# Monday, September 18 :::{.remark} Today: computing $\Cl(X_\Sigma)$. Write $T_N = (\cstar)^n \actson X_\Sigma$ for \( \Sigma \subseteq N_\RR \). ::: :::{.theorem title="?"} There is an exact sequence \[ M &\to \Div_{T_N}( X_ \Sigma) = \bigoplus_{ \rho\in \Sigma(1)}\ZZ D_{ \rho} \to \Cl(X_ \Sigma) \to 0 \\ m &\mapsto \div(\chi^m),\qquad D \mapsto [D] .\] The first map is injective iff $\gens{u_ \rho\st \rho\in \Sigma(1)}_\RR = N_\RR$. ::: :::{.remark} This says the class group can be computed from only $T\dash$invariant divisors, and surjectivity here means any divisor is linearly equivalent to a toric divisor. Moreover, $\Cl(X_ \Sigma)$ is a finitely-generated abelian group, which is not necessarily free. ::: :::{.example title="?"} What is $\Cl(\PP^2)$? We have an exact sequence \[ 0 \to \ZZ^2 &\to \Div_T(\PP^2) = \gens{D_0, D_1, D_2}_\ZZ \to \Cl(\PP^2)\to 0 \\ (1, 0) &\mapsto \div(\chi^{1, 0}) = \sum v_{D_i}(\chi^{1, 0}) D_i = D_0 - D_2 \longrightarrow 0 \\ (0, 1) &\mapsto \div(\chi^{0, 1}) = \sum v_{D_i}(\chi^{0, 1}) D_i = D_1 - D_2 \longrightarrow 0 .\] This yields $D_0 \sim D_2$ and $D_1\sim D_2$, so $\Cl(\PP^2) = \gens{D_1}_\ZZ = \gens{D_2}_\ZZ = \gens{D_3}_\ZZ$. Writing $\Div_T(\PP^2) \cong \ZZ^3$ with $D_1 = (1, 0, 0), D_2 = (0, 1, 0), D_3 = (0, 0, 1)$ we similarly see \[ \Cl(\PP^2) = \ZZ^3 / \gens{(1,0,-1), (0, 1, -1)}_\ZZ\cong \ZZ^3/\ZZ^2 \cong \ZZ \] since this the denominator is a saturated lattice. ::: :::{.example title="?"} Compute $\Cl(\PP^n)$. ::: ## $\S$ 3.2: Cartier Divisors :::{.remark} Let \( \varphi: \abs{ \Sigma} \to \ZZ \) be a piecewise linear function on \( \Sigma \), i.e. \( \varphi \) is linear on each cone. Recall Weil divisors are $\sum a_i D_i$ with $D_i$ prime divisors, and Cartier divisors are locally principal. ::: :::{.theorem title="?"} Assume $\gens{ \rho\st \rho\in \Sigma(1)}_\RR = N_\RR$. There is an exact sequence \[ 0 \to M \to \CDiv_{T_n}(X_ \Sigma) \to \Pic(X_ \Sigma)\to 0 .\] ::: :::{.remark} When is a Weil divisor Cartier? ::: :::{.theorem title="?"} A Weil divisor $D = \sum a_i D_{ \rho_i}$ is Cartier iff there exists an integral piecewise-linear function \( \varphi: \abs{ \Sigma} \to \RR \), so $\phi(N \intersect \abs{\Sigma}) \subseteq \ZZ$, such that \( \varphi(u_{ \rho_i}) = -a_i \) for each $i$. ::: :::{.theorem title="?"} $D = \sum a_i D_i$ is a principal Weil divisor iff $\phi$ is linear. ::: :::{.remark} Let $X_ \Sigma = \PP^2$, is $D_{ \rho_0}$ Cartier? One has $D_{\rho_0} = 1 D_{\rho_0} + 0 D_{\rho_1} + 0 D_{\rho_2}$, so we need $\phi: \RR^2\to \RR$ where $\phi(1, 0) = -1$ and $\phi(0, 1) = \phi(-1, -1) = 0$. One can take $\phi = \inp{\wait}{ (-1, 0)}$ and check $\phi(1, 0) = -1$ and $\phi(0, 1) = 0$. So set $\phi(x, y) = -x$ on the first cone $\sigma_{01}$, and $\phi(x, y) = -x + y$ on the remaining cones by similarly checking $\inp{\wait}{(-1, 1)}$ on $\sigma_{20}$ and $\phi(x, y) = 0$ on $\sigma_{12}$ by checking $\inp{\wait}{(0, 0)}$ works. :::