# Wednesday, February 16 :::{.definition title="Equalizer and coequalizer"} The definition of equalizers and coequalizers: \begin{tikzcd} &&&&&& Y \\ \\ {K = \cocoeq(f, g)} && A && B && {C = \coeq(f, g)} \\ \\ X \arrow[from=3-1, to=3-3] \arrow["f", shift left=2, from=3-3, to=3-5] \arrow[from=3-5, to=3-7] \arrow["{\exists !}"', dashed, from=3-7, to=1-7] \arrow[from=3-5, to=1-7] \arrow[from=5-1, to=3-3] \arrow["{\exists !}"', dashed, from=5-1, to=3-1] \arrow["g"', shift right=1, from=3-3, to=3-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNixbMCwyLCJLID0gXFxlcShmLCBnKSJdLFsyLDIsIkEiXSxbNCwyLCJCIl0sWzYsMiwiQyA9IFxcY29lcShmLCBnKSJdLFs2LDAsIlkiXSxbMCw0LCJYIl0sWzAsMV0sWzEsMiwiZiIsMCx7Im9mZnNldCI6LTJ9XSxbMiwzXSxbMyw0LCJcXGV4aXN0cyAhIiwyLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzIsNF0sWzUsMV0sWzUsMCwiXFxleGlzdHMgISIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFsxLDIsImciLDIseyJvZmZzZXQiOjF9XV0=) ::: :::{.remark} Notes: - $\ker f \to A \covers^f_0 B\to \coker f$. - $B\injectsvia{h} X$ is injective iff $A\covers_g^f B \to X$ - $X \surjectsvia{h} A$ is surjective iff $X \mapsvia{h} A \covers^f_g B$ - Iso = mono and epi ::: :::{.exercise title="?"} Show that if $\cocoeq(f, g)\to A$ exists then $\cocoeq(f, g) \injects A$ is mono. ::: :::{.warnings} Iso implies bijective on underlying sets, but not conversely. Take the subcategory of $\Top\Ab\Grp$ whose objects are $\RR$ with various topologies, then take $\id: \RR^{\mathrm{disc}}\to \RR^{\mathrm{Euc}}$. Note that $\ker \id = \coker \id = 0$ but this is not an isomorphism. The issue: this is an additive category that isn't abelian. ::: :::{.definition title="Additive categories"} For $\cat{C} \in \Cat$, - $\Hom_{\cat C}(A, B) \in \Ab\Grp$ - Composition is distributive, so $f(g+h) = fg+gh$ and $(g+h)f = gf + hf$. ::: :::{.definition title="Abelian categories"} For $\cat{C} \in \Cat$, - Closed under all kernels and cokernels - Closed under products $\prod A_i$ - Equivalently, closed under coproducts $\bigoplus A_i$, and in fact $A\times B = A \oplus B$ in $\cat{C}$. - There exists a zero object $0 = \initial = \terminal$ with $\Hom(0, X) = \Hom(X, 0) = 0$. - Images are uniquely isomorphic to coimages: \begin{tikzcd} 0 && {\ker f} && A && B && {\coker f} && 0 \\ \\ &&&& I && {I'} \\ \\ &&&& 0 && 0 \arrow[color={rgb,255:red,92;green,92;blue,214}, from=1-1, to=1-3] \arrow[color={rgb,255:red,92;green,92;blue,214}, from=1-3, to=1-5] \arrow["f", from=1-5, to=1-7] \arrow[color={rgb,255:red,214;green,153;blue,92}, from=1-7, to=1-9] \arrow[color={rgb,255:red,214;green,153;blue,92}, from=1-9, to=1-11] \arrow[color={rgb,255:red,92;green,92;blue,214}, from=1-5, to=3-5] \arrow[color={rgb,255:red,92;green,92;blue,214}, from=3-5, to=5-5] \arrow[color={rgb,255:red,214;green,153;blue,92}, from=5-7, to=3-7] \arrow[color={rgb,255:red,214;green,153;blue,92}, from=3-7, to=1-7] \arrow["{\exists !}", dashed, from=3-5, to=3-7] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTAsWzAsMCwiMCJdLFsyLDAsIlxca2VyIGYiXSxbNCwwLCJBIl0sWzYsMCwiQiJdLFs4LDAsIlxcY29rZXIgZiJdLFsxMCwwLCIwIl0sWzQsMiwiSSJdLFs0LDQsIjAiXSxbNiwyLCJJJyJdLFs2LDQsIjAiXSxbMCwxLCIiLDAseyJjb2xvdXIiOlsyNDAsNjAsNjBdfV0sWzEsMiwiIiwwLHsiY29sb3VyIjpbMjQwLDYwLDYwXX1dLFsyLDMsImYiLDAseyJjb2xvdXIiOlswLDYwLDYwXX0sWzAsNjAsNjAsMV1dLFszLDQsIiIsMCx7ImNvbG91ciI6WzMwLDYwLDYwXX1dLFs0LDUsIiIsMCx7ImNvbG91ciI6WzMwLDYwLDYwXX1dLFsyLDYsIiIsMCx7ImNvbG91ciI6WzI0MCw2MCw2MF19XSxbNiw3LCIiLDAseyJjb2xvdXIiOlsyNDAsNjAsNjBdfV0sWzksOCwiIiwwLHsiY29sb3VyIjpbMzAsNjAsNjBdfV0sWzgsMywiIiwwLHsiY29sb3VyIjpbMzAsNjAsNjBdfV0sWzYsOCwiXFxleGlzdHMgISIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==) ::: :::{.remark} For $\cat C = \Ab\Grp$, $\Hom_{\cat C}$ form abelian groups under pointwise operations. For morphisms $\cat C = \Sh(X; \Ab\Grp)$ and $f,g\in \cat{C}(\mcf, \mcg)$, writing $f = \ts{f_U}, g = \ts{g_U}$ in components, one can set $f+g = \ts{f_U + g_U}$ to make $\Hom_{\cat C}$ an abelian group. Images will be isomorphic to coimages in $\cat{C}$ since the induced maps will be isomorphisms on stalks, using that $\Ab\Grp$ is abelian. ::: :::{.remark} If $\mca\in \Ab\Cat$, then $\Sh(X; \mca)\in \Ab\Cat$. ::: :::{.exercise title="?"} Show that $A_1\times A_2 = A_1 \oplus A_2$ in an abelian category using the universal properties. ::: :::{.solution} See course notes. :::