# Wednesday, April 27 ## Cohomological Functors :::{.remark} Recall that for $X \mapsvia{f} Y$, $\cone(f) \approx X[1] \oplus Y$ and $\Cyl(f) \approx X \oplus X[1] \oplus Y$ with differential \[ d_{\Cyl(f)} \da \begin{bmatrix} d_X & -1 & \\ & d_X[1] & \\ & f[1] & d_Y \end{bmatrix} \actson \tv{x_i, x_{i+1}, y_i} \in \Cyl(f)^i .\] > Note: I use $\approx$ above because these formulas hold levelwise, but the SESs they fit into may not be split exact, so $\cone(f), \Cyl(f)$ may not such direct sums. There are related exact triples, here the first and second rows: \begin{tikzcd} && Y && {\Cone(f)} && {X[1]} \\ \\ X && {\Cyl(f)} && {\Cone(f)} \\ \\ X && Y \arrow[from=5-1, to=5-3] \arrow[from=3-1, to=3-3] \arrow[from=3-3, to=3-5] \arrow[from=1-3, to=1-5] \arrow[Rightarrow, no head, from=1-5, to=3-5] \arrow["\alpha", from=1-3, to=3-3] \arrow["\beta", from=3-3, to=5-3] \arrow[Rightarrow, no head, from=3-1, to=5-1] \arrow[from=1-5, to=1-7] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsOCxbMiwwLCJZIl0sWzIsNCwiWSJdLFs0LDAsIlxcQ29uZShmKSJdLFs2LDAsIlhbMV0iXSxbNCwyLCJcXENvbmUoZikiXSxbMiwyLCJcXEN5bChmKSJdLFswLDIsIlgiXSxbMCw0LCJYIl0sWzcsMV0sWzYsNV0sWzUsNF0sWzAsMl0sWzIsNCwiIiwxLHsibGV2ZWwiOjIsInN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMCw1LCJcXGFscGhhIl0sWzUsMSwiXFxiZXRhIl0sWzYsNywiIiwxLHsibGV2ZWwiOjIsInN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMiwzXV0=) Here $\beta\alpha = \id_Y$ and $\alpha\beta \homotopic \id_{\Cyl(f)}$. ::: :::{.definition title="Cohomological functors"} A functor $H\in [\cat C, \cat A]$ with $\cat C\in \triang\Cat, \cat A\in \Ab\Cat$ (where $\cat A$ is not necessarily related to $\cat C$) is a **cohomological functor** iff every distinguished triangle $A\to B\to C\in \cat{C}$ is sent to an exact sequence $HA\to HB\to HC\in \cat{A}$. ::: :::{.corollary title="?"} If $H$ is cohomological, there is an associated LES \[ \cdots \to HA \to HB\to HC \to H(A[1]) \to H(B[1]) \to \cdots .\] ::: :::{.lemma title="?"} The functor $H: \derivedcat{A}\to A$ where $X\mapsto H^0(X)$ is cohomological, noting that $H^i(X)$ can be written as $H^0(X[i])$. ::: :::{.definition title="Ext for triangulated categories"} \[ \Ext^i(X, Y) \da \Hom_{\cat{C}}(X, Y[1]) .\] ::: :::{.lemma title="?"} \[ \Ext_{\cat A}^i(X, Y) \cong \Ext_{\derivedcat{\cat A}}(\iota X, \iota Y) \] where $\iota: \cat{A} \to \Ch\cat{A}$ is given by $\iota(A) = \cdots \to 0\to A\to 0 \to\cdots$ supported in degree zero. ::: :::{.theorem title="?"} For all $\cat{C}\in\triang\Cat$, for all $X,Y\in \cat{C}$ the (co)representable hom functors are cohomological: \[ h_Y &\da \Hom_{\cat C}(\wait, Y) \qquad\text{covariant} \\ (\wait)^X &\da \Hom_{\cat C}(X, \wait) \qquad\text{contravariant} .\] ::: :::{.proof title="?"} The proof uses the octahedral axiom TR3. To show that applying homs yields a complex, show that the maps on homs square to zero using the following: \begin{tikzcd} X && X && 0 && {X[1]} \\ \\ A && B && C && {A[1]} \\ \\ {[X, A]} && {[X, B]} && {[X, C]} \\ && {} \arrow[from=1-1, to=1-3] \arrow[from=1-3, to=1-5] \arrow[from=1-5, to=1-7] \arrow["u", from=3-1, to=3-3] \arrow["v", from=3-3, to=3-5] \arrow[from=3-5, to=3-7] \arrow["f"', from=1-1, to=3-1] \arrow["fu"', from=1-3, to=3-3] \arrow["{\exists 0}"', from=1-5, to=3-5] \arrow["{(\wait)^X(u)}", from=5-1, to=5-3] \arrow["{(\wait)^X(v)}", from=5-3, to=5-5] \arrow["{\therefore 0}"', curve={height=24pt}, dashed, from=5-1, to=5-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTIsWzAsMCwiWCJdLFsyLDAsIlgiXSxbNCwwLCIwIl0sWzAsMiwiQSJdLFsyLDIsIkIiXSxbNCwyLCJDIl0sWzYsMiwiQVsxXSJdLFs2LDAsIlhbMV0iXSxbMCw0LCJbWCwgQV0iXSxbMiw0LCJbWCwgQl0iXSxbNCw0LCJbWCwgQ10iXSxbMiw1XSxbMCwxXSxbMSwyXSxbMiw3XSxbMyw0LCJ1Il0sWzQsNSwidiJdLFs1LDZdLFswLDMsImYiLDJdLFsxLDQsImZ1IiwyXSxbMiw1LCJcXGV4aXN0cyAwIiwyXSxbOCw5LCIoXFx3YWl0KV5YKHUpIl0sWzksMTAsIihcXHdhaXQpXlgodikiXSxbOCwxMCwiXFx0aGVyZWZvcmUgMCIsMix7ImN1cnZlIjo0LCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=) ::: ## Exceptional Collections :::{.definition title="Exceptional collections"} For $\cat{C}\in \triang\Cat$, an **exceptional collection/sequence** is a chain of morphisms \[ \mce_1\to \mce_2 \to\cdots\to \mce_n \in \cat{C} \] such that 1. Self-Exts are supported only in degree zero, i.e. $\Hom(\mce_i, \mce_i[k]) = 0$ for $k\neq 0$. 2. There are no homs in the opposite direction, i.e. $\Hom(\mce_j, \mce_i[m]) = 0$ for $j > i$ and for any $m$. ::: :::{.example title="?"} From a paper of Valery's: let $X$ be a smooth projective surface with $H^1(\OO_X) = H^2(\OO_X) = 0$, which cohomologically look like rational surfaces. Examples: $X$ rational with $\abs{n K_X} = \emptyset$ (so "negative" canonical class), or $X$ of general type with $q=p_g=0$ and $\abs{n K_X}$ big for $n \gg 0$. In these cases, there are line bundles $\mce$ with $\Ext^i(\mce, \mce) = H^1(\OO, \OO) = H^i(\OO_X)$ and one can use that $\Ext(\mce_i, \mce_j) = H^i(\mce_i \tensor \mce_j\inv)$. ::: :::{.theorem title="Beilinson, Bondal, Kapranov"} If $\cat{C}' \leq \cat{C}$ is the full subcategory generated by $\mce_1,\cdots, \mce_n$, then $\cat{C}' \homotopic \Db (Q)$ for $Q$ a quiver. In particular, if $\ts{\mce_i}$ is a full exceptional collection, $\cat{C} = \cat{C}'$. :::