# Monday, February 14 :::{.remark} Recall the definitions of: - Categories - Functors - Diagram/index categories - $\bullet \to \bullet \from \bullet$ - $\bullet \from \bullet \to \bullet$ - $\bullet \mapstofrom \bullet$ - $\NN: \bullet \to \bullet \to \cdots$ - $\bullet \covers \bullet$ - Sets and posets as categories - Collections of objects $\cat C$ as functors $F\in [\cat I, \cat C]$ for $\cat I$ an index category - Products and coproducts (via their universal properties). Useful mnemonic diagram: \begin{tikzcd} {\forall P} && {\prod A_i} \\ \\ & \cdots & {A_i} & \cdots \\ \\ && {\coprod A_i} && {\forall C} \arrow[from=3-2, to=3-3] \arrow[from=3-3, to=3-4] \arrow[from=1-3, to=3-3] \arrow[from=3-3, to=5-3] \arrow["{\forall \pi_P}", from=1-1, to=3-3] \arrow["\exists"', dashed, from=1-1, to=1-3] \arrow["{\forall \iota_C}", from=3-3, to=5-5] \arrow["\exists"', dashed, tail reversed, no head, from=5-5, to=5-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNyxbMSwyLCJcXGNkb3RzIl0sWzIsMiwiQV9pIl0sWzMsMiwiXFxjZG90cyJdLFsyLDAsIlxccHJvZCBBX2kiXSxbMiw0LCJcXGNvcHJvZCBBX2kiXSxbMCwwLCJcXGZvcmFsbCBQIl0sWzQsNCwiXFxmb3JhbGwgQyJdLFswLDFdLFsxLDJdLFszLDFdLFsxLDRdLFs1LDEsIlxcZm9yYWxsIFxccGlfUCJdLFs1LDMsIlxcZXhpc3RzIiwyLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzEsNiwiXFxmb3JhbGwgXFxpb3RhX0MiXSxbNiw0LCJcXGV4aXN0cyIsMix7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6ImFycm93aGVhZCJ9LCJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifSwiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dXQ==) - Algebraic cats over sets (concrete categories) will be closed under products, i.e. $\prod A_i$ will admit the same algebraic structure by taking pointwise operations. - Examples of (co)products in common categories: - $\Set$: direct cartesian product and disjoint union. - $\Ab\Grp$: direct cartesian product and direct sum $\oplus$. - $\Ring$: $\prod$ and $\tensor_\ZZ$ - $\Top$: $\prod$ whose underlying set is the cartesian product with the product topology and $\coprod$ as the disjoint union with the union of topologies Note the difference between the box and product topologies. - A diagram in $\cat C$ defined as a functor. - (co)filtered diagram categories $\cat I$: for any pair $i,j$, $\size \Mor_{\cat I}(i, j) \leq 1$ and there exists a $k$ with $i, j \to k$. Reverse arrows for cofiltered. - This allows for distinct but isomorphic objects, useful e.g. in $\Vect\slice k$ where abstractly $V\cong V\dual$ but it's useful to distinguish. - Limits (injective, cones that live above) and colimits (projective, cocones that live below): \begin{tikzcd} {\forall P} && {\cocolim A_i} \\ \\ & \cdots & {A_i} & \cdots \\ \\ && {\colim A_i} && {\forall C} \arrow[from=3-2, to=3-3] \arrow[from=3-3, to=3-4] \arrow[from=1-3, to=3-3] \arrow[from=3-3, to=5-3] \arrow["{\forall \pi_P}", from=1-1, to=3-3] \arrow["\exists"', dashed, from=1-1, to=1-3] \arrow["{\forall \iota_C}", from=3-3, to=5-5] \arrow["\exists"', dashed, tail reversed, no head, from=5-5, to=5-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNyxbMSwyLCJcXGNkb3RzIl0sWzIsMiwiQV9pIl0sWzMsMiwiXFxjZG90cyJdLFsyLDAsIlxcY29jb2xpbSBBX2kiXSxbMiw0LCJcXGNvbGltIEFfaSJdLFswLDAsIlxcZm9yYWxsIFAiXSxbNCw0LCJcXGZvcmFsbCBDIl0sWzAsMV0sWzEsMl0sWzMsMV0sWzEsNF0sWzUsMSwiXFxmb3JhbGwgXFxwaV9QIl0sWzUsMywiXFxleGlzdHMiLDIseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMSw2LCJcXGZvcmFsbCBcXGlvdGFfQyJdLFs2LDQsIlxcZXhpc3RzIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiYXJyb3doZWFkIn0sImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9LCJoZWFkIjp7Im5hbWUiOiJub25lIn19fV1d) - Fiber products/pullbacks and pushouts - Equalizers/difference kernels $K$ and coequalizers/difference cokernels $C$ fitting into $K \to A_1 \covers A_2\to C$. - Computing cofiltered colimits in $\Ab\Grp$: for the cofiltered set $\ts{A_i, \phi_{ij}: A_i\to A_j}_{i, j}$, can construct as $\colim A_i = \disjoint A_i/\sim$ here $a_i \sim \phi_{ik}(a_i)$ for any $k$ with $i\to k$. - For filtered limits, one generally gets $\cocolim A_i = \bigoplus A_i/\sim$ where $a_i \sim \phi_{ik}(a_i)$ - Example: $\disjoint A_i \in \Ab\Grp$ is not a cofiltered colimit, since the diagram category is discrete. - Claim: the underlying set is not $\disjoint A_i$. - For fixed objects $A\in \cat{C}$, the functors $\Mor_{\cat C}(A, \wait): \cat{C}\to \Set$ and $\Mor_{\cat C}(\wait, A): \cat{C} \to \opcat{\Set}$. - More generally the target can be $\Ab\Grp, \CRing$, etc. ::: :::{.remark} Next time: additive and abelian categories, why $\Sh(X; \Ab\Grp)$ is an abelian category. :::