# Friday, February 11 :::{.remark} Recall the definitions of: - Cochain complexes, - Boundaries, - Cycles, - Homology as cycles mod boundaries, - Morphisms of chain complexes - Chain homotopies - Nullhomotopic morphisms - Homotopic morphisms of chain complexes - Short exact sequences of complexes: \begin{tikzcd} && 0 && 0 && 0 \\ \\ \cdots && {A^{n+1}} && {A^{n}} && {A^{n-1}} && \cdots \\ \\ \cdots && {C^{n}} && {B^{n}} && {B^{n-1}} && \cdots \\ \\ \cdots && {C^{n-1}} && {C^{n}} && {C^{n-1}} && \cdots \\ \\ && 0 && 0 && 0 \arrow[from=3-1, to=3-3] \arrow[from=3-3, to=3-5] \arrow[from=3-5, to=3-7] \arrow[from=3-7, to=3-9] \arrow[from=5-1, to=5-3] \arrow[from=5-3, to=5-5] \arrow[from=5-5, to=5-7] \arrow[from=5-7, to=5-9] \arrow[hook, from=1-3, to=3-3] \arrow[hook, from=1-5, to=3-5] \arrow[hook, from=1-7, to=3-7] \arrow[hook, from=3-3, to=5-3] \arrow[hook, from=3-5, to=5-5] \arrow[hook, from=3-7, to=5-7] \arrow[two heads, from=5-3, to=7-3] \arrow[two heads, from=5-5, to=7-5] \arrow[two heads, from=5-7, to=7-7] \arrow[from=7-1, to=7-3] \arrow[from=7-3, to=7-5] \arrow[from=7-5, to=7-7] \arrow[from=7-7, to=7-9] \arrow[two heads, from=7-7, to=9-7] \arrow[two heads, from=7-5, to=9-5] \arrow[two heads, from=7-3, to=9-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMjEsWzAsMiwiXFxjZG90cyJdLFswLDQsIlxcY2RvdHMiXSxbMCw2LCJcXGNkb3RzIl0sWzIsMiwiQV57bisxfSJdLFsyLDQsIkNee259Il0sWzIsNiwiQ157bi0xfSJdLFs0LDYsIkNee259Il0sWzQsNCwiQl57bn0iXSxbNCwyLCJBXntufSJdLFs2LDIsIkFee24tMX0iXSxbNiw0LCJCXntuLTF9Il0sWzYsNiwiQ157bi0xfSJdLFs4LDIsIlxcY2RvdHMiXSxbOCw0LCJcXGNkb3RzIl0sWzgsNiwiXFxjZG90cyJdLFsyLDgsIjAiXSxbNCw4LCIwIl0sWzYsOCwiMCJdLFsyLDAsIjAiXSxbNCwwLCIwIl0sWzYsMCwiMCJdLFswLDNdLFszLDhdLFs4LDldLFs5LDEyXSxbMSw0XSxbNCw3XSxbNywxMF0sWzEwLDEzXSxbMTgsMywiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMTksOCwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMjAsOSwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMyw0LCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFs4LDcsIiIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzksMTAsIiIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzQsNSwiIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV0sWzcsNiwiIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV0sWzEwLDExLCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbMiw1XSxbNSw2XSxbNiwxMV0sWzExLDE0XSxbMTEsMTcsIiIsMix7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFs2LDE2LCIiLDIseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbNSwxNSwiIiwyLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV1d) - Small categories - Sets of objects, sets of morphisms, a pairing $\Mor(A, B)\times \Mor(B, C)\to \Mor(A, C)$. - Universes ::: :::{.exercise title="?"} Show that a morphism of chain complexes induces a morphism on homology. ::: :::{.exercise title="?"} Show that $f\homotopic g \implies \cxH(f) = \cxH(g)$, i.e. homotopic chain morphisms induce equal maps on homology. > Hint: reduce to showing that $f$ nullhomotopic implies $\cxH(f) = 0$. ::: :::{.exercise title="Show a SES induces a LES in homology"} Show that a SES of complexes induces a LES in homology. Write a formula for the connecting morphism, and do the check that everything is well-defined! Use the grid diagram from above. ::: :::{.example title="?"} Examples of categories: - $\Set$ - $\modsleft{R}$ - $\modsright{R}$ - $\Top$ - $\CRing$, assumed to be unital - $\Sch\slice k$ - $\Alg\Var\slice k$ for $k=\kbar$ - $\Sh(X; \zmod)$ - $\mods{\OO_X}$ - $\Top\Ab\Grp$ - $G\actson\rmod$ Note that many of these are not abelian, since they are not even additive, or e.g. are not closed under kernels. :::