# Friday, March 04 :::{.remark} Idea: regard $A$ as a chain complex supported in degree zero and $A\underset{\coveredby}{\eta} \cocomplex{I}$ an injective resolution, then the induced map $\eta^*: H^*(A)\to H^*(\cocomplex{I})$ is an isomorphism, so $A$ and $\cocomplex{I}$ are quasi-isomorphic. ::: :::{.exercise title="?"} Show that if $A\coveredby \cocomplex{I}, \cocomplex{J}$, then there exists a chain homotopy $f: I \homotopic J$. ::: :::{.remark} Hints: \begin{tikzcd} A \\ {X^0} && {I^0} & {X^1} & {I^1} & {X^2} & \bullet \\ {Y_0} && {J^0} & {Y^1} & {J^1} & {Y^2} & \bullet \\ B \arrow[Rightarrow, no head, from=1-1, to=2-1] \arrow[from=2-1, to=3-1] \arrow[Rightarrow, no head, from=3-1, to=4-1] \arrow[hook, from=2-1, to=2-3] \arrow[hook, from=3-1, to=3-3] \arrow[two heads, from=3-3, to=3-4] \arrow[two heads, from=2-3, to=2-4] \arrow[hook, from=2-4, to=2-5] \arrow[two heads, from=2-5, to=2-6] \arrow[hook, from=2-6, to=2-7] \arrow[hook, from=3-4, to=3-5] \arrow[two heads, from=3-5, to=3-6] \arrow[hook, from=3-6, to=3-7] \arrow[from=2-1, to=3-3] \arrow["{\exists \text{ since } J^0\text{ is injective}}", dashed, from=2-3, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTQsWzAsMCwiQSJdLFswLDEsIlheMCJdLFswLDIsIllfMCJdLFswLDMsIkIiXSxbMiwxLCJJXjAiXSxbMywxLCJYXjEiXSxbNCwxLCJJXjEiXSxbNSwxLCJYXjIiXSxbMiwyLCJKXjAiXSxbMywyLCJZXjEiXSxbNCwyLCJKXjEiXSxbNSwyLCJZXjIiXSxbNiwxLCJcXGJ1bGxldCJdLFs2LDIsIlxcYnVsbGV0Il0sWzAsMSwiIiwwLHsibGV2ZWwiOjIsInN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMSwyXSxbMiwzLCIiLDAseyJsZXZlbCI6Miwic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFsxLDQsIiIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzIsOCwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbOCw5LCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbNCw1LCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbNSw2LCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFs2LDcsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFs3LDEyLCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFs5LDEwLCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFsxMCwxMSwiIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV0sWzExLDEzLCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFsxLDhdLFs0LDgsIlxcZXhpc3RzIFxcdGV4dHsgc2luY2UgfSBKXjBcXHRleHR7IGlzIGluamVjdGl2ZX0iLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=) Given \[ f^{n-1} - g^{n-1} = h^n d^{n-1} - d^{n-2} h^{n-1} ,\] construct $h^{n+1} d_I^n$ such that \[ (f^n - g^n) d_I^n = ( h^{n+1} d_I^n + d_J^{n-1} h^n ) d_I^n \] and extend arbitrarily to $h^{n+1}: I^{n+1} \to J^n$. ::: :::{.exercise title="?"} Prove the Horseshoe lemma. :::