# Friday, January 28 :::{.remark} Last time: - Morphisms of sheaves $\phi$, - $\ker \phi$ (already a sheaf), - $(\im \phi)^-, (\coker \phi)^-$ (need to sheafify), - All defined to commute with taking stalks: $(\ker \phi)_p = \ker(\phi_p)$, etc - $(\im \phi)^-$ may fail the existence axioms for sheaves, using $\exp: \OO^\an \to (\OO^\an)\units$ for $X$ a complex analytic space, - $(\coker \phi)^-$ may fail the uniqueness axioms for sheaves, - $(\im \phi)^-$ satisfies existence $\iff (\coker \phi)^-$ satisfies uniqueness, - For $\mcf\injects \mcg$ injective, the presheaf quotient $(\mcg/\mcf)^-$ may fail to be a sheaf. ::: :::{.example title="of the last claim"} For $X\in \Alg\Var\slice k$ for $k=\kbar$, let $\OO_X$ be its regular algebraic functions. Take $X = \PP^1$ and $U \da \AA^1\sm\ts{\pt} \subseteq \AA^1 \subseteq \PP^1\sm\ts{a_1,\cdots, a_k}$. Then $\OO_X(U) = k[x]\localize{f}$ for $f(x) \da \prod (x-a_k)$, $\OO_X(X) = k$, $K_X(U) = k(x)$, and $K_X\units(U) = k(x)\smz$ if $U \neq \emptyset$. Define **Cartier divisors** as global sections of the sheaf $\Cart\Div \da K_X\units/\OO_X\units$. Recall that Weil divisors are finite sums of codimension 1 subvarieties, and these notions coincide for nonsingular varieties. For $p\in \AA^1 \subseteq \PP^1$, we have \[ (K_X\units/\OO_X\units)_p = {K_{X, p} \over \OO_{X, p}} = {k(x) \over \ts{f/g \st f(p)\neq 0 , g(p) \neq 0}} \cong \ZZ ,\] using that any element in the quotient can be written as $h(x) = (x-p)^n g(x)$ for some $g\in \OO_{X, p}\units$. Here $\Cart\Div(X) = \sum n_p P$ are all finite sums with $n_p\in \ZZ$. The claim is that sheaf existence fails for this quotient -- there are local sections that do not glue. Here - $K\units(\PP^1) = k(x)\units$ - $\OO\units(\PP^1) = k\units$ - $K\units(\PP^1)/\OO\units(\PP^1) = {k(x)\units \over k\units}$ For any $s$ in the quotient, we can associated $(s)_0 - (s)_\infty = \sum n_p P$, but not every Cartier divisor is of this form -- these are the *principal* divisors. This form a group $\Pic(X) = \Cart\Div(X) / \Prin\Cart\Div(X)$, which may not be trivial. This proof generalizes to locally Noetherian schemes, not necessarily reducible, with no embedded components. ::: :::{.remark} Note that $\Pic(X)$ is also the group of invertible sheaves on $X$, and for irreducible algebraic varieties these coincide. Use the SES $0\to \OO\units \to K\units \to K\units/\OO\units \to 0$ to obtain \[ 1 \to H^0(\OO\units) \to H^0(K\units) \to \Prin\Cart\Div(X) \to H^1(\OO\units)\cong \text{invertible sheaves}/\sim \to 0, ,\] where $H^1(K\units)$ vanishes since it's a constant sheaf on an irreducible scheme in the Zariski topology. ::: :::{.proposition title="?"} $(\im \phi)^-$ satisfies existence $\iff (\coker \phi)^-$ satisfies uniqueness. ::: :::{.proof title="?"} $\implies$: Let $s\in \coker(F(U) \to G(U))$ and write $U = \union U_i$. We want to show that $s_{U_i}$ implies $s\in \coker(F(U_i) \to G(U_i))$ for all $i$. Note that $s = 0$ in $\coker(F(U) \to G(U))$ iff $s\in \im(F(U) \to G(U))$ :::