# Friday, March 18 :::{.remark} Given effacements: \begin{tikzcd} 0 && {A_1} && {M_1} \\ \\ 0 && {A_2} && {M_2} \arrow[from=1-1, to=1-3] \arrow[from=1-3, to=1-5] \arrow[from=3-1, to=3-3] \arrow[from=3-3, to=3-5] \arrow["g", from=1-3, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNixbMCwwLCIwIl0sWzIsMCwiQV8xIl0sWzQsMCwiTV8xIl0sWzQsMiwiTV8yIl0sWzIsMiwiQV8yIl0sWzAsMiwiMCJdLFswLDFdLFsxLDJdLFs1LDRdLFs0LDNdLFsxLDQsImciXV0=) There exists an effacement extending $g$. Use \begin{tikzcd} 0 && {A_1} && {M_1\oplus M_2} \\ \\ 0 && {A_2} & {} & {M_2} \arrow[from=1-1, to=1-3] \arrow["{(i_1, gi_2)}", from=1-3, to=1-5] \arrow[from=3-1, to=3-3] \arrow["{i_2}", from=3-3, to=3-5] \arrow["g", from=1-3, to=3-3] \arrow["{(0, \id)}", from=1-5, to=3-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNyxbMCwwLCIwIl0sWzIsMCwiQV8xIl0sWzQsMCwiTV8xXFxvcGx1cyBNXzIiXSxbNCwyLCJNXzIiXSxbMiwyLCJBXzIiXSxbMCwyLCIwIl0sWzMsMl0sWzAsMV0sWzEsMiwiKGlfMSwgZ2lfMikiXSxbNSw0XSxbNCwzLCJpXzIiXSxbMSw0LCJnIl0sWzIsMywiKDAsIFxcaWQpIl1d) There is a factorization: \begin{tikzcd} && {S^i A_2} \\ \\ {S^i A_1} &&&& {S^iM_2} \arrow["0", dashed, from=1-3, to=3-5] \arrow[dashed, from=3-1, to=1-3] \arrow[from=3-1, to=3-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMCwyLCJTXmkgQV8xIl0sWzQsMiwiU15pTV8yIl0sWzIsMCwiU15pIEFfMiJdLFsyLDEsIjAiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMCwyLCIiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMCwxXV0=) > ?? Concludes theorem from last time.z ::: :::{.remark} Recall that $\Hom(C, \wait)$ is left exact covariant and $\Hom(\wait, C)$ is left exact contravariant. For left exact functors, - Right derived functors are computed with injective resolutions. - $\cat C$ needs enough injectives For right exact functors, - Left derived functors are computed with projective resolutions. - $\cat C$ needs enough projectives ::: :::{.remark} Projective sheaves are locally free. ::: :::{.exercise title="?"} Show: - Injectives are closed under $\prod$, - Projectives are closed under $\bigoplus$. ::: :::{.proof title="?"} \begin{tikzcd} 0 && A && B \\ \\ &&& {I_i} \\ \\ &&& {\prod I_i} \arrow[from=1-1, to=1-3] \arrow[from=1-3, to=1-5] \arrow[""{name=0, anchor=center, inner sep=0}, color={rgb,255:red,214;green,92;blue,92}, from=1-3, to=3-4] \arrow[from=3-4, to=5-4] \arrow[""{name=1, anchor=center, inner sep=0}, color={rgb,255:red,214;green,92;blue,92}, curve={height=30pt}, from=1-3, to=5-4] \arrow[""{name=2, anchor=center, inner sep=0}, "\exists"', color={rgb,255:red,92;green,92;blue,214}, dashed, from=1-5, to=3-4] \arrow[""{name=3, anchor=center, inner sep=0}, "{\therefore \exists}", color={rgb,255:red,92;green,92;blue,214}, curve={height=-30pt}, dashed, from=1-5, to=5-4] \arrow[color={rgb,255:red,214;green,92;blue,92}, shorten <=7pt, shorten >=7pt, Rightarrow, 2tail reversed, from=1, to=0] \arrow[color={rgb,255:red,92;green,92;blue,214}, shorten <=7pt, shorten >=7pt, Rightarrow, dashed, 2tail reversed, from=2, to=3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNSxbMCwwLCIwIl0sWzIsMCwiQSJdLFs0LDAsIkIiXSxbMywyLCJJX2kiXSxbMyw0LCJcXHByb2QgSV9pIl0sWzAsMV0sWzEsMl0sWzEsMywiIiwwLHsiY29sb3VyIjpbMCw2MCw2MF19XSxbMyw0XSxbMSw0LCIiLDAseyJjdXJ2ZSI6NSwiY29sb3VyIjpbMCw2MCw2MF19XSxbMiwzLCJcXGV4aXN0cyIsMix7ImNvbG91ciI6WzI0MCw2MCw2MF0sInN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX0sWzI0MCw2MCw2MCwxXV0sWzIsNCwiXFx0aGVyZWZvcmUgXFxleGlzdHMiLDAseyJjdXJ2ZSI6LTUsImNvbG91ciI6WzI0MCw2MCw2MF0sInN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX0sWzI0MCw2MCw2MCwxXV0sWzksNywiIiwwLHsic2hvcnRlbiI6eyJzb3VyY2UiOjIwLCJ0YXJnZXQiOjIwfSwiY29sb3VyIjpbMCw2MCw2MF0sInN0eWxlIjp7InRhaWwiOnsibmFtZSI6ImFycm93aGVhZCJ9fX1dLFsxMCwxMSwiIiwwLHsic2hvcnRlbiI6eyJzb3VyY2UiOjIwLCJ0YXJnZXQiOjIwfSwiY29sb3VyIjpbMjQwLDYwLDYwXSwic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiYXJyb3doZWFkIn0sImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==) ::: :::{.exercise title="?"} Show that in $\rmod$, $M$ is projective $\iff M$ is a direct summand of a free module iff $M$ is locally free. ::: :::{.solution} Some hints: \begin{tikzcd} && P \\ \\ F && P && 0 \arrow[two heads, from=3-1, to=3-3] \arrow[from=3-3, to=3-5] \arrow[Rightarrow, no head, from=1-3, to=3-3] \arrow[dashed, from=1-3, to=3-1] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwyLCJGIl0sWzIsMiwiUCJdLFs0LDIsIjAiXSxbMiwwLCJQIl0sWzAsMSwiIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV0sWzEsMl0sWzMsMSwiIiwwLHsibGV2ZWwiOjIsInN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMywwLCIiLDEseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=) ::: :::{.exercise title="?"} Show - $\RR\Hom_{\zmod}(C_n, M) = M[n] \oplus \Sigma^1(M/nM)$ using $0\to \ZZ \mapsvia{\times n} \ZZ \to \ZZ/n\ZZ \to 0$. - Conclude that divisible module has vanishing $\Ext^1(C_n, \wait)$. - If $R$ is a PID, then $M\in \rmod$ is injective $\iff M$ is divisible. - For all rings $R$, $R$ is injective iff \begin{tikzcd} 0 && N && R \\ \\ &&&& I \arrow[from=1-1, to=1-3] \arrow[from=1-3, to=1-5] \arrow[from=1-3, to=3-5] \arrow[dashed, from=1-5, to=3-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCIwIl0sWzIsMCwiTiJdLFs0LDAsIlIiXSxbNCwyLCJJIl0sWzAsMV0sWzEsMl0sWzEsM10sWzIsMywiIiwxLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV1d) :::