# Friday, April 29 ## Applications of derived categories :::{.remark} Some major work in this area: - Beilinson-Gelfand-Gelfand (BGG) - Bendel-Kapranov - Mukai - Bendal-Orlov - Orlov - Kutznatsov - Kontsevich, Fukaya (homological mirror symmetry) - Beilinson-Bernstein-Gabber-Deligne on perverse sheaves - Bridgeland ::: :::{.remark} Results: - BGG: $\Db(\Coh \PP^n) \cong \Db(\rmod)$ for $R$ a certain ring. - BK, K: same for quadrics and grassmannians. Recall that given $\cat T\in\triang\Cat$ with an exceptional collection $\ts{\mce_i}$, they generate a triangulated subcategory $\gens{\mce_i} \leq \cat T$. It turns out that $\gens{\mce_i}\cong \rmod$ for $R = \bigoplus \Endo \mce_i$. Beilinson produces a collection $\ts{\OO, \Omega^1,\cdots, \Omega^{n-1}}$, but an easier alternative is $\ts{\OO, \OO(1), \cdots, \OO(n-1)}$. If the collection is full, then $\cat T \cong \gens{\mce_i}$. As an alternative to $R$, one can take the corresponding quiver: make a directed graph $\mce_1\to\mce_2\to\cdots$ where each node has $\Endo \mce_i$ attached and each edge $\mce_i\to\mce_j$ is assigned $\oplus_n \Hom(\mce_i, \mce_j[n])$. So the derived category corresponds to representations of this quiver. Example: for $\PP^1$, one obtains the following quiver: \begin{tikzcd} \CC && \CC \\ \OO && {\OO(1)} \arrow["{\CC\oplus \CC}"', shift right=3, from=2-1, to=2-3] \arrow[shift left=3, from=2-1, to=2-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwxLCJcXE9PIl0sWzIsMSwiXFxPTygxKSJdLFswLDAsIlxcQ0MiXSxbMiwwLCJcXENDIl0sWzAsMSwiXFxDQ1xcb3BsdXMgXFxDQyIsMix7Im9mZnNldCI6M31dLFswLDEsIiIsMix7Im9mZnNldCI6LTN9XV0=) ::: :::{.proposition title="?"} If $X\in\Alg\Var\slice k$ admits a full exceptional collection, then the following also admit a full exceptional collection: - Any $\PP^n\dash$bundle $Y = \PP(V) \to X$, and - Any blowup $Y = \Bl_Z X$ for $Z$ a smooth subvariety. ::: :::{.corollary title="?"} Any rational smooth projective surface admits a full exceptional collection, by running the MMP. ::: :::{.conjecture} Given a smooth surface admitting a full exceptional collection, is it rational? For a threefold, is it a blowup of something rational? ::: :::{.definition title="Semiorthogonal decompositions"} Given $\cat T\in \triang\Cat$ and $A\leq \cat T$ a full triangulated subcategory, one can define two subcategories ${}^\perp A$ and $A^\perp$: \[ A^\perp = \ts{F \st \Hom(F, A) = 1} .\] ::: :::{.remark} For $\cat C \in \triang\Cat$, one can take $\HoH \cat C$. For $\cat C = \Dc(X)$, the $\HoH_0 D(X) \cong \ZZ^n \oplus A$ as a group, for $A$ some finite torsion group. If one has a full exceptional collection, then $A = \HoH_0( \gens{\mce_1, \cdots, \mce_n}^\perp )$. As a corollary, the length $m$ of an exceptional collection satisfies $m\leq \rank_\ZZ \HoH_0 \Dc(X)$. ::: :::{.conjecture title="Kaznutsov"} If $\ts{\mce_1,\cdots, \mce_n}$ is an exceptional collection and $n = \rank_\ZZ \HoH_0 \Dc(X)$, then this is a *full* exceptional collection. ::: :::{.remark} For surfaces of general type, a special Godeaux surface produces a counterexample. There is a much easier counterexample coming from a Burnist (?) surface -- generally fake $\PP^2$, fake Fanos, etc. See A-Orlov, Orlov-Gorheaise, Katgerov-?, ?? ::: :::{.remark} Phantoms: categories with zero $\HoH$, so no full exceptional collections. ::: ## Well-known classical results :::{.theorem title="Bondal-Orlov (very important!)"} If $X\in \smooth\proj\Var$ where either $K_X$ or $-K_X$ is ample, then $X$ can be recovered from $\Dc(X)$. ::: :::{.remark} Having $-K_X$ ample yields **Fano** varieties, and $K_X$ ample yields **general-type** surfaces. ::: :::{.theorem title="Mukai"} If $A \in \Ab\Var$, then $\Dc(A) \cong \Dc(A\dual)$. Such pairs are referred to as **Mukai partners**. ::: :::{.remark} How to construct the equivalence $\Dc(A) \to \Dc(A\dual)$: take the Fourier-Mukai transform. Use the Poincare bundle $P_A \to A\times A\dual$, and construct the functor as a push-pull over the span $(A \from_{p_1} A\times A\dual \to_{p_2} A\dual)$, so \[ \mcf \mapsto (p_2)_* \qty{ (p_1)^* \mcf \tensor P_A) } .\] ::: :::{.remark} The next in line: K3 surfaces. An easy example: take Kummer surfaces, so $A\to A/\pm 1$ and then blow up the 16 nodes. :::