the functor of taking stalks (—), : Sh(X; AbGrp) — AbGrp is always exact.

o Left adjoints/colimits are characterized by morphisms on F'(x), and right adjoints/limits by
morphisms into it.

e Why RAPL and LAPC:

[CO%)HL(%% —1= liTm[L(xi)a -1= ﬁ%ﬂ[iﬂmR(—)] = [colim aj, R(—)] = [L(CO%)H%), .

o Right-derived functors are left Kan extensions.

o Colimits are quotients of coproducts and receive maps from objects (i.e. they are cocones).
Taking colims is right exact. Limits send maps.
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e 45.2 Tor and Ext ~

Consider a commutative ring R and some R-modules M and N. One can compute the R-
modules Tor?(M, N) in essentially two ways.

1.) Begin with a projective resolutionof N,e.g., P, : --- —+ Py, —+ P, —+ F; — N — 0; then
apply the functor M ®p — to this to obtain a chain complex

T. : "'—:’_E‘IJ_'?-@RP:—}_E‘IJ@RPI —:'l‘lff@RPD—}[}.
We define Tor (M, N) as the homology of this chain complex, i.e., Tor’ (M, N) = H;(T.,).

2.) Begin with a short exact sequence of R-modules(0 —+ K — N — I — (. By applying the

right-exact functor M ® — to this exact sequence, we obtain a long exact sequence of Tor, i

-+ — Torf(M, K) — Torf(M, N) — Torf(M,I)

— Torl{(M,K) — Torl{(M, N) — Torf(M,I) —
Remark 45-2-1: — .1 . - Roiar “ - 1o . .1 |

Tor:

o Tor commutes with arbitrary direct sums, colimits (direct limits), localization.
o If M is flat over R, Tor®(M ® A, B) = M ®p Tor’(4, B).
o If S is a flat R-algebra, S ®g Tor®(A, B) = Tor} (S ®@r A, S @r B).

In
e Tor(R/I,R/J) = 7
o If I is an R-regular sequence I = (x1,--- , ), then Tor(R/I, M) = (0 :ps I) is a colon ideal.
e If A € R-Mod’ then Tor%, (4, B) = 0.
o Tor(A, B) = Tor(B, A).

o 7>1Ext*r(A, B) =0 if either A is injective or B is projective.
+ The Koszul complex for k[z,y]: K, ® K, =0 — k[z,y] — k[z,y]*" — k[z,y] — k — 0 where
K, =0 — k[z,y] = k[z,y] — 0.
o Ext*ypy (k) = k& S @ 22k P

40 | Problem Set 1
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e N

Problem 46.1.1 (1.1)
Recall that:

e A topology on a set X is Tj if any two points x,y € X can be topologically distinguished
(by open sets).

o A topology is an Alexandrov if an intersection of any, possibly infinite, collection of open
sets is open.

o The order topology on a poset (X, <) is defined in the following way: the open sets
are the upper sets, which satisfy the property

rel,x<y=—yeclU
The closed sets are lower sets, which satisfy

re€dx>y—ycl

Prove that a topology on X is an order topology <= it is Ty and Alexandrov. As a corollary
conclude that any Tj topology on a finite set is an order topology.

\ J

Proposition 46.1.1.
A topology 7 on X is an order topology <= 7 is Ty and Alexandrov.

Proof .

<= Suppose X is a topological space and 7 is a Ty Alexandrov topology on X. For U C X,
write clx (U) for the closure in X of U with respect to 7, define a poset (P, <) where P = X
with an ordering defined by

<y <= z€clx(y).

Regarding 7 now as a topology on (P, <), the claim is that this is an order topology on a
poset. That this ordering defines a poset is clear, since the ordering is:

o Reflexive: since x is contained in its closure, x < z.

e Antisymmetric: if x <y and y < z, then z is a limit point of {y} and vice-versa. So
every neighborhood of y contains x and similarly every neighborhood of z contains .
Since X is Ty and topologically distinguishes points, this can only occur if x = y.

o Transitive: if z < y and y < z, then z € clx(y) and y € clx(z). Since clx(z) is a
closed set containing y and clx(y) is the smallest closed set in X containing y, we have
z € clx(y) Ceclx(z), so x < z.

It thus suffices to show that if U 5 x is a neighborhood of « and < y, then y € U so that U
is an upper set. By definition of the closure of a set,

x <y <= z €clx(y) < every neighborhood of z intersects {y},
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so if U, 3 x is any neighborhood of x, then y € U,. Write U= NaU, for the neighborhood
basis at x, the intersection of all neighborhoods of x. Note that by construction, since y € U,
for all o, y € U. Since 7 is Ty, U is an open set. Moreover, since U is a neighborhood of z,
UCU,soyeU.

— : Suppose (X, <) is a poset with an order topology 7, so U is open iff whenever z € U
and x < y then y € U. To see that 7 defines a Tj topology, let z # y in X. If x and y are
not comparable, there is nothing to show, so suppose either z < y or y < x — without loss
of generality, relabeling if necessary, we can assume z < y. Now every neighborhood of x
contains y by definition, but for example

Uzy::{zeX’zzy}

is neighborhood of y not containing x, topologically distinguishing x and y.
To see that 7 is Alexandrov, it suffices to show that arbitrary intersections of open sets are
open. This follows from the fact that any intersection of upper sets is again an upper set —
if {U;},c; is an arbitrary family of upper sets, set U = M;cU;. Then if x € U with o <y,
x € U; for every i and so y € U; for every 4, and thus y € U.

|

Corollary 46.1.2(?).
If X is a finite set and 7 is a Ty topology on X, then 7 is an order topology.

Proof (of cor).

By the exercise, it suffices to show that any finite space is Alexandrov. Let (X, 7) be a Ty
space and let {Ui}ie ; € 7 be an arbitrary collection of open sets — we’ll show U = N;jerU; € 7
is again open. This follows immediately, since finite intersections of open sets are open in any

topology, and since X is finite and 7 C 2% is finite, I can only be a finite indexing set.
[ |

e 46.2 Problem 2 ~

Problem 46.2.1 (1.2)
Recall that:

e A paracompact space is a topological space in which every open cover has an open
refinement that is locally finite.

e A partition of unity of a topological space X is a set f, of continous functions f, : X —
[0,1] such that for every point x € X there exists an open neighborhood of = where all
but finitely many f, = 0, and such that Z fa=1

Prove that
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e Any Hausdorff space is paracompact iff it admits a partition of unity subordinate to any
open cover.

e Any metric space is paracompact.

A sketch would suffice.

Proposition 46.2.1(7).
X is Hausdorff <= X admits a partition of unity subordinate to any open cover U = X.

Proof (?).
?

Proposition 46.2.2(%).
Metric spaces are paracompact.

Proof (?).

Let 4 = X be an open cover of a metric space X; we’ll show U/ admits a locally finite
refinement. Without loss of generality, writing U = {U;} ied for some index set J, we can
assume the U; are disjoint — this follows by invoking the axiom of choice to well-order the
index set J and setting

Uj = Uj\ U Uk.

k<j

Then U = {(7]} o refines U since (7j C Uj, and still covers X. Moreover, we note that for
J

every € X, we can now produce a minimal index j(z) such that x € U ()

The idea is to now refine U to a cover V by filling each disjoint annulus U; with balls of small
enough radius. For ease of notation and to more clearly demonstrate the following construction,
suppose J = {0,1,---} is countable. For each n € Z>, let J,, < £, be small to-be-determined
real numbers depending on n, and define the following subsets of X:

XO,n = {:U e Uy ‘ Ba(n)(ilf) - Uo} Von = U Bg C XOn C U

)

z€Xo0,n

Xip={z€Us | Buy(@) CUI\ U Vou Vin= | Bs(2) S X1n U
<n z€X1,n

Xog = {2 € Vs | Buny(@) CUP\ U Vor\ U Vin Vo= | Bs.(2) C Xon C s
<n I<n z€Xon

ij = {l‘ S Uj ‘ Bg(n)(l’) - Uj}\kLJ EU VM ij 9 Bgn g jn a & Uj.
<gl<n z€Xjn
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Note that the last line prescribes a general formula which depends only on the ordering and
not on the countability of J.

In other words, for each fixed jo € J, we consider all of those x € X such that j(z) = jo,
so that for each such z we have xz € Uj, but = ¢ U, for any k < jo. For a fixed n, we then
consider those x € U}, that are not too close to the boundary, so that a ball of radius &, fits
entirely in Uj,. We then shrink these balls to a smaller radius d,, and take their union to form
an open set Vj, , in the new cover, and as n — oo these balls get smaller and fill out all of
Uj,. However, at each stage V;, we remove redundancies by discarding sets Vj ¢ for k < j and
{ < n.

Claim: V :={V},} is a locally finite refinement of U.

jGJ,neZZO
Proof (of claim).
There are several things that are clear from the construction:

« Each Vj, is open, as they are arbitrary unions of open balls in a metric space.
e V refines U, since in fact Vj,, C U; for every n and every j.
e Vis a cover, since for any x one can pick j(x) minimally so that x € Uj,), and
since x is an interior point and open balls form a basis for a metric space, for some
n large enough we have x € Bs, (7) C Vj() n-
So the content of this statement is that each z € X is contained in only finitely many
opens from V. Fix x € X and pick j(z) minimally as above, so z € Vii(x),n for every n and
j(z) is the first such j where x is added. Then x € B, (2') for some 2’ near x, so choose
n and k so that V, = Bfk () C By, () C Vj,. The claim now is that V, intersects only

finitely many elements of V. A proof of this follows from using the triangle inequality

to show that By on+x(z) does not intersect any Vg, for £ > n + k, and for £ <n +k it

intersects these for at most one (5, leaving only finitely many such /.
|

" 46.3 Problem 3 ~

Problem 46.3.1 (1.3)
Let A = Z be an abelian group. Let F be a sheaf on X such that every stalk F, = A. Does it
follow that F is a constant sheaf?

e Show that the answer is no in general.
e What if X is an irreducible algebraic variety with Zariski topology?

o What if X = [0, 1] with classical topology?
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Proposition 46.3.1(Part 1).
There is a sheaf F on a space X with stalks satisfying F, = C for every x € X, but F is not
isomorphic to the constant sheaf Cx.

Proof (Part 1).
Let X = S! in the Euclidean topology, U = X \ {1}, Z = {1} and let the two inclusions be

j:U—= X,
1: 7 — X.
Now set
F = 5Cy @i.Cz
We can then compute the stalks:

(1'Cu)a = colim(iCy) (W)
Wz

) C wWcu
= colim
Wz |0 else.

0—-0—-0—0—--- x&U
C ze€U
0 x&U,

_fC oA
0 x={1}.

. {---—>C—>(C—>C—>--~ reU
colim

where we’ve used that since U is open, if € U then there is an open neighborhood W 3 x
completely contained in U, making the directed system eventually constant. Otherwise, if
x ¢ U, then no neighborhood of z is completely contained in U, and the sections here are zero
for every W 5 X.
Note: this uses that the colimit of an eventually
constant diagram is isomorphic to whatever that
constant object is, i.e. it satisfies the correct uni-
versal property.
Similarly, noting that for W C X,

) {{1} pew
0 {(pew,

46.3 Problem 3 108



I Problem Set 1

we have

Wz
= colim w e
=tz <{® m ¢W>

. |C=>C—--. x = {1}
= colim
- =2 0—-0—--- x#{1l}

_{c z={1}
oz {1},

where we’ve used that if U is open and x € U with = # {1}, there eventually all small enough
neighborhoods W 5 z will not intersect X \ U = {1}. Thus

_jJoeC =z={1}
fz_{(C@O z # {1},

and all of the stalks are one copy of C, as in the constant sheaf Cx on X. However, F and
Cx do not have the same sections: take W C S* to be a connected open neighborhood of {1},
then

I} e W — Cy(W) = C4(i™ (W) = Cz({1}) = C.
Note that j (W) = W\ {1} = W;[[W> breaks into two connected components, so
§Cy(W) = Cy(WAlIW2) = C*°,
SO

FW)=C®¥ @C+£C=Cx(W) = F%Cx.

Proposition 46.3.2(Parts 2 and 3).
If X is an irreducible algebraic variety or X = [0,1] in the Euclidean topology, the answer is
still generally no.

Proof (Parts 2 and 3).

Rlz, y]
(z* +9% —1)
does not factor in R[z,y], making S! irreducible in the Zariski topology.

The previous example shows this, noting that S* 2 Spec and f(x,y) = 2 +y?—1

For X = [0, 1], a modification of the previous example yields the same conclusion: set Z = {2}

and U = X \ Z; the same argument with the same sheaf goes through.
[ |
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— 46.4 Problem 4 ~

Problem 46.4.1 (1.4)
Let X be a space with a poset topology (with increasing open sets).

e Prove that a sheaf I on X is the same as a collection F, for x € X and maps 7, :
F, — F, for all x <y satisfying v, , 0734y = 74 2.

« Prove that for an open U C X, the set of sections F'(U) is lim F.
Usx

Proposition 46.4.1(%).
Let (X, <) be a poset with the order topology, then a sheaf F € Sh(X) on X is is equivalently
a functorial assignment on the corresponding poset category

F : Poset(X) — C
T = Fg,

where the objects of Poset(X) are elements x € X where the hom spaces are defined as

{{pt} <y

o) = 0 else

Poset(X)

Here C = AbGrp, Ring, R-Mod, Alg )y, etc.

Proof (?).
— : Suppose that F is a sheaf on (X, <), and define

G : Poset(X) — C
= Gy = F(Usy)
(tay 1 = Y) = (fay 1 Gz = Gy),

where we define f;, using that
x =y € Poset(X) <= z<ye X = Usy — Us, € Open(X),
and since F is a contravariant functor, the latter inclusion induces an morphism
foy : F(Usz) = F(Usy) e C.

Compatibility of the f;, for G follow immediately from the fact that F is a functor.
<= Given a functorial assignment

G : Poset(X) — C
x = Gg,
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we want to construct an associated sheaf
F : Open(X)°? — C.

By a result from class, it suffices to specify the sheaf on a basis B for the order topology on
X, s0 let B = {Us>:},.x be the basis of up-sets. Define a presheaf by

]:_(sz) = g:m

and take F = (F 7).

Proposition 46.4.2(%).
For (X, <) a poset in the order topology, U C X open, and F a sheaf on X,

F(U) = lim F,.

zelU

Proof (?).
It suffices to show that if B is a basis for a topology,

FU)= lim F(V),
VeB,VCU

which follows because this precisely describes a continuous section of the espace étalé over
U C X as a compatible collection of sections on U decomposed in a basis as U = UB;. With
this, we can then directly compute

FU)= lm F(V)
= lim F(V>) by the definition of B
= lim F, since V>, is the smallest open containing x

= lim F, since V5>, CU = z cU.

47 ‘ Problem Set 2
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Proposition 47.1.1(1.1).
The global sections functor is left-exact.

Proof .

We’ll use the fact that a sequence of sheaves is exact if and only if the induced sequence on
stalks is exact. Given this, let F,G,H be sheaves of abelian groups on X, and consider the
diagram induced by restriction morphisms:

0 F i G g H 0
FU) — s g(U) — & 1)
0 ]:p Ip gp 9p Hp 0

Link to Diagram
Note that we can take U = X in this diagram. If the top sequence of sheaves is exact, there
are isomorphisms of sheaves:

e ker f =0 and
e im f = kerg.

Claim:
ker fX = 0,
making fx injective and yielding exactness at the first position.

Proof (7).
Since the presheaf ker f is in fact a sheaf, writing 0 for the sheaf U — 0, we have

ker (F(X) 45, Q(X)> = (ker f)(X) = 0(X) =0

Claim:

im fx = kergx,

yielding exactness at the middle position.
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Proof (?).

im fx C ker gx follows from a diagram chase:

a » b > gx(b) =0

f(X) g o5 H(X)

0 \\\\ ]:p Jr gp 9Ip Hp 0
Ap ro_ a=(gpo fp)(ap) =0Vp

Link to Diagram

e Fix b €im fx C G(X), then by surjectivity choose a lift a € F(X).

e Map a along F(X) — F, = G, — Hp; by exactness the result is zero in C,,.

o By commutativity of the diagram, mapping a along F(X) = G(X) = H(X) — H,
also yields zero in C,.

o Write b := gx(b); since the above argument holds for all p € X, gx(b) is a section

of ‘H that is zero in every stalk. Thus by the sheaf property for H, the section gx (b)
must be zero, and b € ker gx.

Similarly, ker gx C im fx follows from a diagram chase:

o Fix b € kergx, so the image of gx in H(X) is zero. Then its image ¢, along
G(X) = H(X) — H, is also zero.

o By commutativity of the right square, g,(b,) = 0 and so b, € kerg, = im f;, by
exactness of the bottom row.

o Choose a lift a, € F, along fp, so f,(a,) = b, Since a, is a germ of F, pick any
global section a € F(X) restricting to a, and making the square commute.

Since fx(a)p, = fp(ap) = by for all p, by uniqueness of gluing for G we have fx(a) = b
and b € im fx.

Proposition 47.1.2(1.2).
Taking global sections may fail to be right-exact.
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Proof (?).
Consider the following poset and its corresponding category of open sets:

X Open(X)

a {a,b,c}

IN

b {a, b} {b7 C}

N

0

IN

c {b}

Link to Diagram
Define the following two sheaves F,G and a morphism between them:

F=28Z (m)
m/ \id YT e G(X)=ZoL
/ I N

Fa=Z . F{b,e) =Z0Z __ (

P G({be)) =ZaZ

Link to diagram

Note that there are only three stalks to consider, none of which coincide with global sections,
so we can take the sheaf morphism to be the identity on these to get a surjection on stalks. We
then choose a non-surjective map F(X) — G(X) given by (a,b) — (a,a + b), where e.g. the
image does not contain the element (1,1).

One can check that the individual diagrams for 7 and G commute, yielding a presheaf, and
that existence and uniqueness of gluing hold for both. Moreover, all of the squares formed by
the map F — G commute, so this does in fact yield a morphism of sheaves.
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" 47.2 Problem 2 ~

Proposition 47.2.1(%).
If amap f: X — Y between posets is continuous, it is order-preserving, i.e. if x1 < x5 then

f(x1) < f(z2).

Proof (?).
Continuity can be checked on a basis, so let U, = {y ey ‘ Yy > b} be a basic open upper
set. Then f is continuous iff f~1(U,) is an open set in X. Being open means that for every
zo € [N (Ua), 11 > 20 = m1 € [ (Ua).
f is continuous <= VYU open in Y, f_l(U) is open in X
YU, a basic open in Y, f_l(Ua) is open in X
Va €Y, Vg € f1(Ua), 21 > 20 = 1 € f~1(Uy)
Ya €Y, Vxo € f~HU,), 1 > z0 = f(x1) € U,
Va€Y,Vzo € f 1 (Ua), 71 > 20 = f(21) >0
Va €Y, Vg € X sit. f(xo) > a, 21 > 29 = f(x1) > a.

[

Now taking zo = f~!(a) for a € im f yields
— Vacimf, m>fle) = flm)2a

Relabeling z; = f~1(b),

Proposition 47.2.2(?).
For F € Shx,G € Shy,H € Shy with U C X, X ER Y, and U <5 X,

o fiF is no additional data

. fTIG= {gf(:ro)vSOf(zo),f(zl) ‘ zo,z1 € X, 20 < 961}-
o JH ="

Proof .

We'll use that F € Sh(X, AbGrp) is the same as the data of {F, ¢z} where F, is a collection
of groups and ¢, : F, — F, are group morphisms for every x < y. Thus the values of a sheaf
on posets are entirely determined by a functorial assignment of groups to the stalk at each
point, i.e. an assignment of a group to each point. So it suffices to determine what the stalks
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of these three sheaves are.

e For f,F, noting that

(i F)Usza) = F(f'(Uza)) = lim  F,

xefil(Uza)

we see that this sheaf is completely determined by the data for F.

e For f7'G, we can use the fact that for any sheaf, there is a formula on stalks:

(f7'9)p = G,

and so f71G is the data {Gu, Y2y} for every x <y with x,y € im f.

e For jyH, -7

Proposition 47.3.1(%).

47.3 Problem 3

Attempts to approach this: the gemeral definition
involves sheafification, which seems hard to de-
scribe in general. On the other hand, I haven’t
been able to work out what the sheaf space for a
poset should look like.

Let F € Sh(X) and let Et(f) I X be its corresponding sheaf space, so F = S?c(w), and let
Ccts

G = Sec(m). Then

zeX

where z : {x} — X is the inclusion of a point and F € Sh({z}) is regarded as a sheaf on a

one-point space.

Proof .

We'll use the fact that as a set, Et(F) = H Fz is the coproduct of all of the stalks of F. We

rzeX
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can compute the sections of this sheaf as follows:

G(U) = (H a:*fx) )

zeX

zeX
= H fz(x_l(U))

zeX
B {z} ze€U
I~ (7 250)

Fr zeU

B xg( {0 x ¢ U.
= 1] 7

zelU

We can now simply regard G(U) as the set of set-valued functions s : U — H F» C Et(F) by
zeU

setting s(x) = m, (H .7-}) to be the x-coordinate in the direct product, where 7, : H Fu —

xzelU zelU
Fz is projection onto the xz-coordinate.

On the other hand, the data of a set-valued section s € Sec(Et(F) = U) is the following: for
every « € X, a choice of an element

s(z) € n7Y(z) = F, C Et(F),

with no other compatibility conditions, which is precisely the same as the set-valued functions
specified by G(U) above.
[ |

Proposition 47.3.2(7).
The stalks G, are given by

G, = colim H Fa,
Usp zeU

the direct limit of the product of stalks of F along neighborhoods of p.

Proof .
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Gp = colim G(U)
Usp

Usp \zex

Usp gex

= colim H VA (%))

Usp zex

o 7 ({1 227)

USp zex else.

- ({7 259)

Usp sex else.

= colim H S
Usp zeu

Proposition 47.3.3(%).
There is an injective morphism of sheaves F — G.

Proof .
For every open U C X, define a map of sets on the function spaces:

Uy e Sc(tesc(Et(]-") 5 U) — Sec(Et(F) 5 U)
f=1

which does nothing more than a forgetful map that regards a continuous section as a set-valued
section. This is evidently an injective map of sets, since if fi1, fo are continuous sections and
f1 = fo as set-valued functions, they continue to be equal when regarded as continuous sections,
so Uy (f1) =VYu(fe) = f1=fo

These ¥y assemble to a morphism of sheaves ¥ : F — G, and since (ker ¥)~ = 0 vanishes as

a presheaf and the kernel presheaf is a sheaf, we have ker ¥ = 0.
|

48 ‘ Problem Set 3
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Problem 48.1.1 (Problem 1)
Let I be an index category, A an abelian category, and A’ be the category of functors
F: I — A. Prove that the functor

lim: AL - A, Fw—limF;
P D
il il
is left exact. (By duality, the functor colim is right exact.)
i€l
What is this functor in the case when I is a poset and F; is a collection of stalks on the space
X = I with poset topology?

Solution (Part 1):

It suffices to show that lim is a right adjoint functor, and right adjoints are left exact by
i€l
general homological algebra.

Claim: There is an adjunction
A
A T A

lim,

where A is the diagonal functor:
A:A— A
X = AX
X Ly)e (ax 2 Ay)

where

e The constant functor Ay : | — C is defined on objects i € | as Ax (i) := X and on
morphisms i —2 j as Ag(u) =X dx, x,
e 7y is a natural transformation of functors with components given by f:

| C
i Ax(i) —M DAL ) x—1 .y
ui| =225 o A () Ay ()| =———— |idx idyh
j Ax(j) ——— Ay(j) x —1 vy

ns(4)

Link to Diagram
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Why this claim is true: this follows immediately from the fact that there is a natural isomor-
phism

Hgm(X, lim F) = HoIm(AX, F),
A

i.e. maps from an object X into the limit of F" are equivalent to natural transformations between
the constant functor Ax and F. This follows from the fact that a morphism X — lim F' in A
is the data of a family of compatible maps { f;},. over the essential image of F

I A
\ fi \
F L X
j F(j) <—//’%

Link to Diagram
On the other hand, a natural transformation Ax — F' is precisely the same data:

| A
i iy T Ax() =X

g F(g) F(g)=idx
j F(j) Ax(j)=X

\fj—//

Link to Diagram

Solution (Part 2):

If | = Open(X) where X is given the order topology and F': OpenX — A is a functor specified
by stalks, lim sends F' to the universal object lim F' living over the essential image of F' in A:
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X ey | = Open(X) T A
X ={1,2,3}
2 {1,3} {2,3} R

NN
T

Link to Diagram
The object corresponding to global sections F(X) € A seems to also satisfies this universal
property, so a conjecture would be that this construction recovers lim FF = F(X) =T (X; F).

" 48.2 Problem 2 ~

Problem 48.2.1 (Problem 2)
In the category of abelian groups compute Tor (Zn, M), the left derived functors of N —
N ®y M.

Solution:

Claim:

Tor’(Z/nZ, M) = ker(M =2 M) = {m eM ‘ nm = OM} ,

which is the kernel of multiplication by n, and Tory ! (Z/nZ, M) = 0.

Why this is true: in R-Mod, free implies flat, and Tor is balanced and can thus be resolved in
either variable, so this can be computed by tensoring a free resolution of Z/nZ and using the
long exact sequence in Tor:
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0 Z al Z Z/n7 — 0

“(-)@ZM

ZogM=ME5 Y7 00 MM —5 Z/nZ oz M — 0

Tor(7,7) = 0 —— Tor’(7,7) = 0 —— Tor™"%(Z,, M)

Torl(7,7) = 0 —— Tor2(Z.7) = 0 —— Tor2/™(z, M)

Link to Diagram
In the resulting long exact sequence, since Z is free, thus flat, thus tor-acyclic, the first two
columns vanish in degrees d > 1. As a result, in degrees d > 2, the terms Torg(Z/ nZ, M)
are surrounded by zeros and thus zero, meaning that only Tor; survives. By exactness,
Tor1(Z/nZ, M) is isomorphic to the kernel of the next map in the sequence, which is precisely
ker(M XM ) after applying the canonical isomorphism

Z@ZM%M

nQm— nm.

— 48.3 Problem 3 ~

Problem 48.3.1 (Problem 3)
Let k be a field and R = k[z,y]. In the category of R-modules compute

o Extz(R,m)
o Extk(m, R), and
o Torf(m,m),

where m = (z,y) is the maximal ideal at the origin.

Solution (Problem 3):
Note that R is a free R-module, and so Ext’(R, M) = 0 for any R-module M. This is because
Ext can be computed using a free resolution of either variable. For Ext’z(R,m), compute this
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as ]RH%m(—, m) evaluated at R. Take the free resolution

o0 REL R0,

delete the augmentation and apply the contravariant H%rn(—, m) to obtain
0—>H%m(R,m)%m—>0—>--',

and take homology to obtain

Ext% (R, m) = m, Ext3’(R,m) = 0.
Compute Extr(m, R) as RHom(m, —) applied to R proceeds similarly: using the same reso-
lution, applying covariant H%m(m, —) yields

0—>H%m(m,R)—>O—>~-,

and taking homology yields
Ext%(m, R) = Hom(m, R) Ext3’(m, R) = 0.

For the Tor calculation, we can use the Koszul resolution of m:

0= Klz, 5] 2 kiz,y) @ klz,y] —2D (2 ) — 0,

so the differentials are ¢ — [tz,ty| and [u,v] — —uy + va respectively. More succinctly, this
resolution is

2 d
Zym — 0,

0—R% RO
so we can delete m and apply (—) ®g m to obtain
0> Ropm 229 Ro* gpm — 0

which simplifies to

C’.:=O—>md1:—[x’y]>m®m—>0
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and thus we can compute Tor as the homology of this complex. We have

Torlt(m,m) = H°(C,)
= coker Jl
mom

Tm d ym
am  ym
@y (@)
(22,y)  (z,9?)
= {f(x,y) = c1x € k[z,y] ‘ c € k} &) {g(m,y) = c1y € k[z,y] ‘ c € k}

=kdk

~

Torf*(m,m) = HY(C,)
= ker Jl
= {t € (x,y) ‘ [tz, ty] = [0,0]}
=0

Tor > 2%(m,m) = H=2(C,)
= 0.

o 48.4 Problem 4 T

Problem 48.4.1 (Problem 4)
Let 0 - F' — F — F” — 0 be a short exact triple of sheaves and assume that F’ is flasque.
Prove that the sequence

0T (F)—=T(F)=>T(F")—0

of the spaces of global sections is exact.

Solution (Using cohomology):

Claim: Flasque sheaves are F-acyclic for the functor global sections functor F'(—) =TI"(X; —).

Proof (of claim).
Proved in class.
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Applying the functor T' (X; —) to the given short exact sequence of sheaves produces a long
exact sequence of abelian groups in its right-derived functors. Using the claim above, we have
R'T (X;F') =0 for i > 1, and thus we have the following:

0 F' F F" 0

“F(X;—)

0 —— F(X;]-"’) — T (XF) — F(X;f”)

R'T(X;F) =0 — R'T'(X;F) —— R'T (X;F")

~

RT(X;F)=0 — RT(X; F) —=—— -

Link to Diagram

In particular, since R'T (X; ]—"’ ) =0, the ﬁrst row forms the desired short exact sequence. As
a corollary, we also obtain R'T" (X; F) 2 R'T' (X; F") for all ¢ > 1.

Solution (Direct):
First, we’ll modify the notation slightly and give names to the maps involved. We’ll use the
following convention for restrictions of sheaf morphisms to opens and stalks:

0 A \ ! B \ g C \ 0
0 \ Ax) —E \ B(X) —C \ C(X)
0 Ay — o By —<k o)

0 A, fo B, ge C, 0

Link to Diagram
Given ¢ € C(X), our goal is to produce a b € B(X) such that g(b) = ¢, and the strategy will
be to use surjectivity at stalks to produce a maximal section of B mapping to ¢, and argue that
it must be a section over all of X. This will proceed by showing that if a lift is not maximal,
sections over open sets that are missed can be extended using that A is flasque, contradicting
maximality.
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Write c|, for the image of ¢ in the stalk Cy; by surjectivity of g, : By - C, we can find a
germ b, with g,(b;) = c;. The germ lifts to some set U > x and some b € B(U) with b — ¢/
under F|; : B(U) = C(U). So define a poset of all such lifts:

P:={(UbeBWU)) | Fly®b) = cly}
where (Ul,bl) < (UQ,bQ) <— U; C Uy andb2|U1 =b;.

As noted above, P is nonempty, and every chain {(Ui, bi) };c; has an upper bound given by
(U,b) where U = U;crU; and b is the unique glued section of B restricting to all of the b;,
which exists by the sheaf property for B. Thus Zorn’s lemma applies, and (reusing notation)
we can assume (U, b) is maximal with respect to this property.

The claim is that U must be all of X. Toward a contradiction, suppose not — then pick any
x € X \ U, and again using surjectivity on stalks at z, produce an open set V' > x and a
section b’ € B(V) with G|,,(b') = ¢|;,. Now on the overlap W := U NV, both b and ¥’ map to
¢y, and so

where we’ve used exactness in the middle spot in the exact sequence A(W) — B(W) — C(W).
So there is some a € A(W) with F|, (o) = b|yy, — V|, and since A is flasque this can be
extended to a global section & € A(X). Write 5 = F(a) € B(X) with B‘W = bly — V|
in B(W). We can now glue 3 to a section over U UV which extends the original section b:

<

setting b :== 3 + V' yields

b, = (bl = V) + V' = by,
so this section over U UV agrees with b on the overlap W = U NV, and thus by existence
and uniqueness of gluing (using the sheaf property of B) b € B(U UV) is a section extending

b over a set that strictly contains U. This contradicts the maximality of the pair (U,b).

" 48.5 Problem 5 ~

Problem 48.5.1 (Problem 5)
For a sheaf F' on X, let

SF)= 1] (ix), Foy ix:z—X
zeX

be the sheaf of all, possibly discontinuous section of the étale space of F'. The canonical flasque
resolution of F' is

S(F)=0—F — S(Fy) —» S(F1) = S(F) — ...

where Fy = F and F; are defined inductively as F;+1 = S (F;)/F;. Some books define

48.5 Problem 5 126




I Problem Set 3

cohomology groups H" (X, F') as the cohomology groups of the complex
0—=T(S(Fp) =T (S(F1) =T(S(F2)) — ...

Prove that they coincide with the cohomology defined by other means by showing that this
gives an exact -functor and that H" are effaceable for n > 0 through the following steps:

(1) A homomorphism F — G induces a canonical homomorphism of resolutions S(F) —

5(G).

(2) A short exact triple 0 — F' — F — F"” — 0 induces a short exact triple of complexes
0= S(F')— S(F)— S (F") = 0.

(3) Applying I to it gives a short exact triple of complexes, i.e. 0 — S (F,) — S (F,) —
S (F))) — 0 is exact. (You can assume the previous problem.)

(4) (H") is an exact d-functor.

(5) For n > 0,H"(F) — H"(S(F)) is the zero map.

Conclude by Grothendieck’s universality theorem.

Solution (Part 1):

This follows readily from the fact that a morphism f : F' — G of sheaves on X induces group
morphisms f, : F, — G, on stalks for every © € X. Letting y € X be arbitrary, there is a
morphism

Py Hwa—y>Fyf—y>Gy
zeX

where m, is the canonical projection out of the product. By the universal property of the
product, the ¢, assemble to a morphism

S(f): HF$—> HG?J‘

zeX yeX

So there is a morphism S(Fp) — S(Gp) at the first stage of the complex. This induces a
morphism on the quotient sheaves S(Fp)/Fy — S(Go)/Go, and thus by the same argument
as above, a morphism on the second stage S(S(Fy)/Fo) — S(S(Go)/Gop), i.e. a morphism
S(F1) — S(G1). Continuing inductively yields levelwise morphisms S(F;) — S(G;). The
claim is that these assemble to a chain map
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S(F)/F
0 F S(F) = S(F) S(F) = S(S(F)/F) —— -
; S0 s1(F)
0 G S(Go) = S(G) S(G1) = S(5(6)/G) — -+
R A

S(G)/G

Link to Diagram

To see this is true, it is enough to show that the first square commutes, i.e. that applying S(—)
to a morphism of sheaves produces a commuting square. This is because every other square
has a factorization as indicated, where the square in red naturally commutes since it involves
canonically induced maps on quotients/cokernels, and the other half of the square arises by
applying the S construction to some morphism of sheaves.

However, this square can be readily seen to commute using the following: first regard the
sections of F as continuous sections of its espace étale Btz — X and regarding sections of S(F)
as arbitrary (potentially discontinuous) sections of w. Then F < S(F)) is clearly a subsheaf
and F' — S(F) is an inclusion of spaces of sections.

Solution (Part 2):

By part 1, it is clear there are morphisms S(F') — S(F) — S(F") of complexes of sheaves,
yielding a double complex:

S(F) ——— S(h) ——— S(FY)

S(Fy) ——— S(Fy) —— S(Fy)
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Link to Diagram
It suffices to show injectivity, exactness, and surjectivity respectively along each horizontal
row. Exactness is a local condition, so it suffices to show exactness on stalks.

Claim: For any open U, the following sequence at the first stage of the complex is exact:

0— S(F')U)— S(F)(U) = S(F")(U) — 0.

Proof (of claim).
This follows because S(F')(U) = [[ F, and similarly for F, F”, and so if f : F' — F is

zelU
injective on sheaves, then f, : F., — F is injective on stalks.

|
Now apply the functor colim(—) to this exact sequence and use that taking stalks is exact
(despite not generally beizzpa filtered colimit) to conclude
0—S(F)y — S(F)y — S(F"), — 0.
is exact for all z € X, thus making the following sequence exact:
0— S(F) — S(Fy) = S(FY) =0

Our double complex is now the following;:

P S(F) —— S(F)) —— S(F) 7

0 —— S(F)) ———— S(Fy) ——— S(F)) ——— 0

Link to Diagram
To see that

0— S(F,) — S(Fy) — S(F}) =0

is exact for all k, we can truncate this complex:
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7 S(F)F, ———— S(Fy) /[ Fy ———— S(FY)JF) ——— 7

A~ A~ A~

0 —— S(Fy) ——————— S(F)) ————— S(FJ) ——— 0

Link to Diagram
The row highlighted in red is exact by the Nine Lemma, regarding each row as a chain complex,
and since applying S(—) is exact, by applying this to the top row we obtain

0— 5 S(F) —— 5 S(F) —— S(F)y ———— 0

Link to Diagram
The remaining rows are exact by repeating this argument inductively, and regarding the
columns as complexes, we obtain the desired exact sequences of complexes by deleting the first
row.
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Solution (Part 3):
Note: there may be a typo in the statement of this problem, so what I will show is that the
following sequence of complexes is exact:

0T (X;S(F)) - T(X;S(F)) =T (X;S(F") — 0.

Take the double complex from part (2) and apply the functor I" (X; —) to obtain the following
double complex:

0 —— I (X;F) —— T'(X;F) —— I (X;F") —— R'T' (X; F)

Link to Diagram

Here the bottom row continues in the long exact sequence for the right-derived functors of
I'(X;—), i.e. sheaf cohomology. Since the desired sequence of complexes involved truncating
this double complex by deleting the first row, consider everything from row two upward. That
these levelwise maps assemble to a map of complexes is just a consequence of functoriality of
I'(X;—), and left exactness preserves the zeros in the left-most column, so it suffices to show
that the right-most column (highlighted in red) is zero as claimed.

However, this follows from the previous problem if the sheaves S(F},) are all flasque. This
is immediate since they are sheaves of discontinuous sections, and such a section on U can
always be extended to a global section by simply assigning any other values on X \ U — any
choice works, since no compatibility (e.g. continuity) is required.

Solution (Part 4):

It is a general theorem in homological algebra that a short exact sequence of chain complexes
induces a long exact sequence in cohomology. In this case, if we take the vertical homology of
the above double complex, by the snake lemma there are connecting morphisms:
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0 —— Ho(T' (X;S8(F")) —— Ho(T'(X;S(F))) —— Ha(I (X;8(F")) —— 0

0 —— Hy (T (X;8(F"))) —— Hi(I'(X;8(F))) —— Hi(T (X;8(F")) —— 0

0 —— Ho(I (X;S5(F")) —— Ho(T'(X;S(F))) —— Ho(I' (X;S8(F"))) —— 0

Link to Diagram

Solution (Part 5):

This holds because flasque sheaves are F-acyclic for F(—) =T' (X; —), so we can conclude that

H"(S(F)) = 0 for n > 0 since the sheaves S(F') are always flasque for any sheaf F.
Note: I realized at the last minute that this ar-
gument may not actually work, since this H" a
priori has nothing to do with RT'(X; —) computed
via injective resolutions.

ToDos
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