# Wednesday, February 02 :::{.remark} Extending by zero: for $i: U \embeds X$ an open subspace and $\mcf \in \Sh(U)$, define $i_!\mcf\in \Sh(X)$. If the target category has a zero object, define this in the sheaf space by extending the zero section: <!-- Xournal file: /home/zack/SparkleShare/github.com/Notes/Class_Notes/2022/Spring/SheafCohomology/sections/figures/2022-02-02_10-26.xoj -->  Thus $\Et_{i_! \mcf} = \Et_{\mcf} \disjoint \ts{s_0}$ for $s_0$ the zero section. ::: :::{.proposition title="?"} Define a presheaf are given by \[ (i_! \mcf)^-(V) = \begin{cases} F(V) & V \subseteq U \\ 0 & \text{else}. \end{cases} .\] Sheafifying produces an equivalent sheaf, i.e. $(i_! \mcf)^{-+} \cong i_! \mcf$. ::: :::{.proof title="?"} Idea: produce a map $(i_! \mcf)^- \to i_! \mcf$ and show it is an isomorphism on stalks. What are the stalks? By the sheaf space definition, \[ (i_! \mcf)_p = \begin{cases} \mcf_p & p\in U \\ 0 & \text{else}. \end{cases} .\] On the other hand, $(i_! \mcf)_p^- = \colim_{V\ni p} \mcf(V)$, but this limit can be taken over the system of open sets $V \subseteq U$, so it yields $\mcf_p$. ::: :::{.remark} Consider $X = U \disjoint Z$ with $U$ open and $Z$ closed. Let $U \injectsvia{i} X$ and $Z\injectsvia{j} X$, and consider $i_* \ro{\mcf}{U}$ and $j_* \ro{\mcf}{U}$. There is a SES \[ 0 \to i_! \ro{\mcf}{U} \to \mcf \to j_* \ro{\mcf}{Z}\to 0 .\] ::: :::{.example title="?"} The sheaf $i_!\ro{\mcf}{U}$ is a subsheaf of $\mcf$, and $j_*\ro{\mcf}{Z}$ is a quotient. <!-- Xournal file: /home/zack/SparkleShare/github.com/Notes/Class_Notes/2022/Spring/SheafCohomology/sections/figures/2022-02-02_10-46.xoj -->  Here $\Et_{\ul{\ZZ}} = \Disjoint_{n\in \ZZ} X$, and $\Et_{j_* \ro{\ul \ZZ}{Z}} X$ glued along $X\sm Z$. So $i_! \ro{\mcf}{U} \injects \mcf$. It's important that $Z$ is closed here to get a surjection, since then any point in its complement has a neighborhood $V$ missing $Z$ entirely and $(i_! \mcf)^-(V) = 0$. Checking the stalks: | | $\mcf$ | $i_! \ro{\mcf}{U}$ | $j_* \ro{\mcf}{V}$ | |---------- |---------- |-------------------- |-------------------- | | $p\in U$ | $\mcf_p$ | $\mcf_p$ | 0 | | $p\in Z$ | $\mcf_p$ | 0 | $\mcf_p$ | ::: :::{.example title="?"} Let $X\in \Alg\Var\slice k$, e.g. $X=\PP^1$, let $Z \subseteq X$ be closed, and let $\mcf \da\OO_X$. There is a SES $0\to I_Z \to \OO_X\to \OO_Z \to 0$. ::: :::{.remark} Note that we have adjunctions \[ \adjunction{f\inv}{f_*}{\Sh X}{\Sh Y} \\ \adjunction{i_!}{\ro{\wait}{U}}{\Sh ?}{\Sh ?} \\ \adjunction{j_*}{\ro{\wait}{Z} }{\Sh ?}{\Sh ?} .\] :::