# Monday, February 21 :::{.remark} Recall the definitions of $\cocolim F$ and $\colim F$ for $F \in [\cat I, \cat C] = \cat{C}^{\cat I}$ with $\cat I$ a small index category. Note that if $\cat N \da \opcat{ \Open(X)}$, the functor category $\cat{C}^{\cat N} = \Presh(X; \cat C)$ consists of presheaves on $X$. ::: :::{.lemma title="?"} If any of the following exist in $\cat{C}$: - $\prod A_i$ - $\coprod A_i$ - $\cocolim F$ - $\colim F$ Then the same is true in $\cat{C}^{\cat N}$. ::: :::{.proof title="?"} \begin{tikzcd} i &&&& {F_i(U)} &&& {F_i(V)} \\ \\ j &&&& {F_j(U)} &&& {F_j(V)} \\ \\ &&& {\colim_i F_i(U)} &&& {\colim F_i(V)} \\ \\ & {\forall\, G(U)} &&& {\forall \,G(V)} \arrow[from=1-1, to=3-1] \arrow[from=1-5, to=3-5] \arrow[from=1-8, to=3-8] \arrow[from=3-8, to=5-7] \arrow[from=3-5, to=5-4] \arrow["{\exists !}"{description}, dashed, from=5-4, to=7-2] \arrow["{\exists !}"{description}, dashed, from=5-7, to=7-5] \arrow[from=1-5, to=5-4] \arrow[from=1-5, to=7-2] \arrow[from=1-8, to=5-7] \arrow[from=1-8, to=7-5] \arrow[curve={height=-30pt}, from=3-5, to=7-2] \arrow[curve={height=-30pt}, from=3-8, to=7-5] \arrow["{\text{claim: } \exists}", color={rgb,255:red,214;green,92;blue,92}, squiggly, from=5-4, to=5-7] \arrow[from=1-5, to=1-8] \arrow[from=3-5, to=3-8] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTAsWzAsMCwiaSJdLFswLDIsImoiXSxbNCwwLCJGX2koVSkiXSxbNCwyLCJGX2ooVSkiXSxbMyw0LCJcXGNvbGltX2kgRl9pKFUpIl0sWzcsMCwiRl9pKFYpIl0sWzcsMiwiRl9qKFYpIl0sWzYsNCwiXFxjb2xpbSBGX2koVikiXSxbMSw2LCJcXGZvcmFsbFxcLCBHKFUpIl0sWzQsNiwiXFxmb3JhbGwgXFwsRyhWKSJdLFswLDFdLFsyLDNdLFs1LDZdLFs2LDddLFszLDRdLFs0LDgsIlxcZXhpc3RzICEiLDEseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbNyw5LCJcXGV4aXN0cyAhIiwxLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzIsNF0sWzIsOF0sWzUsN10sWzUsOV0sWzMsOCwiIiwxLHsiY3VydmUiOi01fV0sWzYsOSwiIiwxLHsiY3VydmUiOi01fV0sWzQsNywiXFx0ZXh0e2NsYWltOiB9IFxcZXhpc3RzIiwwLHsiY29sb3VyIjpbMCw2MCw2MF0sInN0eWxlIjp7ImJvZHkiOnsibmFtZSI6InNxdWlnZ2x5In19fSxbMCw2MCw2MCwxXV0sWzIsNV0sWzMsNl1d) ::: :::{.lemma title="?"} If $\cat{C}$ has coproducts or colimits, then so does $\Sh(X; \cat C)$. ::: :::{.proof title="?"} Factor through the sheafification: \begin{tikzcd} {F_i} \\ \\ && {(\colim F)^-} &&&& G \\ \\ {F_j} &&&& \textcolor{rgb,255:red,92;green,92;blue,214}{(\colim F)^{-+}} \arrow["{\in \Presh(X, \cat{C})}"{description}, dashed, from=1-1, to=3-3] \arrow["{\in \Presh(X, \cat{C})}"{description}, dashed, from=5-1, to=3-3] \arrow[from=1-1, to=5-1] \arrow[from=1-1, to=3-7] \arrow[from=5-1, to=3-7] \arrow[dashed, from=3-3, to=3-7] \arrow["{\exists ! (\wait)^+}", color={rgb,255:red,92;green,92;blue,214}, dotted, from=3-3, to=5-5] \arrow["{\exists!}", color={rgb,255:red,92;green,92;blue,214}, dotted, from=5-5, to=3-7] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNSxbMCwwLCJGX2kiXSxbMCw0LCJGX2oiXSxbMiwyLCIoXFxjb2xpbSBGKV4tIl0sWzYsMiwiRyJdLFs0LDQsIihcXGNvbGltIEYpXnstK30iLFsyNDAsNjAsNjAsMV1dLFswLDIsIlxcaW4gXFxQcmVzaChYLCBcXGNhdHtDfSkiLDEseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMSwyLCJcXGluIFxcUHJlc2goWCwgXFxjYXR7Q30pIiwxLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzAsMV0sWzAsM10sWzEsM10sWzIsMywiIiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzIsNCwiXFxleGlzdHMgISAoXFx3YWl0KV4rIiwwLHsiY29sb3VyIjpbMjQwLDYwLDYwXSwic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZG90dGVkIn19fSxbMjQwLDYwLDYwLDFdXSxbNCwzLCJcXGV4aXN0cyEiLDAseyJjb2xvdXIiOlsyNDAsNjAsNjBdLCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkb3R0ZWQifX19LFsyNDAsNjAsNjAsMV1dXQ==) ::: :::{.remark} In $\Ab\Grp$, we have $\prod,\coprod = \bigoplus, \colim, \cocolim$. \begin{tikzcd} &&&& {A_i} \\ \\ {\cocolim A_i} && {\prod A_i} &&&& {\coprod A_i = \bigoplus A_i} && {\colim A_i} \\ {\ts{(a_i) \st f_{ij}(a_i) = a_j }} &&&&&&&& {\bigoplus A_i/ \gens{a_i - f_{ij}(a_i)}} \\ &&&& {A_j} \arrow["{f_{ij}}", from=1-5, to=5-5] \arrow[squiggly, from=1-5, to=3-7] \arrow[squiggly, from=5-5, to=3-7] \arrow[squiggly, from=3-3, to=1-5] \arrow[squiggly, from=3-3, to=5-5] \arrow[from=3-1, to=1-5] \arrow[from=3-1, to=5-5] \arrow[hook, from=3-1, to=3-3] \arrow[from=1-5, to=3-9] \arrow[from=5-5, to=3-9] \arrow[two heads, from=3-7, to=3-9] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsOCxbNCwwLCJBX2kiXSxbNCw0LCJBX2oiXSxbMiwyLCJcXHByb2QgQV9pIl0sWzAsMiwiXFxjb2NvbGltIEFfaSJdLFs2LDIsIlxcY29wcm9kIEFfaSA9IFxcYmlnb3BsdXMgQV9pIl0sWzgsMiwiXFxjb2xpbSBBX2kiXSxbMCwzLCJcXHRzeyhhX2kpIFxcc3QgZl97aWp9KGFfaSkgPSBhX2ogfSJdLFs4LDMsIlxcYmlnb3BsdXMgQV9pLyBcXGdlbnN7YV9pIC0gZl97aWp9KGFfaSl9Il0sWzAsMSwiZl97aWp9Il0sWzAsNCwiIiwyLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoic3F1aWdnbHkifX19XSxbMSw0LCIiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJzcXVpZ2dseSJ9fX1dLFsyLDAsIiIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6InNxdWlnZ2x5In19fV0sWzIsMSwiIiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoic3F1aWdnbHkifX19XSxbMywwXSxbMywxXSxbMywyLCIiLDEseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFswLDVdLFsxLDVdLFs0LDUsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dXQ==) Note that the inner diamond doesn't necessarily commute. The same diagram holds in $\rmod$. ::: :::{.corollary title="?"} In $\Sh(X, \Ab\Grp)$ and $\Sh(X, \mods{\OO_X})$, both $\oplus$ and $\colim$ exist. ::: :::{.lemma title="?"} In $\Sh(X, \Ab\Grp)$ and $\Sh(X, \mods{\OO_X})$, both $\prod$ and $\cocolim$ exist. ::: :::{.proof title="?"} In $\presh(X,\Ab\Grp)$, there exist $\prod, \cocolim$ where $(\prod F_i)(U) = \prod F_i(U)$, but this already forms a sheaf. Check that if $U = \Union U_\alpha$, then a collection of sections $F_i(U_\alpha)$ agreeing on intersections is the same as an element of the product. ::: :::{.warnings} Luckily we don't need to sheafify here, since the arrow for sheafification goes the wrong way. However, the presheaf $U \mapsto \oplus_i F_i(U)$ is not necessarily a sheaf. Take $X = \ZZ$ with the discrete topology, then any global section has infinitely many nonzero components. Note that $(\oplus F_i)^{-+} \subseteq \prod F_i$ is the subsheaf of the product where every local section has all but finitely many entries zero. ::: :::{.question} \[ \qty{\bigoplus F_i}^{-+}_p =_? \oplus (F_i)_p ,\] i.e. is the stalk given as $\ts{ (a_i) \in (F_i)_p \st \text{ all but finitely many entries are zero}}$. Idea: each $a_n$ might only lift to a disc of radius $1/n$, which intersect to $\ts{p}$. For example, take $\mcf = C^\infty$ and take smooth compactly supported functions on $[-1/n, 1/n]$ converging to $\chi_{x=0}$. :::