# Wednesday, March 02 :::{.remark} For $F\in \Ab\Cat(\cat A, \cat B)$ left exact, assuming $\cat A$ has enough injectives, there is a right derived functor $\RR F$ so that a SES $0\to A\to B\to C\to 0$ admits a LES with a connecting morphism $\delta$: \[ 0\to \RR FA\to \RR F B\to \RR F C \mapsvia{\delta} \Sigma^1 \RR F A \to \cdots .\] Note that $\delta$ depends on the triple appearing in the SES. ::: :::{.theorem title="Grothendieck"} $\RR F$ and $\delta$ are universal among $\delta\dash$functors. ::: :::{.remark} Injectives will be acyclic and homology will measure how things are glued. Analogy: simplicial or cellular homology uses contractible objects (with trivial homology) to measure how spaces are glued from simplices or spheres. ::: :::{.remark} Recall the definitions of projective and injective objects, which require existence (but not uniqueness) of certain lifts. In $\rmod$, free implies projective, so free resolutions usually suffice and one can study generators, relations, syzygies, etc. We'll show that $\cat{A} \da \Sh(X; \Ab\Grp)$ has enough injectives, but usually won't have enough projectives. Recall that this means that every $A\in \cat{A}$ admits a monomorphism $A\injects I$ for $I$ an injective object. If there are enough injectives, every object admits an injective resolution, and any two such resolutions are homotopy equivalent. ::: :::{.remark} Recall that \[ \cocomplex{\RR} F(X) = \complex{H}( F( X \coveredby \cocomplex{I} )) \] and $\RR^{i\geq 1} F(I) = 0$ if $I$ is itself injective. ::: :::{.remark} Recall the Horseshoe lemma: \begin{tikzcd} 0 && 0 && 0 \\ A && {I^1_A} && {I^2_A} && \cdots \\ B && \textcolor{rgb,255:red,92;green,92;blue,214}{\exists I^1_B \da I^1_A \oplus I^1_C} && \textcolor{rgb,255:red,92;green,92;blue,214}{\exists I^2_B \da I^2_A \oplus I^2_C} && \textcolor{rgb,255:red,92;green,92;blue,214}{\cdots} \\ C && {I^1_C} && {I^2_C} && \cdots \\ 0 && 0 && 0 \arrow[from=4-3, to=4-1] \arrow[from=4-5, to=4-3] \arrow[color={rgb,255:red,92;green,92;blue,214}, dashed, from=3-7, to=3-5] \arrow[dashed, from=4-7, to=4-5] \arrow[dashed, from=2-7, to=2-5] \arrow[from=2-5, to=2-3] \arrow[from=2-3, to=2-1] \arrow[color={rgb,255:red,92;green,92;blue,214}, from=3-5, to=3-3] \arrow[color={rgb,255:red,92;green,92;blue,214}, from=3-3, to=3-1] \arrow[from=1-3, to=2-3] \arrow[from=2-3, to=3-3] \arrow[from=3-3, to=4-3] \arrow[from=4-3, to=5-3] \arrow[from=1-1, to=2-1] \arrow[from=2-1, to=3-1] \arrow[from=3-1, to=4-1] \arrow[from=4-1, to=5-1] \arrow[from=1-5, to=2-5] \arrow[from=2-5, to=3-5] \arrow[from=3-5, to=4-5] \arrow[from=4-5, to=5-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTgsWzAsMCwiMCJdLFswLDEsIkEiXSxbMCwyLCJCIl0sWzAsMywiQyJdLFswLDQsIjAiXSxbMiwxLCJJXjFfQSJdLFs0LDEsIkleMl9BIl0sWzIsMiwiXFxleGlzdHMgSV4xX0IgXFxkYSBJXjFfQSBcXG9wbHVzIEleMV9DIixbMjQwLDYwLDYwLDFdXSxbNCwyLCJcXGV4aXN0cyBJXjJfQiBcXGRhIEleMl9BIFxcb3BsdXMgSV4yX0MiLFsyNDAsNjAsNjAsMV1dLFsyLDMsIkleMV9DIl0sWzQsMywiSV4yX0MiXSxbMiwwLCIwIl0sWzQsMCwiMCJdLFsyLDQsIjAiXSxbNCw0LCIwIl0sWzYsMywiXFxjZG90cyJdLFs2LDIsIlxcY2RvdHMiLFsyNDAsNjAsNjAsMV1dLFs2LDEsIlxcY2RvdHMiXSxbOSwzXSxbMTAsOV0sWzE2LDgsIiIsMCx7ImNvbG91ciI6WzI0MCw2MCw2MF0sInN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFsxNSwxMCwiIiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzE3LDYsIiIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFs2LDVdLFs1LDFdLFs4LDcsIiIsMCx7ImNvbG91ciI6WzI0MCw2MCw2MF19XSxbNywyLCIiLDAseyJjb2xvdXIiOlsyNDAsNjAsNjBdfV0sWzExLDVdLFs1LDddLFs3LDldLFs5LDEzXSxbMCwxXSxbMSwyXSxbMiwzXSxbMyw0XSxbMTIsNl0sWzYsOF0sWzgsMTBdLFsxMCwxNF1d) Note that the complex in the middle is not the direct sum of the two outer complexes, just the terms -- the differential $d_B$ on $\cocomplex{I}_B$ will be of the form \[ d_B = \matt {d_A} * 0 {d_C} .\] ::: :::{.exercise title="?"} Prove this, using that additive functors preserve direct sums. Conclude using that this construction yields a SES of complexes $0\to F\cocomplex{I}_A \to F\cocomplex{I}_B\to F\cocomplex{I}_C\to 0$. ::: :::{.exercise title="?"} Prove that if $I$ is injective then $0\to I\to B\to C\to 0$ splits by explicitly constructing a left and right splitting to show that $B$ satisfies the universal property of the biproduct. Show also that the same conclusion holds for $0\to A\to B\to P\to 0$ with $P$ projective. :::