\input{"preamble.tex"} \addbibresource{2023-08-16.bib} \let\Begin\begin \let\End\end \newcommand\wrapenv[1]{#1} \makeatletter \def\ScaleWidthIfNeeded{% \ifdim\Gin@nat@width>\linewidth \linewidth \else \Gin@nat@width \fi } \def\ScaleHeightIfNeeded{% \ifdim\Gin@nat@height>0.9\textheight 0.9\textheight \else \Gin@nat@width \fi } \makeatother \setkeys{Gin}{width=\ScaleWidthIfNeeded,height=\ScaleHeightIfNeeded,keepaspectratio}% \title{ \textbf{ Preview } \\ {\normalsize University of Georgia} \\ } \begin{document} \date{} \maketitle \begin{flushleft} \textit{D. Zack Garza} \\ \textit{University of Georgia} \\ \textit{\href{mailto: dzackgarza@gmail.com}{dzackgarza@gmail.com}} \\ {\tiny \textit{Last updated:} 2023-12-17 } \end{flushleft} \newpage % Note: addsec only in KomaScript \addsec{Table of Contents} \tableofcontents \newpage \hypertarget{wednesday-august-16}{% \section{Wednesday, August 16}\label{wednesday-august-16}} \begin{remark} See the \href{https://drive.google.com/file/d/1uWvSFqhMZU8lHDpNxRY7sKW188xzu4tH/view?pli=1}{syllabus} and \href{https://drive.google.com/file/d/19hh7iTG8ZFx7uYHCmWU-Db2cbVFZNlud/view}{calendar}. Textbooks: Fulton's \emph{Toric Varieties} and Cox-Little-Schenck's book of the same title. We'll also consider Gross-Hacking-Keel-Kontsevich's paper \href{https://arxiv.org/abs/1411.1394}{Canonical bases for cluster algebras}. \end{remark} \begin{remark} Define \(S \coloneqq{\mathbf{C}}[x_1, \cdots, x_n]\), and an ``affine algebraic variety'' to be the common vanishing locus in \({\mathbf{C}}^n\) of a system of equations. Say two such varieties \(C_1, C_2\) are isomorphic iff \({\mathbf{C}}[C_1] \cong {\mathbf{C}}[C_2]\) as \({\mathbf{C}}{\hbox{-}}\)algebras, where \({\mathbf{C}}[C_i] \coloneqq S / I(C_i)\) and \(I(C_i) \coloneqq\left\{{f\in S {~\mathrel{\Big\vert}~}f(p) = 0 \,\, \forall p\in C_i}\right\}\). \end{remark} \begin{exercise}[?] Let \(V\) be an affine variety and show that \(I(V) \coloneqq\left\{{ f\in S {~\mathrel{\Big\vert}~}f(p) = 0 \,\,\forall p\in V}\right\}\) is in fact an ideal. \end{exercise} \begin{exercise}[?] Show that \(\left\{{\text{points of }V}\right\}\rightleftharpoons\operatorname{mSpec}{\mathbf{C}}[V]\) where \(p\rightleftharpoons{\mathfrak{m}}_p\) is a bijection. \end{exercise} \begin{fact} \(V\) is irreducible iff \({\mathbf{C}}[V]\) is an integral domain iff \(I(V)\) is a prime ideal. \end{fact} \begin{remark} For dimension 1, normal is equivalent to smooth, but in higher dimensions. \end{remark} \newpage \printbibliography[title=Bibliography] \end{document}