# Wednesday, February 23 :::{.remark} Recall the definition of an additive category: - $\Mor_{\cat C}(\wait, \wait)$ are abelian groups, - Compositions distribute - A zero object - Finite products $A\times B \iff$ finite coproducts $A \oplus B \iff$ finite biproducts: \begin{tikzcd} A && {A \oplus B} && B \arrow["{i_1}", shift left=3, from=1-1, to=1-3] \arrow["{i_2}"', shift right=3, from=1-5, to=1-3] \arrow["{p_2}"', shift right=1, from=1-3, to=1-5] \arrow["{p_1}", shift left=1, from=1-3, to=1-1] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMCwwLCJBIl0sWzIsMCwiQSBcXG9wbHVzIEIiXSxbNCwwLCJCIl0sWzAsMSwiaV8xIiwwLHsib2Zmc2V0IjotM31dLFsyLDEsImlfMiIsMix7Im9mZnNldCI6M31dLFsxLDIsInBfMiIsMix7Im9mZnNldCI6MX1dLFsxLDAsInBfMSIsMCx7Im9mZnNldCI6LTF9XV0=) where we require - $p_j i_j = \id$ - $p_j i_k = 0$ for $i\neq j$ - $i_1 p_1 + i_2 p_2 = \id_{A \oplus B}$. - Abelian cats: additive, plus existence of kernels, cokernels, images. ::: :::{.definition title="Additive Functors"} A functor $F\in [\cat A, \cat B]$ is **additive** iff the induced map $F_*: \Mor_{\cat A}(A, B) \to \Mor_{\cat B}(FA, FB) \in \Ab\Grp$ is a morphism of groups. ::: :::{.slogan} Additive functors preserve - polynomial identities in morphisms, - biproducts, so $F(A \oplus B) \cong FA \oplus FB$, - complexes, so $d_{n+1} d_n = 0$, - chain homotopy equivalences of complexes, which is a polynomial identity of the form $ds + sd = h$. ::: :::{.example title="of additive functors"} \envlist - For $A\in \cat{A} \in \Add\Cat$, the functors $\Mor_{\cat A}(A, \wait): \cat A\to \Ab\Grp$ and $\Mor_{\cat A}(\wait, A):\cat{A}\to \opcat{\Ab\Grp}$. - For $A\in \rmod$, $F_A(\wait) \da A\tensor_R(\wait): \rmod\to\Ab\Grp$. - If $R \in \CRing$, is commutative $F_A(\wait): \rmod\to\rmod$. - For $\cat{I}$ and index category, recalling $\cat{A}^{\cat I} = [\cat I, \cat A]$, the functors $\cocolim \cat{A}^{\cat I} \to \cat A$ and $\colim: \cat{A}^{\cat I} \to \cat{A}$ when they exist. - For $\Sh(X; \Ab\Grp)$, the global sections functor $\globsec{X; \wait}: \Sh(X, \Ab\Grp) \to \Ab\Grp$. - For $f\in \Top(X, Y)$, pushforward $f_*: \Sh(X) \to \Sh(Y)$ (which includes inclusion of a point, i.e. taking stalks at a point) and $f\inv: \Sh(Y)\to \Sh(X)$ (which includes restriction). - Local homs $\Hom(\mcf, \wait): \Sh(X; \mods{\OO_X}) \to \Sh(X; \mods{\OO_X})$. - $\st_x: \Sh(X; \Ab\Grp)\to \Ab\Grp$ where $\mcf\mapsto \mcf_x$. ::: :::{.remark} Recall the definition of exactness for chain complexes over abelian categories: $\im d^{n-1} = \ker d^n$. Note that one can use epi-mono factorization to **splice**: \begin{tikzcd} \cdots && {C^{n-1}} && {C^n} && {C^{n+1}} && \cdots \\ \\ &&& {Z^{n-1}} && {Z^n} \\ && 0 && 0 && 0 \arrow["{d^{n-1}}", from=1-3, to=1-5] \arrow["{d^{n}}", from=1-5, to=1-7] \arrow[color={rgb,255:red,92;green,92;blue,214}, two heads, from=1-3, to=3-4] \arrow[color={rgb,255:red,214;green,92;blue,92}, hook, from=3-4, to=1-5] \arrow[color={rgb,255:red,92;green,92;blue,214}, two heads, from=1-5, to=3-6] \arrow[color={rgb,255:red,214;green,92;blue,92}, hook, from=3-6, to=1-7] \arrow["{d^{n-2}}", from=1-1, to=1-3] \arrow["{d^{n+1}}", from=1-7, to=1-9] \arrow[color={rgb,255:red,214;green,92;blue,92}, from=4-3, to=3-4] \arrow[color={rgb,255:red,92;green,92;blue,214}, from=3-4, to=4-5] \arrow[color={rgb,255:red,214;green,92;blue,92}, from=4-5, to=3-6] \arrow[color={rgb,255:red,92;green,92;blue,214}, from=3-6, to=4-7] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTAsWzIsMCwiQ157bi0xfSJdLFs0LDAsIkNebiJdLFs2LDAsIkNee24rMX0iXSxbMywyLCJaXntuLTF9Il0sWzUsMiwiWl5uIl0sWzgsMCwiXFxjZG90cyJdLFswLDAsIlxcY2RvdHMiXSxbMiwzLCIwIl0sWzQsMywiMCJdLFs2LDMsIjAiXSxbMCwxLCJkXntuLTF9Il0sWzEsMiwiZF57bn0iXSxbMCwzLCIiLDIseyJjb2xvdXIiOlsyNDAsNjAsNjBdLCJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbMywxLCIiLDIseyJjb2xvdXIiOlswLDYwLDYwXSwic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMSw0LCIiLDIseyJjb2xvdXIiOlsyNDAsNjAsNjBdLCJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbNCwyLCIiLDIseyJjb2xvdXIiOlswLDYwLDYwXSwic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbNiwwLCJkXntuLTJ9Il0sWzIsNSwiZF57bisxfSJdLFs3LDMsIiIsMix7ImNvbG91ciI6WzAsNjAsNjBdfV0sWzMsOCwiIiwyLHsiY29sb3VyIjpbMjQwLDYwLDYwXX1dLFs4LDQsIiIsMix7ImNvbG91ciI6WzAsNjAsNjBdfV0sWzQsOSwiIiwyLHsiY29sb3VyIjpbMjQwLDYwLDYwXX1dXQ==) This yields collections of SESs, \[ 0\to Z^{n-1} \to C^n\to Z^{n}\to 0 .\] Recall the definition of right/left/middle exactness: for $0\to A\to B\to C\to 0$ and covariant functors $F$: - Right exact: $FA \to FB \to FC\to 0$, - Long exact: $0\to FA \to FB \to FC$, - Middle exact: $FA \to FB \to FC$. For contravariant functors, e.g. left exactness means $0\to FC\to FB \to FA$, so injectivity is preserved. Equivalently, $F: \cat{A}\to \cat{B}$ is left exact iff the covariant $F: \opcat{\cat A} \to \cat{B}$ is left-exact. ::: :::{.example title="?"} Of exactness: - $\globsec{\wait}$ is left-exact, - $\st_x$ is fully exact, - $f_*$ is left exact, - $f\inv$ is fully exact, since this preserves stalks, - $A\tensor_R(\wait)$ is right exact, - $\Hom_{\rmod}(A, \wait), \Hom_{\rmod}(\wait, A)$ are both left exact, which we'll prove. ::: :::{.proposition title="?"} $\Hom_{\rmod}(A, \wait), \Hom_{\rmod}(\wait, A)$ are both left exact. ::: :::{.proof title="?"} Use that kernels are monomorphisms: \begin{tikzcd} 0 && {B'} && B && {B''} && 0 \\ \\ &&&& A \\ {?} && {\Hom(A, B')} && {\Hom(A, B)} && {\Hom(A, B'')} \arrow["\exists", dashed, from=3-5, to=1-3] \arrow[from=1-1, to=1-3] \arrow["i", hook, from=1-3, to=1-5] \arrow[""{name=0, anchor=center, inner sep=0}, "p", from=1-5, to=1-7] \arrow[from=1-7, to=1-9] \arrow[from=4-1, to=4-3] \arrow[from=4-3, to=4-5] \arrow[""{name=1, anchor=center, inner sep=0}, from=4-5, to=4-7] \arrow["f"', from=3-5, to=1-5] \arrow["{\Hom(A, \wait)}", shorten <=13pt, shorten >=13pt, Rightarrow, from=0, to=1] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTAsWzAsMCwiMCJdLFsyLDAsIkInIl0sWzQsMCwiQiJdLFs2LDAsIkInJyJdLFs4LDAsIjAiXSxbNCwyLCJBIl0sWzAsMywiPyJdLFsyLDMsIlxcSG9tKEEsIEInKSJdLFs0LDMsIlxcSG9tKEEsIEIpIl0sWzYsMywiXFxIb20oQSwgQicnKSJdLFs1LDEsIlxcZXhpc3RzIiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzAsMV0sWzEsMiwiaSIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzIsMywicCJdLFszLDRdLFs2LDddLFs3LDhdLFs4LDldLFs1LDIsImYiLDJdLFsxMywxNywiXFxIb20oQSwgXFx3YWl0KSIsMCx7InNob3J0ZW4iOnsic291cmNlIjoyMCwidGFyZ2V0IjoyMH19XV0=) Then show $if=0 \implies f=0$, using that $B'\to B$ is mono. Similarly $pf=0\implies f=ig$ for some $g$. ::: :::{.remark} A nice proof that $\globsec{\wait}$ is left-exact: realize $\globsec{X; \wait} \cong \Hom_{\Sh(X)}(\constantsheaf{\ZZ}, \wait)$, which is left-exact for free. Use that the map $\constantsheaf{\ZZ} \to \mcf(X)$ is determined by $1\mapsto s$ and extend using $n = n\cdot 1$. :::